

# HADRON 2021: ATLAS Results on Exotic Heavy Hadrons

30<sup>th</sup> July, 2021 Dr Andy Wharton - on behalf of the ATLAS Collaboration

Hadron 2021 Conference (HADRON2021), July 26-31, 2021

## ATLAS Results on Exotic Heavy Hadrons



### Content:

- Tetraquarks in ATLAS Run I data:
  - Searches for the X(5568) state, [Phys. Rev. Lett. 120, 202007].
- Pentaquarks in ATLAS Run I data:
  - Searching for hidden charm in  $\Lambda_b$  decays, [ATLAS-CONF-2019-048].
- Perspective for extracting for  $Z_c(4200)$  during Run 2.

## Heavy Flavour Physics with ATLAS



Mostly based on di-muon triggers:

- 4 or 6 GeV muon  $p_T$  threshold.
- Vertexing + di-muon mass cuts.

No  $\pi/K/p$  separation.

Run 2 upgrades included:

- IBL pixel detector.
- Trigger upgrades.





D0 evidence of a 4-quark X(5568):

- $X(5568)^{\pm} \rightarrow B_s \pi^{\pm}$ .
  - [Phys. Rev. Lett. 117, 022003]
  - [Phys. Rev. D 97, 092004]

### Not observed at:

- CDF, [Phys. Rev. Lett. 120, 202006].
- LHCb, [Phys. Rev. Lett. 117, 152003].
- CMS, [Phys. Rev. Lett. 120, 202005].

ATLAS search performed in Run 1 data.

√s=7 TeV (4.9 fb<sup>-1</sup>), √s=8 TeV (19.5 fb<sup>-1</sup>).





### The ATLAS search:

- B<sub>s</sub> candidates:
  - p<sub>T</sub>(μ) > 4 GeV, p<sub>T</sub>(K) > 1 GeV.
  - Di-muon, di-kaon, and 4-track mass cuts.
  - Di-muon and 4-track vertex cuts.
  - $\tau(B_s) > 0.2 \text{ ps.}$
- B<sub>s</sub>π reconstruction:
  - p<sub>T</sub>(π) > 500 MeV + PV cut.
  - 5346.6 < m(B<sub>s</sub>) < 5386.6 GeV.

### Set limits on:

- n<sub>x</sub>, signal event count.
- $\rho_{\chi}$ , B<sub>s</sub> fraction from X(5568).





 $p_{T}(B_{s}) > 10 \text{ GeV}$ 



 $p_{T}(B_{s}) > 15 \text{ GeV}$ 





### The ATLAS results:

- n<sub>x</sub>:
  - $n_x = 60 \pm 140$ , with  $p_T(B_s) > 10$  GeV.
  - $n_x = 30 \pm 150$ , with  $p_T(B_s) > 15$  GeV.
  - No evidence of signal events.
- ρ<sub>x</sub> @ 95% CL:
  - $\rho_{\chi} < 1.5\%$ , with  $p_{T}(B_{s}) > 10$  GeV.
  - $\rho_X < 1.6\%$ , with  $p_T(B_s) > 15$  GeV.
  - Limits compatible with LHCb & CMS.

### Alternate candidate masses?

• No evidence in CLs scan.





Overview of LHCb results:

- 2 pentaquark in  $\Lambda_b \rightarrow J/\psi p K^-$ .
  - [Phys. Rev. Lett. 115, 072001]
- Later seen in  $\Lambda_b \rightarrow J/\psi \ p \ \pi^-$ .
  - [Phys. Rev. Lett. 117, 082003]
- 2 additional states seen in Run 2.
  - [Phys. Rev. Lett. 122, 222001]

Not observed by GLUEX:

- See [Phys. Rev. Lett. 123, 072001].
- Limits set on model independent production.

D0 observe a 3  $\sigma$  evidence in J/ $\psi$  p events:

See [arXiv:1910.11767].





No hadronic identification in ATLAS.

Lots of states to consider!

