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Introduction

In hadron physics, one of the most important remaining challenges is to describe
the dynamics and structure of the proton in terms of its basic constituents (quarks
and gluons).

The proton light-front wave function, defined one the null plane x+ = t + z = 0,
gives through the parton probability densities access to various observables.
For example:

Electromagnetic form factors
The parton distribution function
Generalized parton distribution functions

Additionally, the double parton scattering cross section depends on the double
parton distribution function (DPDF):

D(x1, x2,~q⊥) =
∞

∑
n=3

Dn(x1, x2,~q⊥) =
∞

∑
n=3

∫ d2k1

(2π)2
d2k2

(2π)2

{
∏

i 6=1,2

∫ d2ki

(2π)2

∫ 1

0
dxi

}

×δ

(
1−

n

∑
i=1

xi

)
δ

(
n

∑
i=1

~ki⊥

)
Ψ†

n(x1,~k1⊥ +~q⊥, x2,~k2⊥ −~q⊥, ...)Ψn(x1,~k1⊥, x2,~k2⊥, ...) ,

(1)

The DPDF has recently been calculated within lattice QCD.
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In the present work the proton is studied in an simple valence LF model based on
the zero-range interaction.

The main dynamical characteristic is the diquark, either as a bound state are as a
virtual one.

The proton structure will be explored through the LF wave function and its
Ioffe-time representation. Results for the momentum distributions will also be
presented.
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Three-body Faddeev-Bethe-Salpeter equation with zero interaction

Our starting point is the Faddeev-Bethe-Salpeter (FBS) equation with zero
interaction with zero interaction [1]:

v(q, p) = 2iF(M2
12)
∫ d4k

(2π)4
i

k2 −m2 + iε
i

(p− q− k)2 −m2 + iε
v(k, p) (2)

Equal-mass case, bare propagators and spinless quarks.

v(q, p) is one of the Faddeev components of the total vertex function.

F(M2
12): two-body scattering amplitude characterized by scattering length a and

M2
12 = (p− q)2 given by

F (M2
12) =

Θ(−M2
12)

1
16π2y log 1+y

1−y −
1

16πma

+
Θ(M2

12) Θ(4m2 −M2
12)

1
8π2y′ arctan y′ − 1

16πma
, (3)

1) a < 0: Borromean system, virtual diquark state, 2) a > 0: bound diquark state.

The FBS equation was recently solved including the infinite number of Fock
components in Euclidean [2] and Minkowski [3] space.

[1] T. Frederico, PLB 282 (1992) 409
[2] E. Ydrefors et al, PLB 770 (2017) 131

[3] E. Ydrefors et al, PLB 791 (2019) 276
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Valence LF equation

After the LF projection, i.e. introducing k± = k0 ± kz and integrating over k−, one
obtains the three-body LF equation [1, 2]:

Γ(k⊥, x) =
F(M2

12)

(2π)3

∫ 1−x

0

dx′

x′(1− x− x′)

∫ ∞

0

d2k′⊥
M2

0 −M2
N

Γ(k′⊥, x′) (4)

with the squared free three-body mass

M2
0 = (k′2⊥ + m2)/x′ + (k2

⊥ + m2)/x + ((k′⊥ + k⊥)2 + m2)/(1− x− x′) (5)

The three-body valence LF wave function is given by

Ψ3(x1,~k1⊥, x2,~k2⊥, x3,~k3⊥) =
Γ(x1,~k1⊥) + Γ(x2,~k2⊥) + Γ(x3,~k3⊥)√

x1x2x3(M2
N −M2

0(x1,~k1⊥, x2~k2⊥, x3~k3⊥))
, (6)

where x3 = 1− x2 − x3 and~k3⊥ = −~k1⊥ −~k2⊥.

[1] J. Carbonell and V.A. Karmanov, PRC 67 (2003) 037001

[2] T. Frederico, PLB 282 (1992) 409
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Results for the vertex function

Model m [MeV] a [m−1] M2 [MeV] MN/m rF1 [fm]

I 317 -1.84 - 2.97 0.97
II 362 3.60 681 2.60 0.72
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Two different values of a considered, with negative and positive a, fitted to
reproduce the experimental Dirac form factor. For the model with a bound
diquark the obtained value of the di-quark mass same as a recent Lattice QCD
calculation.

The proton structure contained in the vertex function Γ(k⊥, x). As seen for the
bound diquark case it has a node at roughly x = 0.8.
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As studied in PLB 770 (2017) 131, it exists lower-lying unphysical solution with
M2

N < 0. This is the relativistic analog of the well-known Thomas collapse. But,
contrary to the non-relativistic case the unphysical state has a finite energy.
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Distribution amplitude
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The distribution amplitude is defined as

φ(x1, x2) =
∫

d2k1⊥d2k2⊥Ψ3(x1,~k1⊥, x2,~k2⊥, x3,~k3⊥). (7)

It shows the dependence of the wave function on the momentum fractions for the
case when the quarks share the same position.

