Non-valence contributions to weak transition form factors of heavy-light mesons

María Gómez-Rocha Universidad de Granada

in collaboration with Oliver Heger and Wolfgang Schweiger University of Graz, Austria

26-31 July 2021 Mexico City

Motivation

- Form factors: source of information on the fundamental structure of hadrons
- Relativistic description of hadrons needed

- Weak decays: form factors provide CKM matrix elements
- Appropriate theoretical framework is required

Motivation

- Form factors: source of information on the fundamental structure of hadrons
- Relativistic description of hadrons needed

- Weak decays: form factors provide CKM matrix elements
- Appropriate theoretical framework is required

Relativistic description of current in terms of constituent's currents not trivial

$$F(q^2) \sim \langle P', \sigma' | J^{\mu} | P, \sigma \rangle$$

- Change of reference frame
- Covariance needed
- Cluster separability property required
- Heavy-light systems: heavy-quark symmetry in the limit

Motivation

Non-valence $q\bar{q}$ -pair contributions: Z-graphs

- ▶ Suppressed in light-front dynamics in the $q^+ = 0$ frame
- Suppressed in instant form (and point form) dynamics in the Infinite Momentum frame (IF)

 \Rightarrow We will consider two different frames:

- Infinite momentum frame (IF): Mandelstam $s \to \infty$
- Breit frame (BF): Momentum is transferred in the direction of motion (as it happens in weak decay dynamics)

Point-form version of the Bakamjian-Thomas construction

$$\hat{P}^{\mu} = \hat{\mathcal{M}} \, \hat{V}^{\mu}_{\text{free}} = \left(\hat{\mathcal{M}}_{\text{free}} + \hat{\mathcal{M}}_{\text{int}}\right) \hat{V}^{\mu}_{\text{free}}$$

Dynamics of the system encoded in \hat{M} .

The point form uses *velocity states*:

$$|\vec{k}_i, \mu_i\rangle \equiv |\vec{k}_1, \mu_1; \vec{k}_2, \mu_2; ...; \vec{k}_n, \mu_n\rangle \qquad \sum_{i=1}^n \vec{k}_i = 0.$$

They are boosted with velocity V^{μ} , $V^{\mu}V_{\mu}$

$$|V;\vec{k}_1,\mu_1;\vec{k}_2,\mu_2;...;\vec{k}_n,\mu_n\rangle \ = \ \hat{U}_{B_c(V)}|\vec{k}_1,\mu_1;\vec{k}_2,\mu_2;...;\vec{k}_n,\mu_n\rangle$$

The point form is very convenient for the description of *heavy-light systems* [PRD 90 (2014) 076003]

Point-form approach

Mass operator

Coupled channel

$$\hat{M} = \begin{pmatrix} \hat{M}_{\bar{u}\bar{b}\nu_e}^{\operatorname{conf}} & \hat{K}_{\bar{u}\bar{b}\nu_e \to \bar{u}\bar{b}We} & 0 & \hat{K}_{\bar{u}\bar{b}\nu_e \to \bar{u}c}W\nu_e \\ \hat{K}_{\bar{u}\bar{b}\nu_e \to \bar{u}\bar{b}We}^{\dagger} & \hat{M}_{\bar{u}\bar{b}We}^{\operatorname{conf}} & \hat{K}_{\bar{u}ce \to \bar{u}\bar{b}We}^{\dagger} & 0 \\ 0 & \hat{K}_{\bar{u}ce \to \bar{u}\bar{b}We} & \hat{M}_{\bar{u}ce}^{\operatorname{conf}} & \hat{K}_{\bar{u}ce \to \bar{u}c}W\nu_e \\ \hat{K}_{\bar{u}\bar{b}\nu_e \to \bar{u}c}W\nu_e & 0 & \hat{K}_{\bar{u}ce \to \bar{u}c}W\nu_e & \hat{M}_{\bar{u}c}^{\operatorname{conf}} \\ |\Psi_{\bar{u}bWe}\rangle \\ |\Psi_{\bar{u}}\bar{b}We\rangle \\ |\Psi_{\bar{u}c}\psi \\ |\Psi_{\bar{u}c}\psi \\ |\Psi_{\bar{u}c}\psi \rangle \end{pmatrix} = m \begin{pmatrix} |\Psi_{\bar{u}b\nu_e}\rangle \\ |\Psi_{\bar{u}bWe}\rangle \\ |\Psi_{\bar{u}c}\psi \\ |\Psi_{\bar{u}c}\psi \\ |\Psi_{\bar{u}c}\psi \rangle \end{pmatrix}$$