### $J/\psi \rightarrow \mu^+\mu^-$ :

- pT(μ) > 4 GeV, |η (μ)| < 2.3.
- $|m(J/\psi_{PDG}) m(\mu^+\mu^-)| < 290 \text{ MeV}.$

### B-hadron reconstruction:

- |η (h<sub>x</sub>)| < 2.5.
- 4-track vertex cuts on  $(\mu^+, \mu^-, h_1, h_2)$ .
- pT(H<sub>b</sub>) > 12 GeV, |η (H<sub>b</sub>)| < 2.1.
- m(H<sub>b</sub>) cuts dependent on mass of h<sub>x</sub>.
- L<sub>xy</sub> decay length and helicity cuts.

| <b>Region Definition</b>      | Mass Range (GeV)                                    |
|-------------------------------|-----------------------------------------------------|
| $\Lambda_{b}$ Signal Region   | 5.59 < m(J/ψ p K⁻) < 5.65                           |
| B <sub>d</sub> Control Region | 5.25 < m(J/ψ K <sup>+</sup> π <sup>-</sup> ) < 5.31 |
| B <sub>s</sub> Control Region | 5.337 < m(J/ψ K⁺ K⁻) < 5.397                        |
| Background Shape              | 5.35 < m(J/ψ p K⁻) < 5.45                           |



#### Fits of:

- $\Lambda_b \rightarrow J/\psi \Lambda^*$  or  $P_c^+ K^- \rightarrow J/\psi p K^-$ .
- $B_d \rightarrow J/\psi K^*$  or  $Z_c^- K^+ \rightarrow J/\psi K^+ \pi^-$ .
- $B_s \rightarrow J/\psi$  f or  $J/\psi \phi \rightarrow J/\psi K^+ K^-$ .

Background suppression via:

- Same-sign subtraction.
- m(π K) and m(K π) > 1.55 GeV.

#### B-hadron reconstruction:

- m(J/ψ p K).
- m(J/ψ π K).
- m(J/ψ K<sup>+</sup> K<sup>-</sup>).
- m(J/ψ π⁺ π⁻).
- $m(J/\psi h_x) \& m(h_1 h_2)$  in a  $B_d$  CR.
- $m(J/\psi h_x) \& m(h_1 h_2)$  in a  $B_s CR$ .





### Fitted yields:

- $\Lambda_{\rm b} \rightarrow J/\psi \ {\rm p} \ {\rm K}^{-} = 2270 \pm 300.$
- $B_d \rightarrow J/\psi K^+ \pi^- \sim 10770.$
- $B_s \rightarrow J/\psi K^+ K^- \sim 2290$ .
- $B_d \rightarrow J/\psi \pi^+ \pi^- \sim 1070.$
- $B_{s}^{-} \rightarrow J/\psi \pi + K^{-} \sim 1390.$
- P<sub>c</sub> signal regions fits:
  - $\Lambda_{b(Right)} \rightarrow J/\psi p K^{-} = 1010 \pm 140.$ •  $\Lambda_{b(Wrong)} \rightarrow J/\psi p K^{-} = 160 \pm 20.$

No P<sub>c</sub>-state hypothesis: • P-value = 9.1 \* 10<sup>-3</sup>.





 $P_c$ -state hypothesis: P-value = 55.7%.



 $P_c$ -state hypothesis: P-value = 68.6%.





Good agreement with LHCb.

• Some tension in P<sub>c1</sub> properties.

