Charmonium-like resonances in $D\overline{D}$ scattering

Sara Collins University of Regensburg

In collaboration with: D. Mohler, M. Padmanath, S. Piemonte, S. Prelovsek.

See [M. Padamanath et al.,1811.04116], [Piemonte et al.,1905.03506] and [Prelovsek et al.,2011.02542] for more details.

Hadron 2021, July 30th

Overview

[PDG,(2019)]

- ★ Rich spectrum of states J = 0 3, further states being discovered: quark model and non-quark model states (exotics, $\bar{q}q\bar{c}c$, $\bar{c}cg$).
- ★ Theoretical interest in the internal structure of exotics: compact diquark-anti-diquark states, mesonic molecules, hadro-quarkonia,
- ★ [Piemonte et al.,1905.03506]: Focus on conventional states $J^{PC} = 1^{--}$ near $D\overline{D} \rightarrow$ demonstration of methods (3⁻⁻ also considered).
- ★ [Prelovsek et al.,2011.02542]: Focus on less well explored 0⁺⁺ channel up to 4.1 GeV including possible non-conventional states (2⁺⁺ also considered).

Challenges and simplifications

Only one previous lattice calculations near/above threshold in I = 0 channel which takes into account strong decay [Lang, Leskovec, Mohler, Prelovsek, 1503.05363] (vector and scalar channels studied).

(Investigation of $Z_c(3900)$ by [CLQCD,1907.03371] and [HALQCD,1602.03465,1706.07300] (using a potential approach).)

Challenges:

- ★ Dense spectrum of states: a number states with same/different J^{PC} in a narrow energy region.
- ★ Depending on the state of interest, multiple two-particle and three-particle decay channels are open.
- ★ Technical challenges: signal (need to determine ground state and high tower of excited states), spin identification (reduced symmetry on the lattice),
- ★ Lattice: relation of finite volume spectrum to infinite volume scattering information is not straightforward.

Simplifications:

★ Only "main" two-particle decay channels/nearby thresholds considered. Single lattice spacing, unphysical light quark masses, . . .

Lattice details

Coordinated lattice simulations ensembles [CLS,1411.3982], $N_f = 2 + 1$, isospin limit $m_u = m_d = m_\ell$.

Single lattice spacing: a = 0.086 fm. Discretisation effects $O(a^2 m_c^2)$.

Flavour average quark mass $2m_{\ell} + m_s = \text{constant}$ as physical point approached $\rightarrow m_{\pi} > m_{\pi}^{phys}$, $m_K < m_K^{phys}$.

 $D\overline{D}$ and $D_s\overline{D}_s$ thresholds are closer together than in experiment.

	$\kappa_{c} = 0.12315$	$\kappa_{c} = 0.12522$	Expt. $\overline{D}^0 D^0 / D^+ D^-$
m_D [MeV]	1927(2)	1762(2)	$ar{m}_D\simeq 1867{ m MeV}$
m _{Ds} [MeV]	1981(1)	1818(1)	1968.34(7)
$M_{ m av}$ [MeV]	3103(3)	2820(3)	3068.6(2)
m_{π} [MeV]	280	280	$ar{m}_\pi \simeq 137{ m MeV}$
$m_K [\text{MeV}]$	467	467	$ar{m}_K \simeq$ 494 MeV

 $M_{
m av}=rac{1}{4}(3m_{J/\psi}+m_{\eta_c})$, $am_c=rac{1}{2}(rac{1}{\kappa_c}-rac{1}{\kappa_{crit}})$. Two values of $m_c\gtrsim m_c^{phys}$ (κ_c) .

Two spatial volumes L = 24a, L = 32a. Only statistical uncertainty will be quantified.

Lattice details

Determine finite volume (FV) spectrum in energy region of interest.

Compute two-point correlation functions

$$\mathcal{C}_{ij}(t) = \langle O_i(t)O_j^{\dagger}(0)
angle = \sum_n rac{1}{2E_n} Z_n^i Z_n^{j*} e^{-E_n t}$$

Construct O_i with definite lattice symmetry $\Lambda \to \text{tower of states with different} J^{PC}$ (in the continuum limit). State at rest: e.g. $\Lambda = A_1 \to J = 0, 4, ..., P = \pm$.

