

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

HADRON 2021

Meson-baryon scattering and $\Lambda(1405)$ in resummed baryon chiral perturbation theory

Xiu-Lei Ren (任修磊)

Institut für Kernphysik, Johannes Gutenberg Universität Mainz

In collaboration with:

Evgeny Epelbaum (RUB), Jambul Gegelia(RUB), and Ulf-G. Meißner (Bonn) Eur. Phys. J. C80 (2020) 406; Eur. Phys. J. C81 (2021) 582

OUTLINE

Introduction

Theoretical framework

Results and discussion

Summary and outlook

OUTLINE

Introduction

Theoretical framework

Results and discussion

Summary and outlook

Meson-baryon scattering

Lowest lying pseudoscalar meson-baryon scattering process

Simple process but with interesting phenomena

- $\pi N \rightarrow \pi N$ scattering: large amount experimental data
 - ✓ Extract sigma term σ_{πN}, key input of neutralino-nucleon cross section
 M. Hoferichter, et al., PRL115,092301(2015)
 J.R. Ellis, et al., PRD77(2008)065026
- $\bar{K}N$ interaction is important in strangeness nuclear physics
 - ✓ Interaction is strongly attractive, generating $\Lambda(1405)$ resonance
 - \checkmark $\bar{K}NN, \bar{K}NNN$, multi-antikaonic nuclei **J-PARC, FINUDA@DAΦNE, etc**
 - ✓ Kaon-condensate could change Equation of State of neutron stars S.Pal et al., NPA674(2000)553

Deepen understanding of SU(3) dynamics in nonperturbative QCD

 $\overline{\chi}$

$\Lambda(1405)$ resonance

PDG2021: **** $I(J^P) = 0(1/2^-), \qquad M = 1405.1^{+1.3}_{-1.0} \text{ MeV}, \qquad \Gamma = 50.5 \pm 2.0 \text{ MeV}$

\square $\Lambda(1405)$ state is an **exotic candidate**

N. Isgur and G. Karl, Phys.Rev.D 18 (1978) 4187

Variety of theoretical studies (e.g.):

- QCD sum rules L.S. Kisslinger, EPJA2011...
- Phenomenological potential model A. Cieplý, NPA2015
- Skyrme model T. Ezoe, PRD2020...
- Hamiltonian effective field theory Z.-W. Liu, PRD2017
- Chiral unitary approach

N.Kaiser,NPA1995; E.Oset,NPA1998; J.A.Oller&U.-G.Meißner,PLB2001...

- **Double-pole structure of** $\Lambda(1405)$ predicted by chiral unitary approaches
 - ✓ Two poles of the scattering amplitude in the complex energy plane between the $\bar{K}N$ and $\pi\Sigma$ thresholds.

$\Lambda(1405)$ resonance

PDG2021: **** $I(J^P) = 0(1/2^-), \qquad M = 1405.1^{+1.3}_{-1.0} \text{ MeV}, \qquad \Gamma = 50.5 \pm 2.0 \text{ MeV}$

\square $\Lambda(1405)$ state is an **exotic candidate**

Variety of theoretical studies (e.g.):

- QCD sum rules L.S. Kisslinger, EPJA2011...
- Phenomenological potential model A. Cieplý, NPA2015
- Skyrme model T. Ezoe, PRD2020...
- Hamiltonian effective field theory Z.-W. Liu, PRD2017
- Chiral unitary approach

N.Kaiser,NPA1995; E.Oset,NPA1998; J.A.Oller&U.-G.Meißner,PLB2001...

- **Double-pole structure of** $\Lambda(1405)$ predicted by chiral unitary approaches
 - ✓ Two poles of the scattering amplitude in the complex energy plane between the $\bar{K}N$ and $\pi\Sigma$ thresholds.
 - ✓ This fact is now part of the PDG book i.e.

