

Baryon/Lepton number violation searches at BESIII

Huijing Li^{1*}

- 1. Henan Normal University
- * lihuijing@htu.edu.cn

(On behalf of BESIII Collaboration)

July 30th , 2021

The 19 th International Conference on Hadron Spectroscopy and Structure (HADRON 2021)

Jul. 26th -31st, 2021, Mexico.

Outline

introduction

△ *D* mesons

- $D^+ \to \overline{\Lambda} (\overline{\Sigma}{}^0) e^+; \Lambda (\Sigma^0) e^+$
- $D \rightarrow K\pi e^+ e^+$

$\leq J/\psi \text{ meson}$

- $J/\psi \rightarrow \Lambda_c^+ e^-$
- $J/\psi \to pK^-\overline{\Lambda} \to pK^-\Lambda$

$\swarrow \Sigma^{-}$ baryon

• $\Sigma^-
ightarrow pe^-e^-, \Sigma^-
ightarrow \Sigma^+ X$

💪 Summary

PRD 101 (2020) 031102(R) PRD 99 (2019) 112002

PRD 99 (2019) 072006 BESIII Preliminary

PRD 103 (2021) 052011

Beijing Electron Positron Collider (BEPCII) in China

Tuesday, 27 July 2021

A double-ring collider with high luminosity

Center-of-mass energy: 2.0 – 4.95 GeV

Linac

07:00 - 08:45 **Henary** Please see Nils's talk

07:00 Recent results from BESIII 35'

> The BESIII experiment has accumulated la \$\psi(3770)\$ as well as at various other ce things, these datasets allow us to study lig mesons, and both well known and newly a perspectives will be discussed.

Speaker: Nils Huesken (Indiana Uni

2004: started BEPCII upgrade, **BESIII construction** 2008: test run 2009-now: BESIII physics run

• 1989-2004(BEPC): $L_{peak} = 1.0 \text{ x } 10^{31} / \text{cm}^2 \text{s}$ • 2009-now(BEPCII) $L_{peak} = 1.0 \text{ x } 10^{33} / \text{cm}^2 \text{s}$ (Achieved on Apr. 5th, 2016)

BESIII Detector

Please see Nils's talk

Data sets

$\sqrt{s}(\text{GeV})$	The number of total events	Decay chain of interest	
3.097	10 ⁹ <i>J/ψ</i>	$e^+e^- ightarrow J/\psi$	
3.773	Integrated luminosity	$\rho^+\rho^- \rightarrow \eta (3770) \rightarrow D^0 \overline{D}^0$	
	2.93 fb ⁻¹	$e^+e^- \rightarrow \psi(3770) \rightarrow D^+D^-$	

Baryon Number Violation

- **Fact:** matter anti-matter asymmetry in the Universe.
- □ Sakharov three conditions [1]:
 - Baryon number violation (BNV)
 - C&CP violation
 - Departure from thermal equilibrium

- In the standard model (SM), baryon number is conserved as a consequence of the SU(2)×SU(1) and SU(3) gauge symmetries.
- □ So the search for BNV processes can probe new physics beyond SM, and can also shed light on the evolution of the Universe.

^[1] A. D. Sakharov, JETP Lett. 5, 24 (1967).

Lepton Number Violation

Fact: neutrino oscillation [1-3] \rightarrow neutrinos have a tiny mass.

Nature: Dirac or Majorana neutrino?

- Lepton number violation (LNV) by two units ($\Delta L = -2$)
 - $0\nu\beta\beta$ decay, $(A, Z) \rightarrow (A, Z + 2) + 2e^-$, most promising;
 - Three body or four body decays of K, B, D, τ [4].

[1] Y. Fukuda et al. (Super-Kamiokande Collaboration), Phys. Rev. Lett. 81, 1562 (1998). [5]

[2] Q. R. Ahmad et al. (SNO Collaboration), Phys. Rev. Lett. 89, 011301 (2002).

[5] H. R. Dong, F. Feng and H. B. Li, Chin, Phys. C 39 013101 (2015);
 M. Ablikim *et al.* (BESIII Collaboration), Phys. Rev. D 99, 112002 (2019).