### Alternative fit:

- 2 P<sub>c</sub>-states fixed to LHCb values.
- P-value = 24.5%

| Parameter            | Value                                                                 | LHCb value [5]               |
|----------------------|-----------------------------------------------------------------------|------------------------------|
| $N(P_{c1})$          | $400^{+130}_{-140}(\text{stat})^{+110}_{-100}(\text{syst})$           | _                            |
| $N(P_{c2})$          | $150^{+170}_{-100}(\text{stat})^{+50}_{-90}(\text{syst})$             | —                            |
| $N(P_{c1} + P_{c2})$ | $540^{+80}_{-70}(\text{stat})^{+70}_{-80}(\text{syst})$               | —                            |
| $\Delta \phi$        | $2.8^{+1.0}_{-1.6}(\text{stat})^{+0.2}_{-0.1}(\text{syst})$ rad       | —                            |
| $m(P_{c1})$          | $4282^{+33}_{-26}(\text{stat})^{+28}_{-7}(\text{syst}) \text{ MeV}$   | $4380\pm8\pm29~{\rm MeV}$    |
| $\Gamma(P_{c1})$     | $140_{-50}^{+77} (\text{stat})_{-33}^{+41} (\text{syst}) \text{ MeV}$ | $205\pm18\pm86~{\rm MeV}$    |
| $m(P_{c2})$          | $4449^{+20}_{-29} \text{ (stat)}^{+18}_{-10} \text{ (syst) MeV}$      | $4449.8 \pm 1.7 \pm 2.5$ MeV |
| $\Gamma(P_{c2})$     | $51_{-48}^{+59} (\text{stat})_{-46}^{+14} (\text{syst}) \text{ MeV}$  | $39 \pm 5 \pm 19$ MeV        |

### Run 2 Searches for the Z<sub>c</sub>(4200)



Run 2 searches for exotic  $Z_c$  states.

Belle observes  $Z_c(4200)^+ \rightarrow J/\psi \pi^+$ .

• See [Phys. Rev. D 90, 112009].

Seen in  $B_d \rightarrow J/\psi K^+ \pi^-$  decays. • Large m(K  $\pi$ ).



## Z<sub>c</sub>(4200) Hints in the Run 1 Analysis







## ATLAS Results on Exotic Heavy Hadrons



#### Summary:

#### • Search for a X(5568) resonance:

- No evidence of the state claimed by D0.
- Strong limits on production set from Run 1 data.
- Pentaquarks with  $\Lambda_b \rightarrow J/\psi p K^-$ :
  - 0-pentaquark model strongly disfavoured (not excluded) by data.
    - Run 2 statistics required.
  - 2-pentaquark model consistent with data and LHCb.
  - 4-pentaquark model also consistent with data (with parameters fixed from LHCb).
    - Poor mass resolution limits analysis.
  - Run 2 analysis offers better statistics, better resolution...
    - Underway expect results soon!
- Z<sub>c</sub>(4200) searches in Run 2:
  - Running in parallel with the Run 2 pentaquark analysis.



# Backup

### ATLAS: The Detector





### B-Physics Triggers: Run 1 and Run 2







### Pentaquarks in the J/ $\psi$ p K<sup>-</sup> State: 2 Pc State Fits



| Parameter            | Value                                                                  | LHCb value [5]                       |
|----------------------|------------------------------------------------------------------------|--------------------------------------|
| $N(P_{c1})$          | $400^{+130}_{-140}(\text{stat})^{+110}_{-100}(\text{syst})$            |                                      |
| $N(P_{c2})$          | $150^{+170}_{-100}(\text{stat})^{+50}_{-90}(\text{syst})$              | _                                    |
| $N(P_{c1} + P_{c2})$ | $540^{+80}_{-70}(\text{stat})^{+70}_{-80}(\text{syst})$                | _                                    |
| $\Delta \phi$        | $2.8^{+1.0}_{-1.6}(\text{stat})^{+0.2}_{-0.1}(\text{syst})$ rad        | _                                    |
| $m(P_{c1})$          | $4282^{+33}_{-26}(\text{stat})^{+28}_{-7}(\text{syst}) \text{ MeV}$    | $4380\pm8\pm29~{\rm MeV}$            |
| $\Gamma(P_{c1})$     | $140_{-50}^{+77} (\text{stat})_{-33}^{+41} (\text{syst}) \text{ MeV}$  | $205\pm18\pm86~{\rm MeV}$            |
| $m(P_{c2})$          | $4449_{-29}^{+20} (\text{stat})_{-10}^{+18} (\text{syst}) \text{ MeV}$ | $4449.8 \pm 1.7 \pm 2.5 \text{ MeV}$ |
| $\Gamma(P_{c2})$     | $51_{-48}^{+59} (\text{stat})_{-46}^{+14} (\text{syst}) \text{ MeV}$   | $39 \pm 5 \pm 19$ MeV                |