PDG review "Pole Structure of the $\Lambda(1405)$ Region" by U.-G. Meißner and T. Hyodo

Article **Two-Pole Structures in QCD: Facts, Not Fantasy!** Ulf-G. Meißner ^{1,2,3}

Chiral Unitary approach

- Chiral symmetry of low-energy QCD is imposed to dynamical generate the resonances
 J.A.Oller et al., PPNP45(2000)157-242; T.Hyodo et al., PPNP67(2012)55-98 ...
 - Interaction kernel V: calculated in ChPT order by order
 - ✓ Leading, Next-to-leading order, ...

Scattering T-matrix: by solving scattering equations

✓ Lippmann-Schwinge equation or Bethe-Salpeter equation

$$T(p',p) = V(p',p) + \int \frac{d^3k}{(2\pi)^3} V(p',k) G(k) T(k,p)$$

$$\checkmark \text{ On-shell factorization } \rightarrow V(p',p) + V(p',p) \left(\int \frac{d^3k}{(2\pi)^3} G(k) \right) T(p',p)$$
Neglecting off-shell effect

Introduce finite cutoff or subtraction constant to renormalize the loop integral
 Cutoff/Model dependence

In this work

To avoid those approximations/obstacles, we tentatively propose a renormalized framework for meson-baryon scattering using time-ordered perturbation theory with the covariant chiral Lagrangians

- Obtain the potential and scattering equation on an equal footing
- Include the off-shell effects of potential and utilize the subtractive renormalization to obtain the renormalized T-matrix
- Apply to the pion-nucleon scattering at LO
- Extend to S = -1 sector and investigate the pole structure of $\Lambda(1405)$ state

X.-L. Ren, E. Epelbaum, J. Gegelia and U.-G. Meißner, Eur. Phys. J. C80 (2020) 406; Eur. Phys. J. C81 (2021) 582

OUTLINE

Introduction

Theoretical framework

- Briefly introduce time-ordered perturbation theory
- Obtain the potential and scattering equation in TOPT
- Use subtractive renormalization to obtain the renormalized T-matrix

Results and discussion

Summary and outlook

TOPT with covariant Lagrangian

Time-ordered perturbation theory (TOPT)

Definition

S. Weinberg, Phys.Rev.150(1966)1313 G.F. Sterman, "An introduction to quantum field theory", Cambridge (1993)

- Re-express the Feynman integral in a form that makes the connection with onmass-shell (off-energy shell) state explicit. This form is called TOPT or oldfashioned PT
- ✓ (In short) Instead the propagators for internal lines as the energy denominators for intermediate states

Advantages

- ✓ Explicitly show the unitarity
- ✓ One-to-one relation between internal lines and intermediate states
- ✓ Easily tell the contributions of a particular diagram
- Derive the rules for time-ordered diagrams
 - Perform Feynman integrations over the zeroth components of the loop momenta
 - Decompose Feynman diagram into sums of time-ordered diagrams
 - Match to the rules of time-ordered diagrams

Diagram rules in TOPT

External lines

• Incoming (outgoing) baryon lines: $u(p) [\bar{u}(p')]$

Internal lines

- Pseudo-scalar meson lines: $\frac{1}{2\omega(q_i, M_i)}$ $\omega(q, M) = \sqrt{q^2 + M^2}$
- Baryon lines: $\frac{m_i}{\omega(p_i,m)} \sum u(p_i)\bar{u}(p_i)$

Interaction vertices

- Follow the standard Feynman rules
- Take care of zeroth components of momenta p^0
 - ✓ Replaced as $\omega(p, m)$ for particle
 - ✓ Replaced as $-\omega(p,m)$ for antiparticle

Intermediate state: a set of lines between any two vertices

$$\sum_{1} \sum_{i=1}^{i} \omega(p_i, m_i) + i\epsilon]^{-1}$$

E is the total energy of the system

V.Baru, E.Epelbaum, J. Gegelia, XLR, PLB 798 (2019) 134987

Meson-baryon scattering in TOPT¹⁰

\square Interaction kernel / potential V

- Define: sum up the one-meson and one-baryon irreducible timeordered diagrams
- Power counting: Q/Λ_{χ} systematic ordering of all graphs