[3] K. Eguchi et al. (KsmLAND Collaboration), Phys. Rev. Lett. 90, 021802 (2003).
[4] A. Atre, T. Han, S. Pascoli, and B. Zhang, J. High Energy Phys. 05 (2009) 030.

$$D^+ o \overline{\Lambda}\left(\overline{\Sigma}{}^0
ight) e^+ ext{ and } D^+ o \Lambda\left(\Sigma^0
ight) e^+$$

PRD 101 (2020) 031102(R)

- The predicted branching fraction (BF) of $D^+ \to \overline{\Lambda} l^+ (l = e, \mu)^*$ is no more than 10^{-29} with a higher generation supersymmetry (SUSY) model [1].
- $N_{D^+D^-}^{\text{tot}} = (8,296 \pm 31 \pm 64) \times 10^3 [2]$
- A blind analysis technique
- $\Lambda o p \ \pi^-, \Sigma^0 o \gamma \Lambda$
- Single tag (ST)

✓ $\Delta E = E_{D^+} - E_{beam}$: select the best D^+ candidate with the smallest $|\Delta E|$ for a specific signal mode.

$$\checkmark M_{\rm BC} = \sqrt{E_{\rm beam}^2 - p_{D^+}^2}$$

* Throughout this report, charge-conjugated channels are also implied unless explicitly stated.
[1] W. S. Hou, M. Nagashima, and A. Soddu, Phys. Rev. D 72, 095001 (2005).
[2] M. Ablikim *et al.* (BESIII Collaboration), Chin. Phys. C 42, 083001 (2018).

PRD 101 (2020) 031102(R)

- A maximum likelihood fit
- No significant signals are observed with the current statistics

- Set the upper limits (ULs) on signal events (N_{sig}^{UL}) at 90% confidence level (CL)
- Scan the normalized likelihood value $[\lambda(N_{sig})]$ with the given number of signal events (N_{sig}) in the M_{BC} fit.
- $\lambda(N_{sig})$ is convoluted with a Gaussian function with corresponding width to incorporate the systematic uncertainties.

PRD 101 (2020) 031102(R)

The ULs on the branching fraction (BF) are set at the level of 10⁻⁶ @ 90%
 CL, which are far above the prediction of the higher generation model [1].

$$\boldsymbol{B}^{\mathrm{UL}} = \frac{N_{\mathrm{sig}}^{\mathrm{UL}}}{2 \cdot N_{D^+D^-}^{tot} \cdot \varepsilon \cdot B_{\Lambda,\Sigma^0}}$$

Mode	$N_{ m sig}^{ m UL}$	ε (%)	$\mathcal{B}^{\mathrm{UL}}$
Λe^+	5.6	31.11 ± 0.14	1.1×10^{-6}
$ar{\Lambda} e^+$	3.4	31.18 ± 0.10	6.5×10^{-7}
$\Sigma^0 e^+$	4.5	16.31 ± 0.07	1.7×10^{-6}
$ar{\Sigma}^0 e^+$	3.5	16.40 ± 0.07	1.3×10^{-6}

[1] W. S. Hou, M. Nagashima, and A. Soddu, Phys. Rev. D 72, 095001 (2005).

$D \rightarrow K\pi e^+ e^+$

• Single tag

PRD 99 (2019) 112002

- $N_{D^0\overline{D}^0}^{\text{tot}} = (10, 597 \pm 28 \pm 98) \times 10^3 [1]$
- Decay diagrams

PRD 99 (2019) 112002

Unbinned maximum likelihoodNo signals observed

J Search for heavy Majorana neutrino (v_m) :

- \checkmark On-shell, $\nu_m \rightarrow \pi^- e^+$
- $\sim m_{\nu_m} : [m_e + m_{\pi}, m_D m_e m_K]$, only with [0.25, 1.0] GeV/ c^2
- ✓ Model independent [1]
- $\checkmark D^0 \rightarrow K^- e^+ \nu_m(\pi^- e^+)$
- $\checkmark D^+ \rightarrow K^0_S e^+ \nu_m(\pi^- e^+)$
- ULs on signal yields @ 90% CL: the profile likelihood method [2] incorporating the systematic uncertainty.

^[1] H.R. Dong, F. Feng and H.B. Li, Chin, Phys. C 39 013101 (2015).

^[2] W. A. Rolke, A. M. Lopez, and J. Conrad, Nucl, Instrum, Methods Phys. Res., Sect. A 551, 493 (2005).

D The ULs on BF (a) 90% CL : $10^{-7} \sim 10^{-6}$

D The mixing matrix element $|V_{ev_m}|^2$

First constraint of BNV from charmonium decay

 $J/\psi \rightarrow \Lambda_c^+ e^- + c.c.$

- **Right plots shows the decay diagrams**
- $N_{I/\psi}^{\text{tot}} = (1310.6 \pm 7.0) \times 10^6 [1]$
- Simulate $\Lambda_c^+ \to p \ K^- \pi^+$: based on a partial wave analysis result [2] by considering
 - ✓ nonresonant 3-body decay;
 - \checkmark intermediate states: Δ^{++} , $\Delta(1600)^{++}$,

excited Λ states, excited Σ states;

✓ interferences.

[3] J. C. Pati, and A. Salam, Phys. Rev. D 10, 275 (1974); 11, 703 (1975).

