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The level scheme of meson states containing a minimal quark content of cc. The name of
a state is determined by its quantum numbers IGJPC (see the review “Naming Scheme
for Hadrons”). States with unestablished quantum numbers are called X and are drawn
according to our best estimate of their likely JPC . States included in the Summary
Tables are shown with solid lines; selected states not in the Summary Tables, but with
assigned quantum numbers, are shown with dotted lines. The arrows indicate the most
dominant hadronic transitions. Single photon transitions, including ψ(nS) → γηc(mS),
ψ(nS) → γχcJ(1P ), and χcJ (1P ) → γJ/ψ, are omitted for clarity. For orientation, the
location of the thresholds related to a pair of ground state open charm mesons is indicated
in the figure.
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? Rich spectrum of states J = 0− 3, further states being discovered: quark model and
non-quark model states (exotics, q̄qc̄c, c̄cg).

? Theoretical interest in the internal structure of exotics: compact diquark-anti-diquark
states, mesonic molecules, hadro-quarkonia, . . . .

? [Piemonte et al.,1905.03506]: Focus on conventional states JPC = 1−− near DD →
demonstration of methods (3−− also considered).

? [Prelovsek et al.,2011.02542]: Focus on less well explored 0++ channel up to 4.1 GeV
including possible non-conventional states (2++ also considered).
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Challenges and simplifications
Only one previous lattice calculations near/above threshold in I = 0 channel which
takes into account strong decay [Lang, Leskovec, Mohler, Prelovsek,1503.05363]
(vector and scalar channels studied).

(Investigation of Zc (3900) by [CLQCD,1907.03371] and [HALQCD,1602.03465,1706.07300]
(using a potential approach).)

Challenges:
? Dense spectrum of states: a number states with same/different JPC in a

narrow energy region.
? Depending on the state of interest, multiple two-particle and three-particle

decay channels are open.
? Technical challenges: signal (need to determine ground state and high tower

of excited states), spin identification (reduced symmetry on the lattice), . . .
? Lattice: relation of finite volume spectrum to infinite volume scattering

information is not straightforward.

Simplifications:
? Only “main” two-particle decay channels/nearby thresholds considered. Single

lattice spacing, unphysical light quark masses, . . .
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Lattice details
Coordinated lattice simulations ensembles [CLS,1411.3982], Nf = 2 + 1, isospin
limit mu = md = m`.

Single lattice spacing: a = 0.086 fm. Discretisation effects O(a2m2
c).

Flavour average quark mass 2m` + ms = constant as physical point approached →
mπ > mphys

π , mK < mphys
K .

DD and DsDs thresholds are closer together than in experiment.

κc = 0.12315 κc = 0.12522 Expt. D̄0D0/D+D−
mD [MeV] 1927(2) 1762(2) m̄D ' 1867 MeV
mDs [MeV] 1981(1) 1818(1) 1968.34(7)
Mav [MeV] 3103(3) 2820(3) 3068.6(2)
mπ [MeV] 280 280 m̄π ' 137 MeV
mK [MeV] 467 467 m̄K ' 494 MeV

Mav = 1
4 (3mJ/ψ + mηc ), amc = 1

2 ( 1
κc
− 1

κcrit
). Two values of mc & mphys

c (κc).

Two spatial volumes L = 24a, L = 32a. Only statistical uncertainty will be
quantified.

4 / 20



Lattice details
Determine finite volume (FV) spectrum in energy region of interest.

Compute two-point correlation functions

Cij (t) = 〈Oi (t)O†j (0)〉 =
∑

n

1
2En

Z i
nZ j∗

n e−Ent

Construct Oi with definite lattice symmetry Λ → tower of states with different
JPC (in the continuum limit). State at rest: e.g. Λ = A1 → J = 0, 4, . . ., P = ±.

Reliable isolation of En for many n requires single (c̄Γc) and multi-particle
(c̄Γ1qq̄Γ2c, c̄Γ1cq̄Γ2q) Oi .

Use methods of [HSC,1004.4930,1107.1930] to ensure Oi has a good overlap with
specific JP .

Spin-identification [M. Padamanath et al.,1811.04116] is based on overlap factors
Z i

n = 〈0|Oi |n〉.

