

Search for New Physics with Rare Charm decays at LHCb

Alessandro Scarabotto on behalf of the LHCb Collaboration LPNHE (Paris)

Hadron

Mexico City, Mexico

26-31 July 2021

Why study Rare Charm decays?

- Rare Charm decays receive contributions from flavor-changing neutral-current (FCNC) processes
- Decays containing the Charm quark are a unique up-type quark probe for these processes (complementary to the down-type quark studies in the K and B sectors)
- The FCNC transitions at tree level are forbidden in the SM, CKM and GIM suppressed (tiny SM prediction of $\mathcal{B} < 10^{-9}$) [J. High Energ. Phys. 2013, 135 (2013)]
- Some New Physics models predict large enhancement in rates and asymmetries

Challenges

- Rare Charm decays are dominated by Long Distance interactions (mesonic vector resonances) with tree-level dynamics
- Precise theoretical predictions are difficult on the Branching Fractions (the resonances contribution are dominated by QCD effects at very low energy and are evaluated with non-perturbative methods with high uncertainty)

LD different model BSM model (dashed)

The LHCb experiment

- LHCb is a single arm forward spectrometer optimized for b and c physics
- Good vertex/momentum resolution and excellent particle identification
- LHCb has the world's largest sample of charm decays
- $\sigma (pp \rightarrow c\overline{c}) \sim O(mb)$ $\rightarrow \sim 10^{13}$ pairs produced up to now

[Int. J. Mod. Phys. A 30, 1530022 (2015)]

Rare Charm decays at LHCb

 $D^0 \rightarrow h^+ h^- V(\mu^+ \mu^-)$ • Branching ratios: • Search for $D^0 \rightarrow \mu^+ \mu^-$ [PLB 725 15-24 (2013)] • Search for $\Lambda_c^+ \rightarrow p \ \mu^+ \mu^-$ [PRD 97 091101 (2018)] $\begin{array}{c} D^+_{(s)} \rightarrow h^+ \ell^+ \ell^- \\ \Lambda^+_c \rightarrow p \ \mu^+ \mu^- \end{array}$ • Observation $D^0 \rightarrow h^+h^-V(\mu^+\mu^-)$ [PRL 119 (2017) 181805] Null tests (Lepton Flavor Violation and Asymmetries): • Search for $D^0 \rightarrow \mu^+ e^-$ [PLB 754 167 (2016)] $D^0 \rightarrow \mu^+ \mu^-$ • Search for $D_{(s)}^+ \rightarrow h^{\pm} \ell^+ \ell'^{\pm}$ [JHEP06(2021)044] • Asymmetries in $D^0 \rightarrow h^+ h^- \mu^+ \mu^-$ [PRL 121 (2018) 091801]

5

10-6

 10^{-8}

10-9

10-12

10-15

UMV

FCNC

BNV

FV, LNV,

 $D^+_{(s)} \rightarrow h^{\pm} \ell^+ \ell'^{\pm}$ $D^0 \rightarrow \mu^+ e^-$

30/07/21

Rare Charm decays at LHCb

Search for $D^+_{(s)} \to h^\pm \ell^+ \ell'^\pm$

- Search of 25 decays of the form $D_{(s)}^+ \rightarrow h^{\pm} \ell^+ \ell'^{\pm}$ with $h = \pi$, K and $\ell = e, \mu$
- The analysis included also Lepton Flavor Violating (LFV) and Lepton Number Violating (LFN) decays with similar topology to the allowed decays

Allowed in the SM, Forbidden in the SM

Search for $D^+_{(s)} \to h^\pm \ell^+ \ell'^\pm$

- $D_{(s)}^+ \rightarrow h^\pm \ell^+ \ell'^\pm$ decays receive contributions from FCNC and Weak Annihilation processes decays
- Normalised to $D^+_{(s)} \to \pi^\pm \varphi (\to \ell^+ \ell^-)$ dominant resonance
- Dilepton mass regions dominated by resonances are vetoed (in q^2 [0.27, 1.56] GeV²)

[JHEP06(2021)044]

Search for $D^+_{(s)} ightarrow h^\pm \ell^+ \ell'^\pm$

- Analysis performed with LHCb's 2016 dataset (1.7 ${\rm fb}^{-1}$)
- Electrons lose momentum due to bremsstrahlung radiation and worsen the D mass resolution (long tail in the left-hand side)

 $D^+_{(s)} \rightarrow \pi^{\pm} \phi(\rightarrow \ell^+ \ell^-)$ normalization mode fit