Vertex operators

Creation/annihilation of particles

$$\langle V'; \vec{k}'_i, \mu'_i | \hat{K} | V; \vec{k}_i, \mu_i \rangle = N V^0 \delta^3 (\vec{V} - \vec{V}') \langle \vec{k}'_i, \mu'_i | \hat{\mathcal{L}}_{\text{int}} | \vec{k}_i, \mu_i \rangle$$

Some relevant results in this approach

- Electromagnetic form factors of pseudoscalar mesons [Biernat et al. PRC 79 (2009) 055203]
- Electromagnetic form factors of vector mesons [Biernat et al. PRC 89 (2014) 5, 055205]
- Heavy quark symmetry in heavy light systems
 [Gomez-Rocha, Schweiger, PRD 86 (2021) 053010]
- Semileptonic weak form factors
 [Gomez-Rocha, PRD 90 (2014) 076003]

W-exchange – spacelike $q^2 < 0$

Optical potential contains the hadronic current $\langle V'; \mathbf{k}_D; \mathbf{k}_e, \mu_e | \hat{V}_{opt}^{\bar{u}b\nu_e \to \bar{u}ce}(m) | V; \mathbf{k}_B; \mathbf{k}_{\nu_e}, \mu_{\nu_e} \rangle_{o.s} \propto J^{\mu}_{B \to D}(\vec{k}_D; \vec{k}_B) \propto F(q^2)$

$$\hat{V}_{\text{opt}}^{\bar{u}b\nu_e \to \bar{u}ce}(m) = \hat{K}_{\bar{u}ce \to \bar{u}bWe}(m - \hat{M}_{\bar{u}bWe}^{\text{conf}})^{-1}\hat{K}_{\bar{u}b\nu_e \to \bar{u}bWe}^{\dagger} + \hat{K}_{\bar{u}ce \to \bar{u}cW\nu_e}(m - \hat{M}_{\bar{u}cW\nu_e}^{\text{conf}})^{-1}\hat{K}_{\bar{u}b\nu_e \to \bar{u}cW\nu_e}^{\dagger}$$

Form factors are extracted from the hadronic current

$$\begin{split} \tilde{J}^{\nu}_{M \to M'}(p_{M'};p_M) &= \left((p_M + p_{M'})^{\nu} - \frac{m_M^2 - m_{M'}^2}{q^2} q^{\nu} \right) F_1(q^2,s) \\ &+ \frac{m_M^2 - m_{M'}^2}{q^2} q^{\nu} F_0(q^2,s) \end{split}$$

Weak decay – timelike momentum transfer $q^2 > 0$

Optical potential contains the hadronic current $\langle V'; \mathbf{k}_D; \mathbf{k}_e, \mu_e | \hat{V}_{opt}^{\bar{u}b\nu_e \to \bar{u}ce}(m) | V; \mathbf{k}_B; \mathbf{k}_{\nu_e}, \mu_{\nu_e} \rangle_{o.s} \propto J^{\mu}_{B \to D}(\vec{k}_D; \vec{k}_B) \propto F(q^2)$

$$\hat{V}_{\text{opt}}^{b\bar{d}\to c\bar{d}e\bar{\nu}_{e}}(m) = \hat{K}_{c\bar{d}W\to c\bar{d}e\bar{\nu}_{e}}(m - M_{c\bar{d}W}^{\text{conf}})^{-1}\hat{K}_{c\bar{d}W\to b\bar{d}}^{\dagger} + \hat{K}_{b\bar{d}We\bar{\nu}_{e}\to c\bar{d}e\bar{\nu}_{e}}(m - \hat{M}_{b\bar{d}We\bar{\nu}_{e}}^{\text{conf}})^{-1}\hat{K}_{b\bar{d}We\bar{\nu}_{e}\to b\bar{d}}^{\dagger}.$$