Additional information provided by projecting to finite momentum. Symmetry
further reduced, P no longer a good QN. State with ~p = 2π

L (0, 0, 1), A1 (Dic4)
→ 0+, 1−, 2+, 3−, 4±, . . ..
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From FV energies to infinite volume scattering information
Quantisation condition see e.g. [Briceño,1401.3312] and [Hansen and Sharpe,1204.0826].
Scattering of spin-less particles: determinant equation for each Ecm.

det
[
K̃−1
`,ij (Ecm)δ``′ − B~P,Λ`′` (Ecm)δij

]
= 0

Infinite volume: K̃−1
`,ij (Ecm) related to the t-matrix

(t−1)ij = 2
Ecm pl

i pl
j

(K̃−1)ij − i ρi δij , ρi ≡ 2pi/Ecm =
√

1− (2mi )2/E 2
cm

Finite volume: known “box” functions B~P,Λ`′` (Ecm), see [Morningstar et al.,1707.05817].
Reduced lattice symmetry (irrep Λ) → off-diagonal entries in partial wave indices
`, `′.

Straightforward for one-channel scattering with single `: K̃−1
` (Ecm) = B~P,Λ`` (Ecm).

For coupled channel scattering: e.g. single `, i , j = 1, 2, relation between K̃−1
11 ,

K̃−1
12 , K̃−1

22 for each Ecm → under constrained problem.

Parameterise K̃−1
` (Ecm), χ2 minimisation, then search for poles in t-matrix.

Utilise multiple ~P, L, Λ with TwoHadronsInBox package [Morningstar et al.,1707.05817].
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Warm-up: 1−− and 3−− charmonia
Interested in ψ(3770), JPC = 1−−.

Only consider DD scattering: branching ratio Br(ψ(3770)→ DD) = 93± 9%.

Quantisation condition, scattering of spinless particles:

det
[
K̃−1
` (Ecm)δ``′ − B~P,Λ`′` (Ecm)

]
= 0

Scattering of particles with equal masses: partial waves ` = 1, 3, . . .

J = ` → determine FV spectrum for JPC = 1−− and 3−−.

Interested in capturing energy region including ψ(2S) and ψ(3770) ⇒ double pole
parameterisation for ` = 1.

K̃−1
`=1(Ecm) = p3 cot(δ1)√

s
=
(

G2
1

m2
1 − s + G2

2
m2

2 − s

)−1

s = E 2
cm

Single pole form for ` = 3:

K̃−1
`=3(Ecm) = p7 cot(δ3)√

s
= m2

3 − s
g2

3

Other parameterisations also explored.
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1−− and 3−− charmonia: finite volume spectrum
Energies given in lattice units. Two spatial volumes L = 24a, 32a, |~P|2 = 0, 1, 2,
~p = 2π

L
~P. [Piemonte et al.,1905.03506]
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Data points are naive ψ(2S) energy levels (blue), charmonia with JPC = 1−− and
DD (red), levels identified as JPC = 3−− (green).
Analysis performed with and without 3−− states.
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1−− and 3−− charmonia
[Piemonte et al.,1905.03506]
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Shown: only considering ` = 1, results for smaller mc (larger κc).

Right: (red) central values of double pole fit.
(Blue/yellow) bound/virtual bound state condition: p3 cot(δ1) = (−)(p2)

√
−p2

Obtain: bound state and resonance.

Larger mc (smaller κc): two bound states.
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1−− and 3−− charmonia: final spectrum
Consistent results obtained when ` = 3 (3−− states) included in the analysis.
` = 3 has neglible influence on extraction of ψ(3770).

[Piemonte et al.,1905.03506]

m relative to
Mav = 1

4 (3mJ/ψ + mηc ):

m = mlatt −Mlat
av + Mexp

av .

Statistical errors only.
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Left: Coupling of ψ(3770): g = 16(+2.1
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m3−− compatible with X(3842) [LHCb,1903.12240].

10 / 20



0++ and 2++ charmonia
Interested in 0++ channel in ∼ 3.7− 4.1 GeV energy region.

Consider DD and DsDs thresholds (J/ψω and ηηc omitted).

Quantisation condition, coupled channel scattering of spinless particles:

det
[
K̃−1
`,ij (Ecm)δ``′ − B~P,Λ`′`,i (Ecm)δij

]
= 0 ` = 0, 2, . . .

s = E 2
cm[

DD → DD DD → DsDs
DsDs → DD DsDs → DsDs

] K̃−1
`,ij (s)
√

s
=
[

a11 + b11s a12
a12 a22 + b22s

]
Piecewise analysis of the energy region:

I 0++ channel close to DD threshold: ` = 0, ignore coupling to DsDs .
I 2++ channel around first resonance (χc2(3930)): ` = 2, ignore coupling to

DsDs .
I 0++ channel Ecm ∼ 3.93− 4.13 GeV: coupled channel analysis with ` = 2

(fixed from single channel analysis).
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0++ and 2++ charmonia: finite volume spectrum
[Prelovsek et al.,2011.02542]: Larger mc (smaller κc). Ecm,n =

√
E 2

n − ~p2, ~p = 2π
L
~P.