Scattering equation (non-perturbative)

$$T = V + V G T$$

Coupled-channel integral equation for T-matrix

$$T_{M_j B_j, M_i B_i}(\boldsymbol{p}', \boldsymbol{p}; E) = V_{M_j B_j, M_i B_i}(\boldsymbol{p}', \boldsymbol{p}; E) + \sum_{MB} \int \frac{d^3 \boldsymbol{k}}{(2\pi)^3} V_{M_j B_j, MB}(\boldsymbol{p}', \boldsymbol{k}; E) G_{MB}(E) T_{MB, M_i B_i}(\boldsymbol{k}, \boldsymbol{p}; E)$$

• Meson-baryon Green function in TOPT:

$$G_{MB}(E) = \frac{1}{2\omega(k,M)\omega(k,m)} \frac{m}{E - \omega(k,M) - \omega(k,m) + i\epsilon}$$

Meson-baryon scattering in TOPT¹⁰

\square Interaction kernel / potential V

- Define: sum up the one-meson and one-baryon irreducible timeordered diagrams
- Power counting: Q/Λ_{χ} systematic ordering of all graphs

Scattering equation (non-perturbative)

$$T = V + V G T$$

Coupled-channel integral equation for T-matrix

$$T_{M_j B_j, M_i B_i}(\boldsymbol{p}', \boldsymbol{p}; E) = V_{M_j B_j, M_i B_i}(\boldsymbol{p}', \boldsymbol{p}; E) + \sum_{MB} \int \frac{d^3 \boldsymbol{k}}{(2\pi)^3} V_{M_j B_j, MB}(\boldsymbol{p}', \boldsymbol{k}; E) G_{MB}(E) T_{MB, M_i B_i}(\boldsymbol{k}, \boldsymbol{p}; E)$$

• Meson-baryon Green function in TOPT:

$$G_{MB}(E) = \frac{1}{2\omega(k,M)\,\omega(k,m)} \frac{m}{E - \omega(k,M) - \omega(k,m) + i\epsilon}$$

Potential and scattering equation are obtained on an equal footing!

Leading order potential

Chiral effective Lagrangian

$$\mathcal{L}_{\text{LO}} = \frac{F_0^2}{4} \left\langle u_{\mu} u^{\mu} + \chi_+ \right\rangle + \left\langle \bar{B} \left(i \gamma_{\mu} \partial^{\mu} - m \right) B \right\rangle + \frac{D/F}{2} \left\langle \bar{B} \gamma_{\mu} \gamma_5 [u^{\mu}, B]_{\pm} \right\rangle - \frac{1}{4} \left\langle V_{\mu\nu} V^{\mu\nu} - 2 \mathring{M}_V^2 \left(V_{\mu} - \frac{i}{g} \Gamma_{\mu} \right) \left(V^{\mu} - \frac{i}{g} \Gamma^{\mu} \right) \right\rangle + g \left\langle \bar{B} \gamma_{\mu} [V^{\mu}, B] \right\rangle$$

- Vector mesons included as explicit degrees of freedom
 - ✓ One-vector meson exchange potential instead the Weinberg-Tomozawa term
 - ✓ Improve the ultraviolet behaviour without changing the low-energy physics

Time ordered diagrams

✓ Here, Dirac spinor is decomposed as $u_B(p,s) = u_0 + [u(p) - u_0] \equiv (0,1)^{\dagger} \chi_s$ +high order

Subtractive renormalization

Leading order potential as the sum of the one-baryon reducible and irreducible parts

 $V_{\rm LO} = V_I + V_R = V^{(a)} + V^{(b)} + V^{(d)} + V^{(c)}$

Leading order T-matrix

$$T_{\rm LO} = V_{\rm LO} + V_{\rm LO} G T_{\rm LO}.$$

$$T_I = V_I + V_I G T_I$$

$$T_R = V_R + V_R G (1 + T_I G) T_R$$

- Irreducible part: $T_I \xrightarrow{\Lambda \sim \infty}$ Finite
- Reducible part: $T_R \xrightarrow{\Lambda \sim \infty}$ Divergent

✓ Potential can be rewritten as separable form $V_R(p', p; E) = \xi^T(p') C(E) \xi(p)$ $\xi^T(q) := (1, q)$

