

The 19th International Conference on Hadron Spectroscopy and Structure

Charged LFV searching in J/ψ decays at BESIII

Mengzhen Wang

(On behalf of the BESIII collaboration)

Peking University

HADRON2021, July 26 - July 31, 2021

Outline

>Introduction of BEPCII/BESIII

>Charged lepton flavor violation in J/ψ decays

- Search for $J/\psi \to e^{\pm}\tau^{\mp}, \tau^{\mp} \to \pi^{\mp}\pi^{0}\nu_{\tau}$
- Search for $J/\psi \to e^{\pm}\mu^{\mp}$

➢Prospect

BEPCII AND BESIII

BEPCII:

- •First collision in 2008, physics run in 2009
- •Energy region: 2.0 4.95 GeV
- •Designed luminosity: $1x10^{33}$ cm⁻²s¹ @ $\psi(3770)$, reach in April 2016

MDC

- small cell & Gas, He/C₃H₈ (60/40)
- $\sigma_{xy} = 120 \ \mu m$
- $\sigma_p/p = 0.5\%$ @ 1 GeV/c
- dE/dx = 6%

TOF

 $\sigma_t = 80 \text{ ps (Barrel)}$ 60 ps(Endcap)

EMC:

- CsI(Tl)
- $\Delta E/E = 2.5\% @ 1 \text{ GeV}$
- $\sigma_z=0.6 \text{ cm}$ MUC
- 9 layers RPC for barrel
- 8 layers RPC for endcap Superconducting magnet (1T)

New physics study at BESIII

With the world largest data sample on J/ψ and $\psi(2S)$, unique data sample at 3.773, 4.008, 4.226 ... GeV, BESIII have great potential in new physics

- Charged lepton flavor (number) violation (CLFV/LNV) decays
- Baryon number violation (BNV) decays
- Rare decays of charmonia and charmed hadrons
- Searches for light (invisible) new particles
- Off-resonance searches

For further information, see "Future Physics Programme of BESIII" Chin. Phys. C 44, 040001 (2020).

Charged lepton flavor violation **BES**II

- In the Standard Model (SM) of particle physics, the LFV process is forbidden. However, flavor nonconserving mixing among generations has been observed in neutrino oscillations.
- The smallness of neutrino masses leads to a very large suppression of the predicted branching fractions [1]. So, any significant sign of a CLFV signal could indicate physics beyond the SM.

J/ψ CLFV studies

- New physics models predicting BR($J/\psi \rightarrow e\mu$) to $10^{-16} \sim 10^{-9}$, BR($J/\psi \rightarrow e\tau(\mu\tau)$) to $10^{-10} \sim 10^{-8}$.
 - model-independent prediction [1, 2]
 - rotating mass matrix [3]
 - unparticle physics [4]
 - effective Lagrangian [5]
 - MSSM with gauged baryon and lepton number [6]
 - •
- Experimental results

	J/ψ number	$J/\psi ightarrow e\mu$	$J/\psi ightarrow e au$	$J/\psi ightarrow \mu au$
BES	58 million	$< 1.1 \times 10^{-6}$ [7]	< 8.3×10 ⁻⁶ [8]	< 2.0×10 ⁻⁶ [8]
BESIII	225 million	$< 1.6 \times 10^{-7} [9]$	-	-

[1] X. M. Zhang et al, Phys. Rev. D 63, 016003 (2000).
[2] T. Gutche et al, Phys. Rev. D 83, 115015 (2011).
[3] J. Bordes and H. M. Chan, Phys. Rev. D 63, 016006 561, 112007 (2003).
(2000).
[4] K. S. Sun et al, Mod. Phys. Lett. A 27, 1250172
(2012).
[5] D. E. Hazard and A. A. Petrov, Phys. Rev. D 94, 074023 (2016).
[6] X. X. Dong et al, Phys. Rev. D 97, 056027 (2018).
[7] J. Z. Bai et al. (BES Collaboration), Phys. Lett. B
[7] J. Z. Bai et al. (BES Collaboration), Phys. Lett. B
[9] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 94, 074023 (2016).