~P2 = 0, 1, 2, two spatial volumes L = 24a, 32a.
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Light blue data points: JPC = 2++ and 2−+.
Bold red lines DD non-interactng energies and green lines for DsDs .
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0++ charmonia: (low) energy region close to DD threshold

[Prelovsek et al.,2011.02542]
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Left: DD scattering in s-wave, K̃−1
`=0,11(s)
√

s = a11 + b11s. Equivalent to effective range
expansion.

t−1 = 2
Ecmp2` K̃−1 − i 2p

Ecm
. Right: pole in the t-matrix.

Bound state just below threshold, m − 2mD = −4+3.7
−5.0 MeV. Statistical errors only.

Middle: number of DD events seen in expt. ∝ ρ|t|2, ρ = 2p/Ecm. Peak in number
of events above threshold.
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Shallow 0++ bound state

Not observed as yet in experiment.

Resampling of data to estimate statistical uncertainty, small number of samples
give a virtual bound state.

Not clear if this state would also feature in a simulation with mπ = mphys
π ,

mK = mphys
K .

Phenomenological models: shallow bound state suggested in [Gammermann et
al.,hep-ph/0612179].
Discussion of experimental evidence in [Gamermann and Oset,0712.1758].

In a molecular picture, using heavy quark symmetry arguments, a 0++ partner to
the X (3872) is expected [Hildago Duque et al.,1305.4487], [Baru et al.,1605.09649].
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2++ charmonia: DD scattering with l = 2
[Prelovsek et al.,2011.02542]
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Left: DD scattering in d-wave, K̃−1
`=2,11(s)
√

s = a11 + b11s = m2−s
g2 . Breit-Wigner form.

t−1 = 2
Ecmp2` K̃−1 − i 2p

Ecm
. Right: pole in the t-matrix.

Resonance, m −Mav = 905+14
−22 MeV, g = 4.5+0.7

−1.5 GeV−1 (statistical errors
only).
Expt. χc2(3930): m −Mav = 854± 1 MeV, g = 2.65± 0.12 GeV−1.

Middle: number of DD events seen in expt. ∝ ρ|t|2, ρ = 2p/Ecm.
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0++ charmonia: coupled channel scattering around DsDs
threshold
Two states found. a12 small.

[Prelovsek et al.,2011.02542]
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Narrow resonance close to DsDs threshold (weakly
coupled to DD). (statistical errors only)
m − 2mDs = −0.2+0.16

−4.9 MeV, g = 0.10+0.21
−0.03 GeV−1.

Expt. χc0(3930):
m−2mDs = −12.9±1.6 MeV, g = 0.67±0.10 GeV−1.
Expt. X(3915):
m−2mDs = −18.3±1.9 MeV, g = 0.72±0.10 GeV−1.

[Polosa and Lebed,1602.08421]: proposed X(3915) to
be a cc̄ s̄s state. See also e.g. [Liu et al.,2103.12425].
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0++ charmonia: coupled channel scattering around DsDs
threshold
Two states found.

[Prelovsek et al.,2011.02542]
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0++ charmonia: coupled channel scattering around DsDs
threshold
Two states found.

[Prelovsek et al.,2011.02542]
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Narrow resonance gives rise to dip in DD → DD events
and sharp rise in DsDs → DsDs and DD → DsDs
above 2mDs .

Broad resonance gives peak in DD → DD.
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0++ and 2++ charmonia: final spectrum

Unphysical quark masses used in the
simulation.

Middle: mass = m − E ref + E ref
exp.

E ref = 2mD for 0++ (pink) bound state.

E ref = 2mDs for 0++ narrow resonance.

E ref = Mav = 1
4 (3mJ/ψ + mηc ) for oth-

ers (pink and blue).

[Prelovsek et al.,2011.02542]
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Blue crosses: χc0(1P) and χc2(1P) extracted from FV energies.

JPC = 0++, X (3915) and χc0(3930) may be the same state.

19 / 20



Summary
Presented an investigation of vector and scalar charmonia.

? A number of simplifications are made (the thresholds considered, unphysical
quark masses, single lattice spacing).

? These simplifications can be removed in future work.
? Only statistical uncertainty quantified: qualitative comparison with

experiment.
? Vector channel around DD threshold: demonstration of methods.

I Smaller mc set: m and g for ψ(3770) consistent with experiment (and
JPC = 3−− with mass consistent with X(3842)).

? Scalar channel around DD to above DsDs :
I State just below DD threshold, not yet observed in experiment.
I Narrow resonance just below DsDs which may be related to

X(3915)/χc0(3930).
I Broad resonance which may be related to X(3860).
I (JPC = 2++ similar to χc2(3930))

? Consider additional channels in the future.

20 / 20


