

HYPERON PHYSICS AT HADES AS PART OF THE FAIR PHASE-0 PROGRAM 19TH INTERNATIONAL CONFERENCE ON HADRON SPECTROSCOPY AND STRUCTURE IN MEMORIAM SIMON EIDELMAN 26/07/21 - 31/07/21, MEXICO CITY (ONLINE)

30/07/2021 I Gabriela Pérez Andrade¹, Rafal Lalik², James Ritman^{3,1}, Piotr Salabura², Peter Wintz¹ FOR THE HADES COLLABORATION ¹INSTITUTE FOR NUCLEAR PHYSICS OF THE RESEARCH CENTER JÜLICH ²SMOLUCHOWSKI INSTITUTE OF PHYSICS, JAGIELLONIAN UNIVERSITY IN KRAKÓW **3GSI HELMHOLTZ CENTRE FOR HEAVY ION RESEARCH**

Overview

- FAIR Phase-0 @HADES:
 Hyperon Physics Program
 Hardware Upgrade
 Simulation Feasibility Studies
- HADES Commissioning Beamtime
- Summary

Hyperon Electromagnetic Decays

- Hyperon structure probed by measurement of electromagnetic Transition Form Factors (eTFF) :
 - > Space-like region $(q^2 < 0)$ accessible in electron scattering experiments
 - > Time-like region ($q^2 > 0$) accessible via e^+e^- annihilation (BaBar, CLEO-C, BESIII) and Dalitz decays (HADES)
 - CLEO provided first measurements of hyperon (Λ, Σ^{\pm} , °, Ξ^{-} °, and Ω) magnetic form factors at q² > 14 GeV^{2 [1]}
- Comparison between strange and non-strange baryons helpful to pin-point the role of the pion cloud at small q²
- Radiative hyperon decays $Y^* \rightarrow \Lambda \gamma$
 - Can help to differentiate between theoretical models^[2]
 - \succ Very sparse experimental results (e.g. Λ(1520) → Λ γ, Σ(1385)^o → Λ γ^[3], Σ(1385)⁺ → Σ⁺γ^[4])
- Dalitz hyperon decays $Y^* \rightarrow \Lambda e^+e^-$
 - > Probe hyperon structure at low q² where mesonic degrees of freedom are expected
 - Experimentally unexplored

Measurements of hyperon EM decays will improve the understanding of hyperon structure in the lower q² region.

- ^[1] E. Kaxiras, E. J. Moniz, and M. Soyeur, Phys. Rev. D 32, 695 (1985)
- ^[2] S. Dobbs *et al.*, Phys. Lett. B 739, 90 (2014)
- ^[3] S. Taylor et al. (CLAS), Phys. Rev. C 71, 054609 (2005)
- ^[4] D. Keller et al. (CLAS), Phys. Rev. D 85, 052004 (2012)

Production of Double Strangeness (\Xi^-, \Lambda\Lambda)

Ξ^{-} production:

- Very little is known about multi-strange hyperons produced at low q² \geq
- Puzzling enhancement of Ξ^{-} production in previous HADES measurements \geq

√S_{NN} - √S_{thr} [GeV] 10³ 10 [GeV]

Empty circle shows yield in **p** + Nb at 3.5 GeV by HADES Collaboration

HADES will provide pp references to quantify the expected strangeness enhancement in heavy ion collisions

Λ-Λ measurement:

- Y Y interaction is poorly known
- Λ Λ interaction plays important role in neutron star core studies^[3]
- Complementary to upcoming PANDA studies of $\Lambda\Lambda$ ($\Lambda\overline{\Lambda}$) in pp(pp)

High Acceptance DiElectron Spectrometer

Designed to measure charged **hadrons**, **leptons** and **photons** produced at few GeV in proton, secondary pion and heavy ion induced reactions on a fixed target (proton or nuclear).