Search for $J/\psi \rightarrow e^{\pm}\tau^{+}$

- Based on 10 billion J/ψ data set: 1310.6M collected @2009+2012 (sample I) 8774.01M collected @2017-2019 (sample II)
- $J/\psi \to e\tau$, $\tau \to \pi \pi^0 \nu$.
 - Select one electron and one charged pion.
 - At least two photon showers and one π^0 .
 - Two-body-decay:

- One undetected neutrino with missing energy $E_{miss} > 0.43 GeV$.
- Blind analysis to avoid possible bias.

Phys. Rev. D 103, 112007 (2021)

Search for
$$J/\psi \rightarrow e^{\pm}\tau^{\mp}$$
 Besi

Phys. Rev. D 103, 112007 (2021)

• Background from J/ψ resonance and continuum process.

	$N_{bkg}^{J/\psi}$	$N_{bkg}^{cont.}$	N_{bkg}^{total}	N _{data}
Sample I	1.1 ± 0.8	5.8 ± 1.8	6.9 ± 1.9	13
Sample II	25.7 <u>+</u> 6.4	37.9 <u>+</u> 11.5	63.6 <u>+</u> 13.2	69

- Total systematic uncertainty $\sim 4\%$.
- No excess of events is observed over the background.

 $U_{miss} = E_{miss} - c |\vec{P}_{miss}|$

Result for
$$J/\psi \to e^{\pm}\tau^{\mp}$$
 Besi

Phys. Rev. D 103, 112007 (2021)

- Determination of upper limit at 90% confidence level (C.L.) with Bayesian method, assume:
 - the survived data events ~ Poisson,
 - detection efficiency ~ Gaussian,
 - background estimation ~ Gaussian.
- Combined result:

• $BR(J/\psi \to e\tau) < 7.5 \times 10^{-8} @ 90\%$ C.L.

• This result improves the previous published limits by two orders of magnitude and comparable with the theoretical predictions.

Result for $J/\psi \rightarrow e^{\pm}\mu^{+}$

- Two opposite charged tracks, no missing track.
- 4 candidate events are found in the signal region, consistent with background expectations (4.75 ± 1.09) .
- Total systematic uncertainty ~ 5.8%.
- Upper limit is obtained by the Feldman-Cousins method with systematic uncertainties included.
- Upper limit on branching ratio (90% C.L.) $BR(J/\psi \rightarrow e\mu) < 1.6 \times 10^{-7}$

Phys. Rev. D 87, 112007 (2013)

Update:

- Data set: 10 billion J/ψ .
- Upper limit prediction $10^{-9} \sim 10^{-8}$.

Prospect: More CLFV?

$\gg J/\psi \to e\tau, \ \tau \to \mu \nu_{\mu} \nu_{\tau} \text{ and } J/\psi \to \mu \tau, \ \tau \to e \nu_{e} \nu_{\tau}$

- Two opposite charged tracks, two missing tracks.
- Data set: 58 million \rightarrow 10 billion.
- Upper limit prediction 10^{-8} .

 $\succ J/\psi \rightarrow \gamma e \tau$ and $J/\psi \rightarrow \gamma \mu \tau$

- Two opposite charged tracks, one EMC shower, several missing tracks.
- Data set: 10 billion.
- No previous measurement.
- Upper limit prediction 10^{-8} .

Summary

- BESIII collaboration searched for charged LFV with the world largest $e^+e^$ annihilation J/ψ :
 - $BR(J/\psi \to e\tau) < 7.5 \times 10^{-8}$ @ 90% C.L. (10 billion) Phys. Rev. D 103, 112007 (2021)
 - $BR(J/\psi \to e\mu) < 1.6 \times 10^{-7} @ 90\%$ C.L. (225 million) Phys. Rev. D 87, 112007 (2013)
- Better results for more decay channels based on 10 billion J/ψ data are ۰ coming soon.
 - $I/\psi \rightarrow e\mu$
 - $I/\psi \rightarrow e\tau/\mu\tau$, with $\tau \rightarrow l\nu\nu_{\tau}$
 - $I/\psi \rightarrow \gamma l_1 \bar{l}_2$
- New data taking plan and more charmonium data sets at other center-ofmass energy have been approved! Better/more constraints on LFV processes can be expected. Thanks!

