Charmonium-like resonances in $D \bar{D}$ scattering

Sara Collins
University of Regensburg

In collaboration with: D. Mohler, M. Padmanath, S. Piemonte, S. Prelovsek.

See [M. Padamanath et al.,1811.04116], [Piemonte et al.,1905.03506] and [Prelovsek et al.,2011.02542] for more details.

Hadron 2021, July 30th

Overview

* Rich spectrum of states $J=0-3$, further states being discovered: quark model and non-quark model states (exotics, $\bar{q} q \bar{c} c, \bar{c} c g$).
* Theoretical interest in the internal structure of exotics: compact diquark-anti-diquark states, mesonic molecules, hadro-quarkonia,
* [Piemonte et al.,1905.03506]: Focus on conventional states $J^{P C}=1^{--}$near $D \bar{D} \rightarrow$ demonstration of methods (3-- also considered).
* [Prelovsek et al.,2011.02542]: Focus on less well explored 0^{++}channel up to 4.1 GeV including possible non-conventional states (2^{++}also considered).

Challenges and simplifications

Only one previous lattice calculations near/above threshold in $I=0$ channel which takes into account strong decay [Lang, Leskovec, Mohler, Prelovsek,1503.05363] (vector and scalar channels studied).
(Investigation of $Z_{c}(3900)$ by [CLQCD, 1907.03371] and [HALQCD,1602.03465,1706.07300] (using a potential approach).)

Challenges:

* Dense spectrum of states: a number states with same/different $J^{P C}$ in a narrow energy region.
* Depending on the state of interest, multiple two-particle and three-particle decay channels are open.
* Technical challenges: signal (need to determine ground state and high tower of excited states), spin identification (reduced symmetry on the lattice), ...
* Lattice: relation of finite volume spectrum to infinite volume scattering information is not straightforward.

Simplifications:
丸 Only "main" two-particle decay channels/nearby thresholds considered. Single lattice spacing, unphysical light quark masses, ...

Lattice details

Coordinated lattice simulations ensembles [CLS,1411.3982], $N_{f}=2+1$, isospin limit $m_{u}=m_{d}=m_{\ell}$.

Single lattice spacing: $a=0.086 \mathrm{fm}$. Discretisation effects $O\left(a^{2} m_{c}^{2}\right)$.
Flavour average quark mass $2 m_{\ell}+m_{s}=$ constant as physical point approached \rightarrow $m_{\pi}>m_{\pi}^{\text {phys }}, m_{K}<m_{K}^{\text {phys }}$.
$D \bar{D}$ and $D_{s} \bar{D}_{s}$ thresholds are closer together than in experiment.

	$\kappa_{c}=0.12315$	$\kappa_{c}=0.12522$	Expt. $\bar{D}^{0} D^{0} / D^{+} D^{-}$
$m_{D}[\mathrm{MeV}]$	$1927(2)$	$1762(2)$	$\bar{m}_{D} \simeq 1867 \mathrm{MeV}$
$m_{D_{s}}[\mathrm{MeV}]$	$1981(1)$	$1818(1)$	$1968.34(7)$
$M_{\mathrm{av}}[\mathrm{MeV}]$	$3103(3)$	$2820(3)$	$3068.6(2)$
$m_{\pi}[\mathrm{MeV}]$	280	280	$\bar{m}_{\pi} \simeq 137 \mathrm{MeV}$
$m_{K}[\mathrm{MeV}]$	467	467	$\bar{m}_{K} \simeq 494 \mathrm{MeV}$

$M_{\mathrm{av}}=\frac{1}{4}\left(3 m_{J / \psi}+m_{\eta_{c}}\right), \quad a m_{c}=\frac{1}{2}\left(\frac{1}{\kappa_{c}}-\frac{1}{\kappa_{\text {crit }}}\right)$. Two values of $m_{c} \gtrsim m_{c}^{\text {phys }}\left(\kappa_{c}\right)$.
Two spatial volumes $L=24 a, L=32 a$. Only statistical uncertainty will be quantified.