Form factors are extracted from the hadronic current

$$\tilde{J}_{M \to M'}^{\nu}(p_{M'}; p_M) = \left((p_M + p_{M'})^{\nu} - \frac{m_M^2 - m_{M'}^2}{q^2} q^{\nu} \right) F_1(q^2) + \frac{m_M^2 - m_{M'}^2}{q^2} q^{\nu} F_0(q^2)$$

Numerical Studies

Model wave function

$$\psi_{\alpha}(\kappa) = \frac{2}{\pi^{\frac{4}{2}}a_{\alpha}^{\frac{3}{2}}}e^{-\frac{\kappa^2}{2a_{\alpha}^2}} ,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Model parameters

[Cheng et al.PRD 55 (1997)1559]

$M_B = 5.2795 \text{ GeV}$ $m_b = 4.8 \text{ GeV}$ $a_B = 0.55$ $M_D = 1.869 \text{ GeV}$ $m_c = 1.6 \text{ GeV}$ $a_D = 0.46$			
$M_D = 1.869 \text{ GeV}$ $m_a = 1.6 \text{ GeV}$ $a_D = 0.46$	$M_B = 5.2795 \text{ GeV}$	$m_b = 4.8 \text{ GeV}$	$a_B = 0.55$
ing need of the set up the	$M_D = 1.869 \text{ GeV}$	$m_c = 1.6 \text{ GeV}$	$a_D = 0.46$
$M_{\pi} = 0.1396 \text{ GeV} \ m_{u,d} = 0.25 \text{ GeV} \ a_{\pi} = 0.33$	$M_\pi=0.1396~{\rm GeV}$	$m_{u,d} = 0.25 \text{ GeV}$	$a_{\pi} = 0.33$
$M_K = 0.4937 \text{ GeV}$ $m_s = 0.4 \text{ GeV}$ $a_K = 0.38$	$M_K = 0.4937 \text{ GeV}$	$m_s = 0.4 \text{ GeV}$	$a_K = 0.38$

Breit Frame vs. Infinite Momentum Frame

596

Breit Frame vs. Infinite Momentum Frame

Spacelike form factors $q^2=q^\mu q_\mu=-Q^2$

Sac

Analytic Continuation $Q \rightarrow iQ$ to timelike region

Analytic continuation of form factors calculated in the Breit frame (BF) and the Infinite Momentum (IF) frame for $0 \le q^2 \le (M_B - M_{D(\pi)})^2$

$B \rightarrow D$

 $B \to \pi$

Remarks:

- Agreement at $q^2 = 0$ and up to $q^2 \approx 8 \text{ GeV}^2$
- The difference increase near zero recoil point $q^2 = (M_B M_{D(\pi)})^2$
- Such difference may be due to cluster separability violation (s-dependence of form factors) or to Z-graphs

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへぐ

Analytic Continuation $Q \rightarrow iQ$ to timelike region

Analytic continuation of form factors calculated in the Breit frame (BF) and the Infinite Momentum (IF) frame for $0 \le q^2 \le (M_B - M_{D(\pi)})^2$

$B \rightarrow D$

 $B \to \pi$

Remarks:

- Agreement at $q^2 = 0$ and up to $q^2 \approx 8 \text{ GeV}^2$
- The difference increase near zero recoil point $q^2 = (M_B M_{D(\pi)})^2$
- Such difference may be due to cluster separability violation (*s*-dependence of form factors) or to *Z*-graphs
- \Rightarrow We choose the Infinite Momentum frame

Estimation of Z-graph contributions

We estimate the importance of Z-graphs by comparing form factors

- Analytic continuation in IF \Rightarrow Z-graphs suppressed
- Direct calculation \Rightarrow Z-graphs not included

Difference of both: an estimate of the importance of Z-graphs

1.2 1.0 1.0 0.8 0.8 ı<u>ت</u> 0.6 u⁰ 0.6 Direct calculation Analytic continuation 0.4 0.4 0.2 0.2 0.0 0.0 10 10 5 0 -5 a^2 (GeV²) a^2 (GeV²)