For the two considered cases similar results.
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Ioffe-time image of the valence state

The proton can also be studied in the configuration space associated with the
null-plane, where the coordinates of each particle are the transverse position (~bi⊥)
and the Ioffe-time x̃i = b−i p+. This obtained through the Fourier transform of the
proton LF wave function.

For simplicity, we consider here the case~b1⊥ =~b2⊥ =~0⊥, and then one has

Φ(x̃1, x̃2) ≡ Ψ̃3(x̃1,~0⊥, x̃2,~0⊥) =
∫ 1

0
dx1 eix̃1 x1

∫ 1−x1

0
dx2 eix̃2 x2 φ(x1, x2) , (8)
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For x̃2 = 0 the two parameter sets give almost identical results.

For x̃2 = 10 and x̃1 >= 10 a rather dramatic decrease of the amplitude is seen.
Similar behavior for the two parameter sets.

E. Ydrefors (ITA, Brazil) Proton LF 10 / 15



Electromagnetic form factor

The valence contribution to the Dirac form factor is given by

F1(Q2) =

{
3

∏
i=1

∫ d2ki⊥
(2π)2

∫ 1

0
dxi

}
δ

(
1−

3

∑
i=1

xi

)
δ

(
3

∑
i=1

~kf
i⊥

)
×Ψ†

3(x1,~kf
1⊥, ...)Ψ3(x1,~ki

1⊥, ...),

(9)

where Q2 =~q⊥ ·~q⊥ and the magnitudes of the momenta read∣∣∣~kf(i)
i⊥

∣∣∣2 =
∣∣∣~ki⊥ ±

~q⊥
2

xi

∣∣∣2 =~k2
i⊥ +

Q2

4
x2

i ±~ki⊥ ·~q⊥xi (i = 1, 2), (10)

and ∣∣∣~kf(i)
3⊥

∣∣∣2 =
∣∣∣±~q⊥

2
(x3 − 1)−~k1⊥ −~k2⊥

∣∣∣2 =

(1− x3)
2 Q2

4
± (1− x3)~q⊥ · (~k1⊥ +~k2⊥) + (~k1⊥ +~k2⊥)

2.
(11)
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Fit exp. data, Z. Ye et al

a = −1.84/m, m = 317 MeV

a = 3.60/m, m = 362 MeV

Both parameters give a fair reproduction of experimental data for low Q2,
i.e Q2 < 1GeV2, where the model should be applicable.

The diquark case give also quite good agreement for moderate Q2. But, this
should be viewed with caution since the scaling laws of the QCD are not built-in.
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Momentum distributions
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We define the single parton distribution function (PDF) as

f1(x1) =
1

(2π)6

∫ 1−x1

0
dx2

∫
d2k1⊥d2k2⊥|Ψ3(x1,~k1⊥, x2,~k2⊥, x3,~k3⊥)|2 =

I11 + I22 + I33 + I12 + I13 + I23.
(12)

with the Faddeev contributions

Iii =
1

(2π)6

∫ 1−x1

0
dx2

∫
d2k1⊥d2k2⊥

Γ2(xi,~ki⊥)

x1x2x3(M2
N −M2

0(x1,~k1⊥, x2,~k2⊥, x3,~k3⊥))2

Iij =
2

(2π)6

∫ 1−x1

0
dx2

∫
d2k1⊥d2k2⊥

Γ(xi,~ki⊥)Γ(xj,~kj⊥)

x1x2x3(M2
N −M2

0(x1,~k1⊥, x2,~k2⊥, x3,~k3⊥))2
; i 6= j.

(13)

Evolution of the PDF will be performed in the near future.
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The valence double parton distribution function (DPDF) is given by

D3(x1, x2;~q⊥) =
1

(2π)6

∫
d2k1⊥d2k2⊥

×Ψ†
3(x1,~k1⊥ +~q⊥; x2,~k2⊥ −~q⊥; x3,~k3⊥)Ψ3(x1,~k1⊥; x2,~k2⊥; x3,~k3⊥).

(14)

Fourier transform of D3(x1, x2,~q⊥) in~q⊥ gives the probability of finding the
quarks 1 and 2 with momentum fractions x1 and x2 at a relative distance~y⊥
within the proton.

In the figure is shown results for Q2 = 0. For the case of virtual diquark (left
panel) a rather narrow distribution is obtained due to the small binding energy.

E. Ydrefors (ITA, Brazil) Proton LF 14 / 15



Conclusions

We have, in this work, studied the proton in a simple but fully dynamical valence
LF model based on a zero-range interaction.

The model is based on the concept on a strongly interacting diquark, either virtual
or bound.

We have studied the structure of the proton by computing the LF wave function in
its Ioffe-time representation and also longitudinal momentum distributions.

However, the model is rather crude since e.g. the spin degree of freedom hasn’t
been included yet. But is a first step towards studying the proton directly in
Minkowski space.
Future plans:

Generalization to the infinite set of Fock components (The Faddeev-Bethe-Salpeter
equation solved in PLB 791 (2019) 276)
Implementation of a more realistic interaction (gluon exchange)
Inclusion of spin degree of freedom
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