Backup: current experimental status

Reaction	UL	Future sensitivity	Channel	UL
$\mathrm{BR}(\mu^+ \to \mathrm{e}^+ \gamma)$	$<4.2 \times 10^{-13}$	~5×10 ⁻¹⁴ (PSI)	$BR(\tau \rightarrow e\gamma)$	<3.3×10 ⁻⁸
$BR(\mu^{\pm} \rightarrow e^{\pm}e^{+}e^{-})$	$<1.0 \times 10^{-12}$	~1.0×10 ⁻¹⁶ (PSI)	$BR(\tau \rightarrow \mu\nu)$	$< 4.4 \times 10^{-8}$
$R(\mu^-N \to e^-N')$	<7×10 ⁻¹³ (N=Au)	$\sim 10^{-17}$ (Mu2e and COMET)	$PP(\tau \to a\pi^0)$	< 9.0×10 ⁻⁸
1			$DR(i \rightarrow eii)$	<0.0×10
			$BR(K_L^0 \to e^{\pm}\mu^+)$	$<4.7\times10^{-12}$
	$\begin{array}{c} \mathbf{10^{3}} \\ \mathbf{10^{3}} \\$			$<3.6 \times 10^{-10}$
10^{-5} $\mu N \rightarrow eN$		$\mathrm{BR}(\phi\to\mathrm{e}^\pm\mu^\mp)$	$<2.0 \times 10^{-6}$	
10^{-9}			$BR(\mathbb{Y}(1S) \to \tau^{\pm} \mu^{\mp})$	$<6.0 \times 10^{-6}$
			$BR(\Upsilon(2S)\to\tau^\pm\mathrm{e}^\mp)$	$<3.2 \times 10^{-6}$
10 ⁻¹³		▼ MEG Upgrade	$BR(\mathbb{Y}(2S) \to \tau^{\pm} \mu^{\mp})$	$<3.3 \times 10^{-6}$
10 ⁻¹⁵		• PSI, MUSIC Mu2e, COMET	$BR(H \to e^{\pm} \mu^{\mp})$	$<3.5 \times 10^{-4}$
10 ⁻¹⁹	960 1970 1980 1	Project X, PRIME ■ 990 2000 2010 2020 2030	$BR(H \to e^{\pm} \tau^{\mp})$	$< 6.1 \times 10^{-3}$
		Year	$\mathrm{BR}(\mathrm{H} \to \mu^{\pm} \tau^{\mp})$	$<2.5 \times 10^{-3}$


```
Backup: Event selection for J/\psi \rightarrow e^{\pm}\tau^{\mp}
```

- Select two good charged tracks. The electron candidate passes the $CL(e) > CL(\pi,K), \frac{CL(e)}{CL(\pi)+CL(e)} > 0.95$ and E/p > 0.8 requirement. The pion candidate passes the $CL(\pi) > CL(e,K)$ requirement.
- Select at least two good showers.
- Select π^0 with 0.115 < $M_{\gamma\gamma}$ < 0.150 GeV and 1C kinematic fit with $\chi^2 < 200$.
- Two-body-decay:
 - $1.009 GeV < P_e < 1.068 GeV$ and $1.742 GeV < M_{e_recoil} < 1.811 GeV$.
- Missing energy $E_{miss} > 0.43 GeV$.

	2	
Sources	sample I	sample II
Number of J/ψ	0.5%	0.4%
Quoted BF*	0.4%	0.4%
MC model	0.6%	-
Pion PID*	1.0%	1.0%
Pion tracking*	1.0%	1.0%
Electron PID	0.4%	0.9%
Electron tracking*	0.1%	0.1%
Photon detection*	1.0%	1.0%
π^0 reconstruction*	1.0%	1.0%
P_e and M_{e_recoil} requirements	3.0%	3.3%
$E_{\rm miss}$ requirement	1.0%	0.8%
Total uncertainty	3.9%	4.1%