30/07/21

10

Search for $D^+_{(s)} \rightarrow h^{\pm} \ell^+ \ell'^{\pm}$

- Two different kind of backgrounds are dominating
- A classifier is used to reduce the background originated from random combination of tracks
- Particle Identification (PID) is used to suppress hadronic mis-identified backgrounds (which can have up to 7 orders of magnitude higher BF than the signal)

$D^+_{(s)} \rightarrow h^{\pm} \ell^+ \ell'^{\pm}$ signal fits

Alessandro Scarabotto (LPNHE)

Search for $D^+_{(s)} \to h^\pm \ell^+ \ell'^\pm$

- No significant signal is observed in any of the 25 channels
- Upper limits on the branching fractions are set between 1.4×10^{-8} to 6.4×10^{-6}
- Results improve upon the prior world's best constraints by up to a factor 500

Alessandro Scarabotto (LPNHE)

30/07/21

$D^0 \to h^+ h^- \mu^+ \mu^- \text{ decays}$

- <u>First step</u>: Branching Fraction measurements (binned in dimuon mass and integrated value) [PRL 119 (2017) 181805]
- The sensitivity to **SD** contributions is limited because of the **LD** domination
- <u>Second Step</u>: measure angular and CP asymmetries with sensitivity to SD in the full range [PRL 121 (2018) 091801]

30/07/21

Observation of $D^0 \to h^+ h^- \mu^+ \mu^-$

[PRL 119 (2017) 181805]

30/07/21

13

LHCb

- Data

Fit

1850

 $\rightarrow K^+ K^- \mu^+ \mu^-$

 $\rightarrow K^+ K^- \pi^+ \pi^-$

1900

Comb. backg.

- First observation of the decay with $h = \pi$, K using LHCb 2012 data (2 fb⁻¹)
- $\mathcal{B}(D^0 \to \pi^+ \pi^- \mu^+ \mu^-) = (9.64 \pm 0.48 \pm 0.51 \pm 0.97) \times 10^{-7}$
- $\mathcal{B}(D^0 \to K^+ K^- \mu^+ \mu^-) = (1.54 \pm 0.27 \pm 0.09 \pm 0.16) \times 10^{-7}$

Asymmetries in $D^0 \to h^+ h^- \mu^+ \mu^-$

[PRL 121 (2018) 091801]

- Angular and CP asymmetries in these decays are sensitive to SD in the full dilepton range due to the SD-LD interference
- The observables are SM null tests and scenarios of physics beyond the SM predict effects of $\mathcal{O}(1\%)$ [JHEP 1304 135 (2013), PRD 87 054026 (2013), PRD 93, 074001 (2016)]
- Angular asymmetries:
 - Forward backward asymmetry $A_{FB} = \frac{\Gamma(\cos\theta_{\mu} > 0) - \Gamma(\cos\theta_{\mu} < 0)}{\Gamma(\cos\theta_{\mu} > 0) + \Gamma(\cos\theta_{\mu} < 0)}$
 - Triple product asymmetry $A_{2\varphi} = \frac{\Gamma(\sin 2\varphi > 0) - \Gamma(\sin 2\varphi < 0)}{\Gamma(\sin 2\varphi > 0) + \Gamma(\sin 2\varphi < 0)}$
- CP asymmetry

 $A_{CP} = \frac{\Gamma(D^{0} \to h^{+}h^{-}\mu^{+}\mu^{-}) - \Gamma(\overline{D^{0}} \to h^{+}h^{-}\mu^{+}\mu^{-})}{\Gamma(D^{0} \to h^{+}h^{-}\mu^{+}\mu^{-}) + \Gamma(\overline{D^{0}} \to h^{+}h^{-}\mu^{+}\mu^{-})}$

Asymmetries in $D^0 \to h^+ h^- \mu^+ \mu^-$

[PRL 121 (2018) 091801]

- Analysis performed with LHCb's 2011-2016 dataset (5 fb^{-1})
- The observables $A_{FB},\,A_{2\varphi}$ and A_{CP} are measured in bins of dimuon mass and in the full range

	$m(\mu^+\mu^-) [\text{MeV}/c^2]$							
Decay mode	low mass	η	$ ho_{/}$	ω		ϕ	high mass	NA = not available
$D^0 \rightarrow K^+ K^- \mu^+ \mu^-$	< 525	NS	; <	565	N	IА	NA	NS = no signal
$D^0 \to \pi^+ \pi^- \mu^+ \mu^-$	< 525	NS	565-780	780-950	950-1020	1020-1100	NS	