Reliable isolation of E_n for many *n* requires single $(\bar{c}\Gamma c)$ and multi-particle $(\bar{c}\Gamma_1 q\bar{q}\Gamma_2 c, \bar{c}\Gamma_1 c\bar{q}\Gamma_2 q) O_i$.

Use methods of [HSC,1004.4930,1107.1930] to ensure O_i has a good overlap with specific J^P .

Spin-identification [M. Padamanath et al.,1811.04116] is based on overlap factors $Z_n^i = \langle 0|O_i|n \rangle$.

Additional information provided by projecting to finite momentum. Symmetry further reduced, *P* no longer a good QN. State with $\vec{p} = \frac{2\pi}{L}(0,0,1)$, A_1 (Dic₄) $\rightarrow 0^+, 1^-, 2^+, 3^-, 4^{\pm}, \dots$

From FV energies to infinite volume scattering information Quantisation condition see e.g. [Briceño,1401.3312] and [Hansen and Sharpe,1204.0826]. Scattering of spin-less particles: determinant equation for each E_{cm} .

$$\det\left[\tilde{K}_{\ell,ij}^{-1}(E_{cm})\delta_{\ell\ell'}-B_{\ell'\ell}^{\vec{P},\Lambda}(E_{cm})\delta_{ij}\right]=0$$

Infinite volume: $\tilde{K}_{\ell,ij}^{-1}(E_{cm})$ related to the *t*-matrix

$$(t^{-1})_{ij} = rac{2}{E_{cm} \ p_i' p_j'} \ (ilde{\kappa}^{-1})_{ij} - i \
ho_i \ \delta_{ij} \ , \qquad
ho_i \qquad \equiv 2p_i/E_{cm} = \sqrt{1 - (2m_i)^2/E_{cm}^2}$$

Finite volume: known "box" functions $B_{\ell'\ell}^{\vec{P},\Lambda}(E_{cm})$, see [Morningstar et al.,1707.05817]. Reduced lattice symmetry (irrep Λ) \rightarrow off-diagonal entries in partial wave indices ℓ , ℓ' .

Straightforward for one-channel scattering with single ℓ : $\tilde{K}_{\ell}^{-1}(E_{cm}) = B_{\ell\ell}^{\vec{P},\Lambda}(E_{cm})$.

For coupled channel scattering: e.g. single ℓ , i, j = 1, 2, relation between \tilde{K}_{11}^{-1} , \tilde{K}_{12}^{-1} , \tilde{K}_{22}^{-1} for each $E_{cm} \rightarrow$ under constrained problem.

Parameterise $\tilde{K}_{\ell}^{-1}(E_{cm})$, χ^2 minimisation, then search for poles in *t*-matrix. Utilise multiple \vec{P} , *L*, Λ with TwoHadronsInBox package [Morningstar et al.,1707.05817]. Warm-up: 1^{--} and 3^{--} charmonia Interested in $\psi(3770)$, $J^{PC} = 1^{--}$.

Only consider $D\overline{D}$ scattering: branching ratio $Br(\psi(3770) \rightarrow D\overline{D}) = 93 \pm 9\%$. Quantisation condition, scattering of spinless particles:

$$\det \left[\tilde{K}_{\ell}^{-1}(E_{cm}) \delta_{\ell \ell'} - B_{\ell' \ell}^{\vec{P}, \Lambda}(E_{cm}) \right] = 0$$

Scattering of particles with equal masses: partial waves $\ell=1,3,\ldots$

 $J = \ell \rightarrow$ determine FV spectrum for $J^{PC} = 1^{--}$ and 3^{--} .

Interested in capturing energy region including $\psi(2S)$ and $\psi(3770) \Rightarrow$ double pole parameterisation for $\ell = 1$.

$$ilde{K}_{\ell=1}^{-1}(E_{cm}) = rac{p^3\cot(\delta_1)}{\sqrt{s}} = \left(rac{G_1^2}{m_1^2 - s} + rac{G_2^2}{m_2^2 - s}
ight)^{-1} \qquad s = E_{cm}^2$$

Single pole form for $\ell = 3$:

$$ilde{K}_{\ell=3}^{-1}(E_{cm}) = rac{p^7\cot(\delta_3)}{\sqrt{s}} = rac{m_3^2-s}{g_3^2}$$

Other parameterisations also explored.