 $T_{IO} = T_{I} + (1 + T_{I}G) T_{R} (1 + GT_{I})$

- ✓ T_R can be rewritten as $T_R(p', p; E) = \xi^T(p')\chi(E)\xi(p)$ $\chi(E) = [C^{-1} \xi G \xi^T \xi G T_I^S G \xi^T]^{-1}$ D.B.Kaplan, et al., NPB478, 629(1996); E. Epelbaum, et al., EPJA51, 71(2015)
- ✓ Using subtractive renormalization, replacing Green function $G^{Rn} = G(E) G(m_B)$ *E. Epelbaum, et al., EPJA56(2020)152* **Renormalized T-matrix**

$T_{\rm LO}^{Rn} = T_I + \left(\xi^T + T_I G^{Rn} \xi^T\right) \chi^{Rn}(E) \left(\xi + \xi G^{Rn} T_I\right)$

Subtractive renormalization

Leading order potential as the sum of the one-baryon reducible and irreducible parts

 $V_{\rm LO} = V_I + V_R = V^{(a)} + V^{(b)} + V^{(d)} + V^{(c)}$

Leading order T-matrix

$$T_{\rm LO} = V_{\rm LO} + V_{\rm LO} G T_{\rm LO}. \qquad \qquad T_I = V_I + V_I G T_I$$

• Irreducible part:
$$T_I \xrightarrow{\Lambda \sim \infty}$$

• Reducible part: $T_R \xrightarrow{\Lambda \sim \infty}$ Divergent

✓ Potential can be rewritten as separable form $V_R(p', p; E) = \xi^T(p') C(E) \xi(p)$

C(E): constant

 $\xi^T(q) := (1,q)$

 $T_{IO} = T_{I} + (1 + T_{I}G) T_{R} (1 + GT_{I})$

 $T_R = V_R + V_R G \left(1 + T_I G\right) T_R$

We can take cutoff to infinity and avoid introducing the cutoff dependence or subtraction constants!

Finite

Renormalized T-matrix

$$T_{\rm LO}^{Rn} = T_I + \left(\xi^T + T_I G^{Rn} \xi^T\right) \chi^{Rn}(E) \left(\xi + \xi G^{Rn} T_I\right)$$

Pion-Nucleon scattering

Description phase shifts of pion-nucleon scattering

- Rho-meson-exchange contribution is similar as WT term.
- Phase shifts from non-perturbative renormalized amplitude are only slightly different from the ones of the perturbative approach.

 \checkmark Our non-perturbative treatment is valid, since ChPT has good convergence in SU(2) sector

X.-L. Ren, E. Epelbaum, J. Gegelia and U.-G. Meißner, Eur. Phys. J. C80 (2020) 406

S=-1 meson-baryon scattering

□ Four coupled channel $\bar{K}N, \pi\Sigma, \eta\Lambda, K\Xi$

- Solving coupled-channel scattering equation in isospin basis
- Taking into account the off-shell effects of potential
- Using subtractive reormalization and taking cutoff to infinity to obtain the renormalized T-matrix

No free parameters needed to be fitted!

Two pole positions of $\Lambda(1405)$

- Varying the meson-decay constant, the width of lower pole is increasing and the higher pole lies close and moves beyond the threshold of $\bar{K}N$ channel, and its width decreases
- Our LO results are consistent with M.Mai EPJA(2015), in particular for the lower pole.

Coupling strengths for $\Lambda(1405)$

On-shell scattering T-matrix can be approximated by

$$T_{ij} \simeq 4\pi \frac{g_i \, g_j}{z - z_R}$$

• $g_i(g_j)$: coupling strength of the initial (final) transition channel

	lower pole		higher pole	
	g_i	$ g_i $	g_i	$ g_i $
$\pi\Sigma$	1.83 + i1.90	2.64	-0.38 + i0.84	0.92
$ar{K}N$	-1.59 - i1.47	2.17	2.16-i0.83	2.31
$\eta\Lambda$	-0.19 - i0.67	0.69	1.59 - i0.36	1.63
$K\Xi$	0.72 + i0.81	1.08	-0.10 + i0.34	0.35