Lattice details

Determine finite volume (FV) spectrum in energy region of interest.
Compute two-point correlation functions

$$
C_{i j}(t)=\left\langle O_{i}(t) O_{j}^{\dagger}(0)\right\rangle=\sum_{n} \frac{1}{2 E_{n}} Z_{n}^{i} Z_{n}^{j *} e^{-E_{n} t}
$$

Construct O_{i} with definite lattice symmetry $\Lambda \rightarrow$ tower of states with different $J^{P C}$ (in the continuum limit). State at rest: e.g. $\Lambda=A_{1} \rightarrow J=0,4, \ldots, P= \pm$.

Reliable isolation of E_{n} for many n requires single ($\bar{c} \Gamma c$) and multi-particle $\left(\bar{c} \Gamma_{1} q \bar{q} \Gamma_{2} c, \bar{c} \Gamma_{1} c \bar{q} \Gamma_{2} q\right) O_{i}$.

Use methods of [HSC,1004.4930,1107.1930] to ensure O_{i} has a good overlap with specific J^{P}.

Spin-identification [M. Padamanath et al.,1811.04116] is based on overlap factors $Z_{n}^{i}=\langle 0| O_{i}|n\rangle$.

Additional information provided by projecting to finite momentum. Symmetry further reduced, P no longer a good QN. State with $\vec{p}=\frac{2 \pi}{L}(0,0,1), A_{1}\left(\mathrm{Dic}_{4}\right)$ $\rightarrow 0^{+}, 1^{-}, 2^{+}, 3^{-}, 4^{ \pm}, \ldots$

From FV energies to infinite volume scattering information

 Quantisation condition see e.g. [Briceño,1401.3312] and [Hansen and Sharpe,1204.0826]. Scattering of spin-less particles: determinant equation for each $E_{c m}$.$$
\operatorname{det}\left[\tilde{K}_{\ell, i j}^{-1}\left(E_{c m}\right) \delta_{\ell \ell^{\prime}}-B_{\ell^{\prime} \ell}^{\vec{P}, \wedge}\left(E_{c m}\right) \delta_{i j}\right]=0
$$

Infinite volume: $\tilde{K}_{\ell, i j}^{-1}\left(E_{c m}\right)$ related to the t-matrix

$$
\left(t^{-1}\right)_{i j}=\frac{2}{E_{c m} p_{i}^{\prime} p_{j}^{\prime}}\left(\tilde{K}^{-1}\right)_{i j}-i \rho_{i} \delta_{i j}, \quad \rho_{i} \quad \equiv 2 p_{i} / E_{c m}=\sqrt{1-\left(2 m_{i}\right)^{2} / E_{c m}^{2}}
$$

Finite volume: known "box" functions $B_{\ell^{\prime} \ell}^{\vec{P}, \Lambda}\left(E_{c m}\right)$, see [Morningstar et al.,1707.05817]. Reduced lattice symmetry (irrep Λ) \rightarrow off-diagonal entries in partial wave indices ℓ, ℓ^{\prime}.

Straightforward for one-channel scattering with single $\ell: \tilde{K}_{\ell}^{-1}\left(E_{c m}\right)=B_{\ell \ell}^{\vec{P}, \wedge}\left(E_{c m}\right)$.
For coupled channel scattering: e.g. single $\ell, i, j=1,2$, relation between \tilde{K}_{11}^{-1}, $\tilde{K}_{12}^{-1}, \tilde{K}_{22}^{-1}$ for each $E_{c m} \rightarrow$ under constrained problem.

Parameterise $\tilde{K}_{\ell}^{-1}\left(E_{c m}\right), \chi^{2}$ minimisation, then search for poles in t-matrix.
Utilise multiple \vec{P}, L, Λ with TwoHadronsInBox package [Morningstar et al.,1707.05817].