Deviation is significant near zero recoil \Rightarrow Z-graphs become relevant

 $B \rightarrow D$

We estimate the importance of Z-graphs by comparing form factors

- Analytic continuation in IF \Rightarrow Z-graphs suppressed
- Direct calculation \Rightarrow Z-graphs not included

Difference of both: an estimate of the importance of Z-graphs

Deviation is significant near zero recoil \Rightarrow Z-graphs become relevant

Estimation of Z-graph contributions

 q^2 (GeV²)

 $q^2(\text{GeV}^2)$

Experimental data near zero recoil not available \Rightarrow Compare with lattice results

[Abada et al., Nucl. Phys. B 619(2001) 565]

$B \rightarrow \pi$		$D \rightarrow \pi$		$D \rightarrow K$				
q^2	Lattice	IF (this work)	q^2	Lattice	IF (this work)	q^2	Lattice	IF (this work)
13.6	$F_1 = 0.70(9)^{+.10}_{03}$	$F_1 = 0.71$	0.47	$F_1 = 0.67(6^{+.01}_{00})$	$F_1 = 0.74$	0.19	$F_1 = 0.70(5)(0)$	$F_1 = 0.79$
	$F_0 = 0.46(7)^{+.05}_{08}$	$F_0 = 0.42$		$F_0 = 0.62(6)^{+.02}_{00}$	$F_0 = 0.67$		$F_0 = 0.68(4)(0)$	$F_0 = 0.76$
15.0	$F_1 = 0.79(10)^{+.10}_{04}$	$F_1 = 0.82$	0.97	$F_1 = 0.81(7)^{+.02}_{00}$	$F_1 = 0.88$	0.69	$F_1 = 0.84(5)(0)$	$F_1 = 0.91$
	$F_0 = 0.49(7)^{+.06}_{08}$	$F_0 = 0.44$		$F_0 = 0.70(6)^{+.01}_{00}$	$F_0 = 0.71$		$F_0 = 0.76(4)(0)$	$F_0 = 0.79$
17.9	$F_1 = 1.05(11)^{+.10}_{06}$	$F_1 = 1.15$	1.48	$F_1 = 1.03(9)^{+.01}_{00}$	$F_1 = 1.07$	1.7	$F_1 = 1.29(7)(0)$	$F_1 = 1.27$
	$F_0 = 0.59(6)^{+.04}_{10}$	$F_0 = 0.51$		$F_0 = 0.80(6)^{+.01}_{00}$	$F_0 = 0.75$		$F_0 = 0.96(4)(0)$	$F_0 = 0.84$
20.7	$F_1 = 1.53(17)^{+.08}_{11}$	$F_1 = 1.75$						
	$F_0 = 0.71(6)^{+.03}$	$F_0 = 0.59$						

 \Rightarrow This seems to confirm the statement that the analytic continuation in the IF provides the correct result (it includes non valence contr. implicitly).

Behavior near zero recoil

- 1. Z-graphs must be included in the decay calculation
- 2. Non-valence degrees of freedom may recombine with valence $Q\bar{q}$ via intermediate meson:

The form factor is traditionally parametrized with and explicit pole

$$F_1^{\text{pole}}(q^2) = \frac{F_1(0)}{\left(1 - \frac{q^2}{M_{\text{pole}}^2}\right)^{lpha}}$$

Z-graph meson pole

• Our analytic continuation result follow $F_1^{\text{pole}}(q^2) = \frac{F_1(0)}{\left(1 - \frac{q^2}{M^2}\right)^{\alpha}}$

- $\star\,$ The procedure provides the expected pole-like behavior!!
- $\star\,$ IF includes implicit Z-contributions
- $\star\,$ There is a frame dependence in the results if Z-graphs not included

Z-graphs and the heavy-quark limit

Z-graphs are expected to be suppressed in the heavy-quark limit $(m_Q \approx m_M, m_q/m_Q \rightarrow 0)$

As the heavy quark mass increases, difference between direct calculation and analytic continuation vanish

