Strange Hadron Spectroscopy with the KLong Facility at Jefferson Lab

Sean Dobbs

Florida State U. (for the KLF Collaboration)

19th International Conference on Hadron Spectroscopy and Structure (HADRON 2021) July 30, 2021

Strange Quarks and Hadron Spectroscopy

- Rich spectrum of *uds* baryons expected
- Study of properties with # of strange-quarks gives insight into baryon interactions, d.o.f.
- Important input to high-density/temperature hadron physics
- Many more states expected than observed!

	PDG 2004	PDG 2020	LQCD
N*	15	21	62
Δ	10	12	38
٨	14	14	71
Σ	10	9	66
Ξ	6	6	73
Ω	2	2	36

[PDG 3* & 4* states]

How can we produce hyperons?

Photoproduction

How can we produce hyperons?

How can we produce hyperons?

- Kaon beams allow for high-statistics production of strange quark hadrons
- K_L beam provides unique data for spectroscopy

KLF: Hall D @ Jefferson Lab

- The K_L beam Facility is located in Hall D at Jefferson Lab
 - Approved for 200 days of running [proposal: arXiv:2008.08215]
 - Tertiary beam:
 electrons → photons → K_L
 - Uses GlueX large acceptance solenoidal spectrometer

12 GeV e⁻ beam @ 5 μA with
 64 ns bunch spacing from CEBAF

- 12 GeV e⁻ beam @ 5 μA with
 64 ns bunch spacing from CEBAF
- Compact Photon Source (CPS) provides intense, untagged y beam
- Beryllium K_L production target yields ~10⁴ K_L / second

K_L Beam Properties

- Flux of ~ 10^4 K_L/s with E $\approx 1-9$ GeV
 - ~10³ times previous SLAC K_L beam measurements
- Beam momentum (or c.m.e. W) measured through TOF or exclusive final state reconstruction

Example: Σ* **Production**

- Focus on 2-body final states
 - Proton target: only Σ^*
 - $K_L p \to K_S p$
 - $K_L p \rightarrow \pi^+ \Lambda$
 - $K_L p \rightarrow K^+ \Xi^0$
 - $K_L p \to \pi^0 \Sigma^+$
 - $K_L p \to \eta \Sigma^+$
 - $K_L p \to \omega \Sigma^+$
 - Neutron target: Λ^* and Σ^*

Example: Σ* **Production**

- Focus on 2-body final states
 - Proton target: only Σ*
 - $K_L p \to K_S p$
 - $K_L p \to \pi^+ \Lambda$
 - $K_L p \to K^+ \Xi^0$
 - $K_L p \to \pi^0 \Sigma^+$
 - $K_L p \to \eta \Sigma^+$
 - $K_L p \to \omega \Sigma^+$
 - Neutron target: Λ* and Σ*
- Exclusive final states reconstructed well in GlueX spectrometer
- KLF will provide precision cross section measurements

KLF: Partial Wave Analysis

- To identify resonance contributions, we must perform a coupledchanneled PWA to extract spin-parity and pole positions
- Inputs: $d\sigma/d\Omega$, hyperon self-polarization from decay

KLF: Σ* **Expectations**

- Psuedodata for $K_L p \to K^+ \Xi^0$ with 2 Σ^* states
 - $\Sigma * (5^{-}/2)$: $M = 1.94 \text{ GeV}, \Gamma = 0.35 \text{ GeV}$
 - $\Sigma * (7^+/2)$: $M = 1.94 \text{ GeV}, \Gamma = 0.4 \text{ GeV}$
- Projected uncertainties for $d\sigma/d\Omega$ and P [100 days on proton target]

KLF: Σ* Expectations

Isospin Amplitudes in $\pi\Lambda$ / $\pi\Sigma$

- K_L production of πΛ / πΣ has different isospin amplitudes than with K⁻
 - Complementary measurement provides key data!
- Example BnGn prediction with and without 3 new Σ* states

$$|A(K^{-}p)|^{2} = \frac{1}{2}(|A_{1}|^{2} + |A_{0}|^{2} + 2Re(A_{1}A_{0}^{*}))$$
$$|A(K^{0}n)|^{2} = \frac{1}{2}(|A_{1}|^{2} + |A_{0}|^{2} - 2Re(A_{1}A_{0}^{*}))$$

 $|A(K^{0}p)|^{2} = |A_{1}|^{2}$

Example: Ξ^* **Production**

- Most of our knowledge of Ξ spectrum comes from K^- beam experiments in the 60s–80s, with little new until recently
- KLF can search for many decay channels:

•
$$\Xi^* \to \Lambda K$$
 • $\Xi^* \to \Xi \omega$

• $\Xi^* \to \Xi \pi$

KLF Projections: $K_L n \to K^+ \Xi^{*-}, \ \Xi^{-*} \to \Lambda K^-$

Strange meson spectroscopy

- Again, most knowledge of kaon spectrum comes from older kaon beam experiments
 - More recent insight from e.g. PWA of decays from charm quark hadrons
- High-statistics KLF data gives additional insight
 - Unique access to high mass/spin states
 - Study of scalar $K\pi$ system

<u>×1</u>0³

 $K_L p \to K^{\pm} \pi^{\mp} p$

Example: $K\pi$ S-wave

- Study $K\pi$ scattering in several different final states to extract S-wave isospin components
 - Additional input to dispersive analyses of $\kappa/K^*(700)$ properties, especially at low mass/*t*
 - Challenges: requires K_L detection and detailed reaction models
 - $K_L p \to K_L \pi^0 p$ $K_L p \to K^+ \pi^0 n$
 - $K_L p \to K^{\pm} \pi^{\mp} p$ $K_L p \to K^- \pi^0 \Delta^{++}$
 - $K_L p \to K_{(L,S)} \pi^+ n$ $K_L p \to K_{(L,S)} \pi^- \Delta^{++}$

Summary

- The K_L beam facility in Hall D at JLab has been approved to run for 200 days and will provide a set of unique, high-statistics data
- Cross sections and polarization measurements will allow detailed study of the hyperon spectrum
- Many other possible topics:
 - Neutron-induced reactions
 - Hyperon decays
 - Exotic hadrons
- Technical design of hardware components and simulation studies on-going
- Approved Hall D photon beam program through ~2025

New Collaborators welcome! More information: https://wiki.jlab.org/klproject

Σ(1920) 5/2 σ [mb] 0.06 0.04 0.02 1800 1900 2000 2100 W [MeV] $\Xi - 391$ Ξ* sensitivity K V E*(2030) 10^{-1} E*(1820) 50 200 100 150 $\frac{5^{+}}{2}$ $\frac{1^{-}}{2}$ $\frac{3^{-}}{2}$ $\frac{5^{-}}{2}$ $\frac{7^{-}}{2}$ $\frac{3^{+}}{2}$ $\frac{7^{+}}{2}$ length of experiment [days]

23