- Charged particle tracking with Mini-Drift Chambers (MDC I-IV)
- Particle identification: e⁺/e⁻ (RICH), K⁺/K⁻, p (TOF)
- Δ M/ M ~ 2.5% in the p/ ω / ϕ region
- Acceptance over polar angles within 18 ° < θ < 85 °

Spectrometer upgrade for FAIR Phase-0:

- Upgraded RICH and START detectors
- New ECAL and Inner TOF detector
- New Forward Detector:
 - Straw tracker stations STS1, STS2 (low material budget)
 - Forward Resistive Plate Chamber (FRPC)
 - > Angular acceptance extended to polar angles ~ 0.5 ° < θ < 7°
- Upgrade of DAQ system: up to 200 kHz trigger rate

HADES Forward Detector for FAIR Phase-0

- No magnetic field --- No direct momentum measurement
- Path length and time of flight to calculate velocity and PID ٠
- Track reconstruction combines information from STS and FRPC
- Daughter baryon from the hyperon decay is strongly forward peaked ٠ in the lab frame due to fixed target kinematics:

The FD is crucial for hyperon reconstruction

Simulation Feasibility Studies, FAIR Phase-0@HADES

- All simulations performed for a p beam of 4.5 GeV incident on a 4.7 cm long LH₂ target
- The new components from the forward detector (FD) were included
- Dominant background channels are included in the simulations
- Production cross-section estimates:
 - > Little or no information is currently available for cross-sections at 4.5 GeV
 - > Extrapolated from other energies or predicted based on previous measurements
- All (except radiative decays) assume semi-inclusive reconstruction tagged by a Λ reconstruction:
- > In general, pions from \land decays stay within HADES acceptance and protons are detected in the FD

Experiment beamtime is approved and is scheduled for February 2022.

Hyperon Electromagnetic Decays

- Investigated reaction: pp $\rightarrow pK^{+}Y^{*}$
- Investigated hyperons: $\Sigma(1385)^\circ$, $\Lambda(1405)$, $\Lambda(1520)$
- Decay branching ratios (BR) for $\,Y\to\Lambda\,\gamma$ obtained from CLAS and estimated for $Y\!\to\Lambda\,\gamma^*$
- $\Lambda(1405)$ signal too small to be measured

Radiative decays $Y^*\!\to\!\Lambda\,\gamma$

• Exclusive reconstruction to suppress background from Y \rightarrow A π^o

Dalitz decay of hyperons $Y^* \rightarrow \Lambda e^+e^-$ (inclusive)

 Prominent background from π^o dalitz decays: dilepton mass is required to be M_{e+e-} > 140 MeV/ c²

Topology of hyperon radiative Decay

Topology of hyperon Dalitz decay

(a) π^{-} from $\Lambda \rightarrow p\pi^{-}$ decay (b) p from $\Lambda \rightarrow p\pi^{-}$ decay counts $p+p \rightarrow \Lambda(1520)K^{+}p$ $p+p \rightarrow \Lambda(1520)K^+\mu$ -- Generated tracks racks in acceptar Tracks in accepted events HADES acceptance 10 FWDET acceptance 10³ 10² 10 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 Theta [deg] Theta [deg]

41% of the protons from $\Lambda(1520)$ decays are within the FD acceptance

All Images from Adamczewski-Musch, J., *et al.* "Production and electromagnetic decay of hyperons: a feasibility study with HADES as a phase-0 experiment at FAIR." *The European Physical Journal A* 57.4 (2021): 1-21.

Production of Double Strangeness

- Studied channel: pp \rightarrow pK⁺K⁺E⁻
- Estimations of Ξ^{-} production cross section: upper limit from p-N interactions and lower estimate using (high energy) pp data.

Topology of Ξ^- decay

$\Lambda\Lambda$ production

- Studied reaction pp $\rightarrow K^+K^+\Lambda\Lambda$
- Estimated $\Lambda\Lambda$ production cross section taken to be equal to the pp \rightarrow pK⁺K⁺ Ξ^{-}

Relative error of the yield for $\Lambda\Lambda$ pairs as a function of the relative momentum.

 $\Lambda\pi^{-}$ Invariant mass spectrum

 $D+D+\pi^{+}+\pi^{+}+\pi^{-}+\pi^{-}$

 $\sigma_{=} = 3.6 \, \mu b$

total signal

 $E^{+} = +p + K^{+} + K^{+}$

 $\sigma_{\pi} = 0.35 \,\mu b$

1380

1360

M_{π'} [MeV c⁻²]

total signal E⁺+p+K⁺+K⁺

1340

×10⁻³

88% of pK+K+E - events have both pions reconstructed within HADES and the proton within the FD 89% of the K+K+AA events include at least one particle within the FD

> All Images from Adamczewski-Musch, J., et al. "Production and electromagnetic decay of hyperons: a feasibility study with HADES as a phase-0 experiment at FAIR." The European Physical Journal A 57.4 (2021): 1-21.