1⁻⁻ and 3⁻⁻ charmonia: finite volume spectrum Energies given in lattice units. Two spatial volumes $L = 24a, 32a, |\vec{P}|^2 = 0, 1, 2, \vec{p} = \frac{2\pi}{L}\vec{P}$. [Piemonte et al.,1905.03506]

Data points are naive $\psi(2S)$ energy levels (blue), charmonia with $J^{PC} = 1^{--}$ and $D\overline{D}$ (red), levels identified as $J^{PC} = 3^{--}$ (green). Analysis performed with and without 3^{--} states.

1^{--} and 3^{--} charmonia

Shown: only considering $\ell = 1$, results for smaller m_c (larger κ_c).

Right: (red) central values of double pole fit.

(Blue/yellow) bound/virtual bound state condition: $p^3 \cot(\delta_1) = (-)(p^2)\sqrt{-p^2}$ Obtain: bound state and resonance.

Larger m_c (smaller κ_c): two bound states.

[Piemonte et al., 1905.03506]

1^{--} and 3^{--} charmonia: final spectrum

Consistent results obtained when $\ell = 3$ (3⁻⁻ states) included in the analysis. $\ell = 3$ has neglible influence on extraction of $\psi(3770)$.

Left: Coupling of $\psi(3770)$: $g = 16\binom{+2.1}{-0.2}$ consistent with $g^{\exp} = 18.7$, $\Gamma = g^2 \rho^3 / (6\pi s)$. $m_{3^{--}}$ compatible with X(3842) [LHCb,1903.12240].

0^{++} and 2^{++} charmonia

Interested in 0⁺⁺ channel in $\sim 3.7-4.1$ GeV energy region.

Consider $D\overline{D}$ and $D_s\overline{D}_s$ thresholds $(J/\psi\omega \text{ and } \eta\eta_c \text{ omitted})$.

Quantisation condition, coupled channel scattering of spinless particles:

$$\det\left[\tilde{\mathcal{K}}_{\ell,ij}^{-1}(\mathcal{E}_{cm})\delta_{\ell\ell'}-B_{\ell'\ell,i}^{\vec{P},\Lambda}(\mathcal{E}_{cm})\delta_{ij}\right]=0\qquad \ell=0,2,\ldots$$

 $s = E_{cm}^2$

$$\begin{bmatrix} D\overline{D} \to D\overline{D} & D\overline{D} \to D_s\overline{D}_s \\ D_s\overline{D}_s \to D\overline{D} & D_s\overline{D}_s \to D_s\overline{D}_s \end{bmatrix} \qquad \frac{\tilde{K}_{\ell,ij}^{-1}(s)}{\sqrt{s}} = \begin{bmatrix} a_{11} + b_{11}s & a_{12} \\ a_{12} & a_{22} + b_{22}s \end{bmatrix}$$

Piecewise analysis of the energy region:

- ▶ 0⁺⁺ channel close to $D\overline{D}$ threshold: $\ell = 0$, ignore coupling to $D_s\overline{D}_s$.
- ▶ 2⁺⁺ channel around first resonance ($\chi_{c2}(3930)$): $\ell = 2$, ignore coupling to $D_s \overline{D}_s$.
- ▶ 0⁺⁺ channel $E_{cm} \sim 3.93 4.13$ GeV: coupled channel analysis with $\ell = 2$ (fixed from single channel analysis).

0⁺⁺ and 2⁺⁺ charmonia: finite volume spectrum [Prelovsek et al.,2011.02542]: Larger m_c (smaller κ_c). $E_{cm,n} = \sqrt{E_n^2 - \vec{p}^2}$, $\vec{p} = \frac{2\pi}{L}\vec{P}$. $\vec{P}^2 = 0, 1, 2$, two spatial volumes L = 24a, 32a.

Black and dark blue data points: $J^{PC} = 0^{++}$. Light blue data points: $J^{PC} = 2^{++}$ and 2^{-+} . Bold red lines $D\overline{D}$ non-interacting energies and green lines for $D_s\overline{D}_s$.