### Pentaquarks in the J/ $\psi$ p K<sup>-</sup> State: Initial LHCb Results





### Pentaquarks in the J/ $\psi$ p K<sup>-</sup> State: Systematics



| Source                                                  | $N(P_{c1})$        | $N(P_{c2})$        | $N(P_{c1} + P_{c2})$ | $\Delta \phi$      |
|---------------------------------------------------------|--------------------|--------------------|----------------------|--------------------|
| Number of $\Lambda_b^0 \to J/\psi p K^-$ decays         | $^{+1.8}_{-0.6}\%$ | $^{+6.6}_{-9.2}\%$ | $^{+1.6}_{-0.8}\%$   | $^{+0.3}_{-0.0}\%$ |
| Pentaquark modelling                                    | $^{+21}_{-0}\%$    | $^{+1}_{-22}\%$    | $+8.7\ -4.4\%$       | $^{+1.6}_{-0.0}\%$ |
| Non-pentaquark $\Lambda_b^0 \to J/\psi p K^-$ modelling | $^{+14}_{-2}\%$    | $^{+5}_{-44}\%$    | $+9.2 \\ -9.1 \%$    | $^{+3.6}_{-1.6}\%$ |
| Combinatorial background                                | $^{+0.7}_{-4.0}\%$ | $^{+18}_{-5}\%$    | $^{+4.2}_{-4.8}\%$   | $^{+3.2}_{-0.0}\%$ |
| B meson decays modelling                                | $^{+13}_{-25}\%$   | $^{+28}_{-35}\%$   | $^{+1.6}_{-9.3}\%$   | $^{+0.5}_{-2.1}\%$ |
| Total systematic uncertainty                            | $^{+28}_{-25}\%$   | $^{+35}_{-61}\%$   | $^{+14}_{-15}\%$     | $^{+5.1}_{-2.7}\%$ |

| Source                                                  | $m(P_{c1})$          | $\Gamma(P_{c1})$   | $m(P_{c2})$          | $\Gamma(P_{c2})$ |
|---------------------------------------------------------|----------------------|--------------------|----------------------|------------------|
| Number of $\Lambda_b^0 \to J/\psi p K^-$ decays         | $^{+0.06}_{-0.03}\%$ | $^{+3.5}_{-2.5}\%$ | $^{+0.07}_{-0.04}\%$ | $^{+7}_{-13}\%$  |
| Pentaquark modelling                                    | $^{+0.6}_{-0.0}\%$   | $^{+18}_{-0}\%$    | $^{+0.2}_{-0.0}\%$   | $^{+0}_{-33}\%$  |
| Non-pentaquark $\Lambda_b^0 \to J/\psi p K^-$ modelling | $^{+0.23}_{-0.05}\%$ | $^{+9.2}_{-1.2}\%$ | $^{+0.24}_{-0.02}\%$ | $^{+2}_{-62}\%$  |
| Combinatorial background                                | $^{+0.03}_{-0.15}\%$ | $^{+0}_{-11}\%$    | $^{+0.01}_{-0.17}\%$ | $^{+22}_{-4}\%$  |
| B meson decays modelling                                | $^{+0.24}_{-0.00}\%$ | $^{+21}_{-21}\%$   | $^{+0.27}_{-0.14}\%$ | $^{+17}_{-57}\%$ |
| Total systematic uncertainty                            | $^{+0.7}_{-0.2}\%$   | $^{+30}_{-24}\%$   | $^{+0.4}_{-0.2}\%$   | $^{+28}_{-91}\%$ |