U Y Λ_c^+ ī d С С d

X, Y are leptoquarks, carrying color charge, fractional electric charge, and both lepton and baryon quantum numbers[3].

16

PRD 99 (2019) 072006

^[1] M. Ablikim et al. (BESIII Collaboration), Chin. Phys. C 41, 013001 (2017). [2] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett. 116, 052001 (2016).

- No signal observed in signal regions between two red arrows.
- Upper limit on the signal yield *a* 90% CL: Frequentist method [1] with unbounded profile likelihood treatment of systematic uncertainties.

[1] W. A. Rolke, A. M. Lopez, and J. Conrad, Nucl, Instrum, Methods Phys. Res., Sect. A 551, 493 (2005).

 $J/\psi \to pK^-\overline{\Lambda} \to pK^-\Lambda$

\Box Search for Λ - $\overline{\Lambda}$ oscillation

- Right sign (RS): $J/\psi \to pK^-\overline{\Lambda}(\to \overline{p}\pi^+) + c.c.$
- Wrong sign (WS): $J/\psi \rightarrow pK^{-}\Lambda (\rightarrow p\pi^{-}) + c.c.$

• UL on oscillation rate @ 90% CL: Frequentist method [1] with unbounded profile likelihood treatment of systematic uncertainties.

$$P(\Lambda) = \frac{B(J/\psi \to pK^{-}\Lambda)}{B(J/\psi \to pK^{-}\overline{\Lambda})} = \frac{N_{WS}^{obs}/\epsilon_{WS}}{N_{RS}^{obs}/\epsilon_{RS}} < 4.4 \times 10^{-6}$$

• UL on oscillation parameter @ 90% CL:

$$\delta m_{\Lambda\bar{\Lambda}} = \sqrt{\frac{P(\Lambda)}{2\cdot(\tau_{\Lambda}/\hbar)^2}}$$
 3.8×10⁻¹⁵ MeV

$\Sigma^- \rightarrow pe^-e^-$ and $\Sigma^- \rightarrow \Sigma^+ X$

PRD 103 (2021) 052011 Two down-type (d or s) quarks convert into 1- $\nu = \overline{\nu}$ two up-quarks [1-2], similar to $0\nu\beta\beta$ A blind analysis technique $B_1^ B_{2}^{+}$ B_0 **Double tag (DT)** \checkmark ST events: $J/\psi \rightarrow \overline{\Sigma}(1385)^+\Sigma^- + c.c., \ \overline{\Sigma}(1385)^+ \rightarrow \pi^+\overline{\Lambda}(\rightarrow \overline{p}\pi^+),$ save all $\overline{\Sigma}(1385)^+$ candidates; fit the recoil mass of $\overline{\Sigma}(1385)^+$. ×10³ Data Events/ 2.5 MeV/c² $N_{\rm ST} = 147743 \pm 563_{\rm stat}$ 15 Best fit Sig: MC conv. a Gaussion Bkg: a 2nd Chebychev 10 $B(J/\psi \rightarrow \overline{\Sigma}(1385)^+\Sigma^-)$ $= (3.21 \pm 0.07_{\text{stat}}) \times 10^{-4}$ 5 0 1.2 1.15 1.25 M_{recoil}(GeV/c²)

 [1] C. Barbero, G. Lopez Castro, and A. Mariano, Phys. Lett. B 556, 98 (2003).
 20

 [2] C. Barbero, L. F. Li, G. Lopez Castro, and A. Mariano, Phys. Rev. D 76, 116008 (2007); Phys. Rev. D 87, 036010 (2013).
 20

✓ **DT events:**

- in the recoil side of the selected ST events
- $\Sigma^- \to p e^- e^-; \ \Sigma^- \to \Sigma^+ (\to p \ \pi^0) X$
- ULs @90 CL : Frequentist method [1] with unbounded profile

likelihood treatment of systematic uncertainties.

• At BESIII, the BNV/LNV processes have been searched in the decays of $D, J/\psi$, and Σ^- , the ULs on BFs are at the level of $10^{-8} \sim 10^{-4}$, as summarized below.