Isgur-Wise function

Heavy quark symmetry predicts a universal form factor independent of mass and spin of the heavy quark: the Isgur-Wise function mh=4.2 GeV mc=1.6 GeV mi=25.2 GeV m_=9.6 GeV 1.0 Z-graphs included 1.0 0.8 0.8 0.6 0.6 0.4 - Z-graphs not included 0.4Isgur-Wise 0.2 0.2 10 12 14 16 18 2.0 22 1.0 12 14 1.6 18 2.0 22 $\nu \cdot \nu'$ 11. 11

Average deviation from the IW function

•

NOTE: The comparison requires to multiply the form factors by appropriate kinematical factors $F_1 \rightarrow RF_1$, $F_0 \rightarrow \frac{R}{1 - \frac{q^2}{(M_B + M_D)^2}}F_0$, $R = \frac{2\sqrt{M_B M_D}}{M_B + M_D}$

We consider the slope of F_1 as a function of $v \cdot v'$ at zero recoil

$$\rho_D^2 = -\frac{F_1'(vv'=1)}{F_1(vv'=1)}$$

Experimental value: $\rho_D^2 = 1.122 \pm 0.023$ Direct calculation (val.): $\rho_D^2 = 0.55$ Analytic continuaton (val. + Z-graphs): $\rho_D^2 = 1.07$

Conclusions

- Analytic continuation in IF provide the best results comparable with lattice and experiments
- The IF in point form seems to be equivalent to the $q^+ = 0$ in front form and includes implicitly Z-graphs contributions
- Results seem to account for the pole structure in weak decays but a detailed explanation on the mechanism is still needed
- The formalism does not spoil heavy-quark symmetry or other properties of the current
- Frame dependence due to cluster separability still present

Conclusions

- Analytic continuation in IF provide the best results comparable with lattice and experiments
- The IF in point form seems to be equivalent to the $q^+ = 0$ in front form and includes implicitly Z-graphs contributions
- Results seem to account for the pole structure in weak decays but a detailed explanation on the mechanism is still needed
- The formalism does not spoil heavy-quark symmetry or other properties of the current
- Frame dependence due to cluster separability still present

Thank you!

Appendix

(ロ)、(国)、(E)、(E)、(E)、(O)へ(C)

Model parameters

$M_B = 5.2795 \text{ GeV}$	$m_b = 4.8 \text{ GeV}$	$a_B = 0.55$
$M_D = 1.869 \text{ GeV}$	$m_c = 1.6 \text{ GeV}$	$a_D = 0.46$
$M_{\pi} = 0.1396 \text{ GeV}$	$m_{u,d} = 0.25 \text{ GeV}$	$a_{\pi} = 0.33$
$M_K=0.4937~{\rm GeV}$	$m_s = 0.4 \text{ GeV}$	$a_K = 0.38$

Model wave function

$$\psi_{\alpha}(\kappa) = \frac{2}{\pi^{\frac{4}{2}}a_{\alpha}^{\frac{3}{2}}}e^{-\frac{\kappa^2}{2a_{\alpha}^2}} ,$$

Meson masses and resonances

Transition	Initial Meson	Final Meson	Resonance
$B^- \rightarrow D^0$	$M_{B^-} = 5.2795 \text{ GeV}$	$M_{D^0} = 1.869 \text{ GeV}$	$M_{B_c^*} > M_{B_c} = 6.274 \text{ GeV}$
$\bar{B}^0 \to \pi^+$	$M_{B^0} = 5.2795 \text{ GeV}$	$M_{\pi^+} = 1.869 \text{ GeV}$	$M_{B^{\bullet}} = 5.325 \text{ GeV}$
$\bar{B}^0_S \rightarrow K^+$	$M_{B_{c}^{0}}=5.3667~{\rm GeV}$	$M_{K^+}=0.4937~{\rm GeV}$	$M_{B^*} = 5.325 \text{ GeV}$
$D^0 \rightarrow K^+$	$M_{D^0} = 1.864 \text{ GeV}$	$M_{K^+}=0.4937~{\rm GeV}$	$M_{D^{*-}} = 2.112 \text{ GeV}$
$D^- \to \pi^0$	$M_{D^-}=1.869~{\rm GeV}$	$M_{\pi^0} = 0.135 \text{ GeV}$	$M_{D^{*-}} = 2.010 \text{ GeV}$