- Yields determined by the fit:
 - $D^0 \rightarrow \pi^+\pi^-\mu^+\mu^-$: 1326 ± 45 events
 - $D^0 \rightarrow K^+ K^- \mu^+ \mu^-$: 137 ± 14 events
- MVA techniques are used to correct for efficiency variation across the phase space

Asymmetries in $D^0 \to h^+ h^- \mu^+ \mu^-$

[PRL 121 (2018) 091801]

- All asymmetries are consistent with zero (compatible with the SM predictions)
- No dependency on the dimuon mass is observed

$$\begin{split} A_{\rm FB}(D^0 \to \pi^+ \pi^- \mu^+ \mu^-) &= (3.3 \pm 3.7 \pm 0.6)\%, \\ A_{2\phi}(D^0 \to \pi^+ \pi^- \mu^+ \mu^-) &= (-0.6 \pm 3.7 \pm 0.6)\%, \\ A_{CP}(D^0 \to \pi^+ \pi^- \mu^+ \mu^-) &= (4.9 \pm 3.8 \pm 0.7)\%, \\ A_{\rm FB}(D^0 \to K^+ K^- \mu^+ \mu^-) &= (0 \pm 11 \pm 2)\%, \\ A_{2\phi}(D^0 \to K^+ K^- \mu^+ \mu^-) &= (9 \pm 11 \pm 1)\%, \\ A_{CP}(D^0 \to K^+ K^- \mu^+ \mu^-) &= (0 \pm 11 \pm 2)\%, \end{split}$$

Alessandro Scarabotto (LPNHE)

Prospects for the LHCb Upgrades Physics Case Upgrade2

• Limits on BFs for Run3-4 (Upgrade1 2022-2030) and Run5 (Upgrade2 2030-...):

Mode	Run1-2 (1-6 ${\rm fb}^{-1}$)	Upgrade1 (50fb^{-1})	Upgrade2 (300fb^{-1})
$D^0 ightarrow \mu^+ \mu^-$	$6.2 imes 10^{-9}$	4.2×10^{-10}	1.3×10^{-10}
$D^+ \to \pi^+ \mu^+ \mu^-$	$6.7 imes 10^{-8}$	10^{-8}	3×10^{-9}
$D_s^+ \to K^+ \mu^+ \mu^-$	$2.6 imes 10^{-8}$	10^{-8}	3×10^{-9}
$\Lambda_c^+ \to p \mu^+ \mu^-$	$9.6 imes 10^{-8}$	1.1×10^{-8}	4.4×10^{-9}
$D^0 \to e^{\pm} \mu^{\mp}$	$1.3 imes 10^{-8}$	10^{-9}	4.1×10^{-9}

• Statistical precision on asymmetries:

Mode	Run1-2 (1-6 ${\rm fb}^{-1}$)	Upgrade1 (50fb^{-1})	Upgrade2 (300fb^{-1})
$D^+ \to \pi^+ \mu^+ \mu^-$		0.2~%	0.08~%
$D^0 ightarrow \pi^+\pi^-\mu^+\mu^-$	3.8~%	1 %	0.4~%
$D^0 ightarrow K^- \pi^+ \mu^+ \mu^-$		0.3~%	0.13~%
$D^0 ightarrow K^+ \pi^- \mu^+ \mu^-$		$12 \ \%$	5 %
$D^0 \to K^+ K^- \mu^+ \mu^-$	$11 \ \%$	4 %	$1.7 \ \%$

A. Contu - Towards ultimate precision in Flavor Physics, Durham (2-4 April 2019)

Alessandro Scarabotto (LPNHE)

30/07/21

Conclusion and prospects

- Rare Charm decays constitutes a unique environment to look for New Physics, either with BF measurements or as SM null tests
- LHCb gave major contributions in the field and will continue to exploit the data collected during Run2:
 - Update on the $D^0 \rightarrow \mu^+ \mu^-$ search
 - Update on the $D^0 \rightarrow \mu^+ e^-$ search
 - Update on the $\Lambda_c^+ \rightarrow p \ \mu^+ \mu^-$ search
 - Search for $D^0 \rightarrow h^+ h^- e^+ e^-$
 - Search for $D^0 \rightarrow h^+ h^- \mu^\pm e^\mp$
 - Angular analysis and CP asymmetries of $D^0 \rightarrow h^+ h^- \mu^+ \mu^-$ decays
- ... and many more to come with Run3 data!

30/07/21