Data sample	Source	Mode	$ \Delta(B-L) $	UL on BF @ 90% CL
	D mesons	$D^+ ightarrow \overline{\Lambda} e^+$	0	6.5×10 ⁻⁷
$\sqrt{s} = 3.773$ GeV 2.93 fb ⁻¹		$D^+ ightarrow \overline{\Sigma}{}^0 e^+$	0	1.3×10 ⁻⁶
tot		$D^+ ightarrow \Lambda e^+$	2	1.1×10 ⁻⁶
$N_{D^+D^-}^{\text{tot}}$ = (8 296 + 31 + 64)×10 ³		$D^+ ightarrow \Sigma^0 e^+$	2	1.7×10 ⁻⁶
		$D^0 \rightarrow K^- \pi^+ e^+ e^+$	2	2.8×10 ⁻⁶
$N_{D^0\overline{D}^0}^{\text{tot}}$ - (10 507 ± 28 ± 08)×10 ³		$D^+ \rightarrow K^0_S \pi^- e^+ e^+$	2	3.3×10 ⁻⁶
- (10, 397 <u>1</u> 28 <u>1</u> 98)×10		$D^+ \rightarrow K^- \pi^0 e^+ e^+$	2	8.5×10 ⁻⁶
$\sqrt{s} = 3.097 \text{ GeV}$	J/ψ meson	$J/\psi ightarrow \Lambda_c^+ e^-$	0	6.9×10 ⁻⁸
$\sqrt{3} = 3.077$ dev		$J/\psi ightarrow pK^-\overline{\Lambda} ightarrow pK^-\Lambda$	2 [BF ratio $P(\Lambda) < 4.4 \times 10^{-6}$]	
$N_{J/\psi}^{\text{tot}}$	Σ ⁻ baryon	$\Sigma^- ightarrow pe^-e^-$	2	6.7×10 ⁻⁵
$=(1,310.6\pm7.0)\times10^{6}$		$\Sigma^- o \Sigma^+ X$	2	1.2×10 ⁻⁴

- BESIII has collected about $10^{10} J/\psi$ events, which is the largest data sample directly from e^+e^- annihilation in the current world, better/more results will be coming soon.
- BESIII will collect 20 fb⁻¹ @ 3.773 GeV data sample in the future, better/more constraints on BNV/LNV processes can be expected.

Thanks for your attention!

Upper limits on the branching fractions for LNV decays of K, B, D, τ

Three body decays [1]

Four body decays [1]

[1] D. Milanés, N. Quintero, and C. E. Vera, Phys. Rev. D 93 094026 (2016).

□ Various SM extensions with BNV processes have been proposed.

- □ Under dimension six operators, BNV processes can happen with $\Delta(B - L) = 0$, where $\Delta(B - L)$ is the change in the difference between baryon and lepton numbers.
 - In models including heavy gauge bosons X with charge $\frac{4}{3}$ and gauge bosons Y with charge $\frac{1}{3}$, one obtains the Feynman diagrams for BNV decays of D mesons:

\Box Another class of BNV operators is the class of dimension seven operators where $\Delta(B - L) = 2$:

□ Reference [1] argues that the decay amplitudes of these two kinds of BNV processes $\Delta(B - L) = 0$ and $\Delta(B - L) = 2$ may be comparable.

Motivation

 Starting with a beam of free Λ, the probability of generating a Λ after time t can be described by

 $\mathcal{P}(\Lambda, t) = \sin^2(\delta \mathbf{m}_{\Lambda\bar{\Lambda}} \cdot \mathbf{t})$

where $\delta m_{\Lambda\bar{\Lambda}}$ is the oscillation parameter and *t* is the decay time.

 Since there is no vertex detector at the BESIII, we can only measure the time integrated result

$$\mathcal{P}(\Lambda) = \frac{\int_0^\infty \sin^2(\delta m_{\Lambda\bar{\Lambda}} \cdot t) \cdot e^{-t/\tau_\Lambda} \cdot dt}{\int_0^\infty e^{-t/\tau_\Lambda} \cdot dt},$$

where $P(\Lambda)$ is the time integrated oscillation rate of $\overline{\Lambda} \rightarrow \Lambda$, $\tau_{\Lambda} = (2.632 \pm 0.020) \times 10^{-10}$ (s) is the life time of Λ baryon.

• Therefore, the oscillation parameter can be deduced as

$$(\delta m_{\Lambda\bar{\Lambda}})^2 = \frac{\mathcal{P}(\Lambda)}{2 \cdot (\tau_{\Lambda}/\hbar)^2}$$

03 Search for $\Lambda - \overline{\Lambda}$ Oscillation

Oscillation event (charge conjugation implied)

 $J/\psi \to pK^-\overline{\Lambda} \xrightarrow{oscillating} pK^-\Lambda$

• Time integrated oscillation rate

$$\mathcal{P}(\Lambda) = \frac{\mathcal{B}(J/\psi \to pK^-\Lambda \to pK^-p\pi^-)}{\mathcal{B}(J/\psi \to pK^-\bar{\Lambda} \to pK^-\bar{p}\pi^+)} = \frac{N_{\rm WS}^{obs}/\epsilon_{\rm WS}}{N_{\rm RS}^{obs}/\epsilon_{\rm RS}}$$

• Most of the systematic uncertainties cancelled.