Spacelike:

$$\begin{split} \tilde{J}_{B\to D}^{\nu}(\mathbf{k}_{D};\mathbf{k}_{B}) &= \frac{\sqrt{k_{D}^{0}k_{B}^{0}}}{4\pi} \int \frac{d^{3}\tilde{k}_{\bar{u}}^{\prime}}{2k_{b}^{0}} \sqrt{\frac{k_{\bar{u}}^{0} + k_{c}^{0}}{k_{c}^{0} + k_{c}^{0}}} \sqrt{\frac{\tilde{k}_{\bar{u}}^{0} + \tilde{k}_{c}^{0}}{\tilde{k}_{\bar{u}}^{0} + \tilde{k}_{c}^{0}}} \sqrt{\frac{\tilde{k}_{\bar{u}}^{0} \tilde{k}_{b}^{0}}{\tilde{k}_{\bar{u}}^{0} \tilde{k}_{c}^{0}}} \\ &\times \sum_{\mu_{b}\mu_{c}^{\prime}} (\mathbf{k}_{c}^{\prime}) \gamma^{\nu} (1 - \gamma^{5}) u_{\mu b}(\mathbf{k}_{b}) \psi_{\mu a \mu_{b}^{\prime}}^{*} (|\tilde{\mathbf{k}}_{\bar{u}}^{\prime}|) \psi_{\mu a \mu_{b}}(|\tilde{\mathbf{k}}_{\bar{u}}|) \\ &\times D_{\mu_{b}\mu_{c}^{\prime}}^{\frac{1}{2}} \left[R_{W}(\tilde{v}_{b}, B_{c}(v_{\bar{u}})) R_{W}^{-1}(\tilde{v}_{\bar{u}}, B_{c}(v_{\bar{u}})) R_{W}(\tilde{v}_{\bar{u}}^{\prime}, B_{c}(v_{\bar{u}c}^{\prime})) R_{W}^{-1}(\tilde{v}_{c}^{\prime}, B_{c}(v_{\bar{u}c}^{\prime})) \right]. \end{split}$$

Timelike:

$$\begin{split} J_{B\to D}^{\nu}(\mathbf{k}'_{D};\mathbf{k}_{B}=\mathbf{0}) &= \frac{\sqrt{\omega_{\bar{k}_{B}}\omega_{\bar{k}'_{D}}}}{4\pi} \int \frac{d^{3}\tilde{k}'_{\bar{q}}}{2\omega_{\bar{k}_{b}}} \sqrt{\frac{\omega_{\bar{k}_{c}}+\omega_{\bar{k}'_{q}}}{\omega_{\bar{k}'_{c}}+\omega_{\bar{k}'_{q}}}} \sqrt{\frac{\omega_{\bar{k}_{o}}\omega_{\bar{k}_{q}}}{\omega_{\bar{k}'_{c}}\omega_{\bar{k}'_{q}}}} \left\{ \sum_{\mu_{b},\mu'_{c}=\pm\frac{1}{2}} \bar{q}_{\mu'_{c}}(\mathbf{k}'_{c}) \gamma^{\nu} \left(1-\gamma^{5}\right) u_{\mu_{b}}(\mathbf{k}_{b}) \right. \\ & \left. \times D^{1/2}_{\mu_{b}\mu'_{c}} \left[R_{W}\left(\frac{\tilde{k}'_{q}}{m_{\bar{q}}}, B_{c}(v'_{c\bar{q}})\right) R_{W}^{-1}\left(\frac{\tilde{k}'_{c}}{m_{c}}, B_{c}(v'_{c\bar{q}})\right) \right] \right\} \psi_{D}^{*}\left(|\tilde{\mathbf{k}}'_{q}|\right) \psi_{B}\left(|\tilde{\mathbf{k}}_{\bar{q}}|\right). \end{split}$$