- Two poles of Lambda(1405) have different coupling nature
 - ✓ the lower pole couples predominantly to the $\pi\Sigma$ channel
 - ✓ the higher pole couples strongly to the $\bar{K}N$ channel

KN scattering observables

Scattering length: constrained by scattering + SIDDHARTA kaonic deuterium data

M. Döring and U.-G. Meißner, Phys. Lett. B 704, 663 (2011).

Total cross section of K^-p

- Our LO prediction covers well $K^-p \rightarrow \pi^{\pm,0} \Sigma^{\pm,0}$ cross section
- slightly larger than the data of $K^-p \to K^-p, \pi^0 \Lambda$

Our LO prediction (isospin basis)

Isospin I=0

$$a_0 = -2.50 + i \, 1.37 \, \text{fm}$$

outside the allowed region

Isospin I=1

 $a_1 = 0.33 + i \, 0.72 \, \text{fm}$

within the allowed region

KN scattering observables

Scattering length: constrained by scattering + SIDDHARTA kaonic deuterium data

Next-to-leading order study

T-matrix at NLO:

 $T = T_{\rm LO} + T_{\rm NLO} \qquad T_{\rm LO} = V_{\rm LO} + V_{\rm LO} G T_{\rm LO}$

17

 NLO correction is perturbatively included to maintain the scattering T-matrix renormalizable

 $T_{\rm NLO} = V_{\rm NLO} + T_{\rm LO}GV_{\rm NLO} + V_{\rm NLO}GT_{\rm LO} + T_{\rm LO}GV_{\rm NLO}GT_{\rm LO}$

Solving the T-matrix in the particle basis

- S=-1 sector, 10 coupled channels: $K^-p, \bar{K}^0n, \pi^0\Lambda, \pi^0\Sigma^0, \pi^+\Sigma^-, \pi^-\Sigma^+, \eta\Lambda, \eta\Sigma^0, K^+\Xi^-, K^0\Xi^0$
- Describe the scattering cross section, decay ratios, the energy shift and width of kaonic hydrogen from SIDDHARTA

Next-to-leading order study

T-matrix at NLO:

 $T = T_{\rm LO} + T_{\rm NLO} \qquad T_{\rm LO} = V_{\rm LO} + V_{\rm LO} G T_{\rm LO}$

17

:ft

Stay Tuned !

 NLO correction is perturbatively included to maintain the scattering T-matrix renormalizable

 $T_{\rm NLO} = V_{\rm NLO} + T_{\rm LO}GV_{\rm NLO} + V_{\rm NLO}GT_{\rm LO} + T_{\rm LO}GV_{\rm NLO}GT_{\rm LO}$

Solving the T-matrix in the particle basis

- S=-1 sector, 10 coupled channels: $K^-p, \bar{K}^0n, \pi^0\Lambda, \pi^0\Sigma^0, \pi^+\Sigma^-, \pi^-\Sigma^+, \eta\Lambda, \eta\Sigma^0, K^+\Xi^-, K^0\Xi^0$
- Describe the scattering cross section, decay ratios, and width of kaonic hydrogen from SIDDHARTA

Summary

- We tentatively propose a renormalized framework for mesonbaryon scattering using time-ordered perturbation theory with the covariant chiral Lagrangians
 - Take into account the off-shell effects of potential
 - Use subtractive renormalization to obtain renormalized T-matrix
 ✓ This avoids to introduce the cutoff dependence or subtraction parameters
 - Apply to πN scattering and extend to the S=-1 sector at LO
 - Obtain the two-pole structure of $\Lambda(1405)$

Next-leading order study is in progress

Summary

- We tentatively propose a renormalized framework for mesonbaryon scattering using time-ordered perturbation theory with the covariant chiral Lagrangians
 - Take into account the off-shell effects of potential
 - Use subtractive renormalization to obtain renormalized T-matrix
 ✓ This avoids to introduce the cutoff dependence or subtraction parameters
 - Apply to πN scattering and extend to the S=-1 sector at LO
 - Obtain the two-pole structure of $\Lambda(1405)$

Next-leading order study is in progress