Simulation Feasibility Studies Results

Channel	σ (μb)	BR	$\mathbf{acc} \cdot \boldsymbol{\epsilon}[\%]$	Counts/day (LH ₂)
$\Sigma(1385)^{\circ}{\rightarrow} \wedge \gamma$	56	9.07×10^{-3}	0.030	99
$\Lambda(1520) \rightarrow \Lambda \gamma$	69	7.03×10^{-3}	0.026	82
$\Sigma(1385)^{\circ} \rightarrow \Lambda e^+e^-$	56	8.94×10^{-5}	0.48	15
$\Lambda(1520) \rightarrow \Lambda e^+e^-$	69	6.93×10^{-5}	0.58	18
$\Xi^- \rightarrow p \pi^- \pi^-$	3.6	0.64	1.68	2.43×10^{4}
$\Xi^- \rightarrow p \pi^- \pi^-$	0.35	0.64	1.68	2.43×10^{3}
$pp \rightarrow \Lambda \Lambda K^{+}K^{+}$	3.6	0.64 ²	0.34	3.15×10^{3}
$pp \rightarrow \Lambda \Lambda K^{+}K^{+}$	0.35	0.64 ²	0.34	3.15×10^{2}

The count rates were calculated taking into account:

- Acceptance times reconstruction efficiency
- A beam duty cycle of 50%
- $\mathcal{L} = 1.5 \times 10^{31} \text{ cm}^{-2} \text{ s}^{-1}$

All proposed channels with hyperon Dalitz decays except A(1405) can be measured at HADES/FD

HADES Commissioning Beamtime February 2021

- Preparation for pp@4.5 GeV production run in February/2022
- Test of quality of beam and focus on target
- Test of new detectors : STS, fRPC, iTOF
- SIS18 proton beam extraction with 2 GeV and 4.2 GeV kinetic energy
- Particle rates up to10⁸ p/s
- Target: LH₂
- Currently, analysis of the test data:
 - Calibration for new detectors
 - Set up of tracking software for new detectors
 - Combine event tracking with HADES and forward detectors
 - Vertex reconstruction
 - Specific background reaction: pp elastic scattering

Straw Tracking Stations (STS)

 Two stations (STS1/2) consisting of four double layers of self supporting gas-filled straws

Station	STS1	STS2
No. Straws	704	1024
Straw length	76 cm	125 cm
Orientation	0°, 90°, 90°, 0°	0°, 90°, 45°, -45°
Beam opening	$8 \times 8 \text{ cm}^2$	$16 \times 16 \text{ cm}^2$
Distance to target (commissioning)	~ 3.50 m	~ 5.50 m

- STS stations and readout performance tested under experiment conditions
- STS operation was stable and no self-sustaining currents were observed even at the highest beam intensities (10⁵ p/s per straw)

Forward RPC

- Four sectors with 32 individually shielded hybrid (metal glass) strip-like RPCs
- Currently 2 sectors installed (2 x 32 strips)
- FRPC, located at ~ 6.60 m to target (commissioning)
- Half FRPC tested in realistic beam conditions (preliminary):
 - ≻Efficiency 85 90 %
 - ≻Time resolution 100 120 ps
- Full system will be ready in autumn 2021

Alberto Blanco Castro Status of Forward RPC IV HADES Physics Analysis Meeting

Forward Detector Tracking

Tracking software for the new detectors has been implemented:
> Identify and associate hits within STS and FRPC to form a track
> Refit tracks using drift radius information from straws (isochrones)
> Vertex reconstruction with tracks extrapolation

Tracking (preliminary) results

Rafal Lalik STS tracking, vertex reconstruction IV HADES Physics Analysis Meeting

Conclusions and Summary

- The planned measurements of hyperon EM decays and double strangeness production will make important contributions to the understanding of hyperon structure.
- Dalitz decays (low q^2) will be studied for the first time in pp collisions
- Detailed feasibility studies show that the proposed benchmark channels, except Λ(1405), will be successfully measured at HADES upgraded by the new forward detector system
- The FD componenets are crucial for hyperon reconstruction
- New forward detector components were successfully tested under experiment conditions
- New components operated without failure during commissioning beamtime
- The new components are included in the HADES DAQ
- A rich data base is available to prepare the data-taking and analysis software for the upcoming experiment

• A four week experiment beamtime with the upgraded HADES is scheduled for February 2022.

THANK YOU!

Questions?