0^{++} charmonia: (low) energy region close to $D\overline{D}$ threshold

Left: $D\overline{D}$ scattering in *s*-wave, $\frac{\tilde{\kappa}_{\ell=0,11}^{-1}(s)}{\sqrt{s}} = a_{11} + b_{11}s$. Equivalent to effective range expansion.

 $t^{-1} = \frac{2}{E_{cm}p^{2\ell}} \tilde{K}^{-1} - i \frac{2p}{E_{cm}}$. Right: pole in the *t*-matrix.

Bound state just below threshold, $m - 2m_D = -4^{+3.7}_{-5.0}$ MeV. Statistical errors only. Middle: number of $D\overline{D}$ events seen in expt. $\propto \rho |t|^2$, $\rho = 2p/E_{cm}$. Peak in number of events above threshold.

Shallow 0^{++} bound state

Not observed as yet in experiment.

Resampling of data to estimate statistical uncertainty, small number of samples give a virtual bound state.

Not clear if this state would also feature in a simulation with $m_{\pi} = m_{\pi}^{phys}$, $m_{K} = m_{K}^{phys}$.

 $\label{eq:phenomenological models: shallow bound state suggested in [Gammermann et al., hep-ph/0612179].$

Discussion of experimental evidence in [Gamermann and Oset,0712.1758].

In a molecular picture, using heavy quark symmetry arguments, a 0^{++} partner to the X(3872) is expected [Hildago Duque et al.,1305.4487], [Baru et al.,1605.09649].

2^{++} charmonia: $D\overline{D}$ scattering with I = 2

Left: $D\overline{D}$ scattering in *d*-wave, $\frac{\tilde{K}_{l=2,11}^{-}(s)}{\sqrt{s}} = a_{11} + b_{11}s = \frac{m^2-s}{g^2}$. Breit-Wigner form. $t^{-1} = \frac{2}{E_{cm}p^{2\ell}}\tilde{K}^{-1} - i\frac{2p}{E_{cm}}$. Right: pole in the *t*-matrix. Resonance, $m - M_{av} = 905^{+14}_{-22}$ MeV, $g = 4.5^{+0.7}_{-1.5}$ GeV⁻¹ (statistical errors only).

Expt. $\chi_{c2}(3930)$: $m - M_{av} = 854 \pm 1$ MeV, $g = 2.65 \pm 0.12$ GeV⁻¹.

Middle: number of $D\overline{D}$ events seen in expt. $\propto \rho |t|^2$, $\rho = 2p/E_{cm}$.

0^{++} charmonia: coupled channel scattering around $D_s \overline{D}_s$ threshold

Two states found. a_{12} small.

0^{++} charmonia: coupled channel scattering around $D_s \overline{D}_s$ threshold

Two states found.

Re(Ecm) [GeV]

0^{++} charmonia: coupled channel scattering around $D_s \overline{D}_s$ threshold

Two states found.

0^{++} and 2^{++} charmonia: final spectrum

Statistical errors only.

Blue crosses: $\chi_{c0}(1P)$ and $\chi_{c2}(1P)$ extracted from FV energies. $J^{PC} = 0^{++}$, X(3915) and $\chi_{c0}(3930)$ may be the same state.

Exp

 $2m_D$

 $2m_{\rm p}$ 3.7

3.8

3.6 $\Theta_{\chi_{2}(1P)}$

 Φ

 2^{++}

Summary

Presented an investigation of vector and scalar charmonia.

- ★ A number of simplifications are made (the thresholds considered, unphysical quark masses, single lattice spacing).
- \star These simplifications can be removed in future work.
- ★ Only statistical uncertainty quantified: qualitative comparison with experiment.
- \star Vector channel around $D\overline{D}$ threshold: demonstration of methods.
 - Smaller m_c set: m and g for $\psi(3770)$ consistent with experiment (and $J^{PC} = 3^{--}$ with mass consistent with X(3842)).

\star Scalar channel around $D\overline{D}$ to above $D_s\overline{D}_s$:

- State just below $D\overline{D}$ threshold, not yet observed in experiment.
- Narrow resonance just below $D_s\overline{D}_s$ which may be related to $X(3915)/\chi_{c0}(3930)$.
- Broad resonance which may be related to X(3860).
- $(J^{PC} = 2^{++} \text{ similar to } \chi_{c2}(3930))$
- ★ Consider additional channels in the future.