Warm-up: 1^{--}and 3^{--}charmonia

Interested in $\psi(3770), J^{P C}=1^{--}$.
Only consider $D \bar{D}$ scattering: branching ratio $\operatorname{Br}(\psi(3770) \rightarrow D \bar{D})=93 \pm 9 \%$.
Quantisation condition, scattering of spinless particles:

$$
\operatorname{det}\left[\tilde{K}_{\ell}^{-1}\left(E_{c m}\right) \delta_{\ell \ell^{\prime}}-B_{\ell^{\prime} \ell}^{\vec{P}, \Lambda}\left(E_{c m}\right)\right]=0
$$

Scattering of particles with equal masses: partial waves $\ell=1,3, \ldots$ $J=\ell \rightarrow$ determine FV spectrum for $J^{P C}=1^{--}$and 3^{--}.

Interested in capturing energy region including $\psi(2 S)$ and $\psi(3770) \Rightarrow$ double pole parameterisation for $\ell=1$.

$$
\tilde{K}_{\ell=1}^{-1}\left(E_{c m}\right)=\frac{p^{3} \cot \left(\delta_{1}\right)}{\sqrt{s}}=\left(\frac{G_{1}^{2}}{m_{1}^{2}-s}+\frac{G_{2}^{2}}{m_{2}^{2}-s}\right)^{-1} \quad s=E_{c m}^{2}
$$

Single pole form for $\ell=3$:

$$
\tilde{K}_{\ell=3}^{-1}\left(E_{c m}\right)=\frac{p^{7} \cot \left(\delta_{3}\right)}{\sqrt{s}}=\frac{m_{3}^{2}-s}{g_{3}^{2}}
$$

Other parameterisations also explored.

1^{--}and 3^{--}charmonia: finite volume spectrum

Energies given in lattice units. Two spatial volumes $L=24 a, 32 a,|\vec{P}|^{2}=0,1,2$, $\vec{p}=\frac{2 \pi}{L} \vec{P}$.
[Piemonte et al.,1905.03506]

Data points are naive $\psi(2 S)$ energy levels (blue), charmonia with $J^{P C}=1^{--}$and $D \bar{D}$ (red), levels identified as $J^{P C}=3^{--}$(green).
Analysis performed with and without 3^{--}states.

1^{--}and 3^{--}charmonia

Shown: only considering $\ell=1$, results for smaller m_{c} (larger κ_{c}).
Right: (red) central values of double pole fit.
(Blue/yellow) bound/virtual bound state condition: $p^{3} \cot \left(\delta_{1}\right)=(-)\left(p^{2}\right) \sqrt{-p^{2}}$ Obtain: bound state and resonance.

Larger m_{c} (smaller κ_{c}): two bound states.

1^{--}and 3^{--}charmonia: final spectrum

Consistent results obtained when $\ell=3$ (3^{--}states) included in the analysis. $\ell=3$ has neglible influence on extraction of $\psi(3770)$.
[Piemonte et al.,1905.03506]
m relative to
$M_{\mathrm{av}}=\frac{1}{4}\left(3 m_{J / \psi}+m_{\eta_{c}}\right)$:
$m=m^{\text {latt }}-M_{\mathrm{av}}^{\text {lat }}+M_{\mathrm{av}}^{\exp }$.

Statistical errors only.

Left: Coupling of $\psi(3770): g=16\binom{+2.1}{-0.2}$ consistent with $g^{\exp }=18.7, \Gamma=g^{2} p^{3} /(6 \pi s)$. $m_{3}--$ compatible with $X(3842)$ [LHCb, 1903.12240].

0^{++}and 2^{++}charmonia

Interested in 0^{++}channel in $\sim 3.7-4.1 \mathrm{GeV}$ energy region.
Consider $D \bar{D}$ and $D_{s} \bar{D}_{s}$ thresholds ($J / \psi \omega$ and $\eta \eta_{c}$ omitted).
Quantisation condition, coupled channel scattering of spinless particles:

$$
\operatorname{det}\left[\tilde{K}_{\ell, i j}^{-1}\left(E_{c m}\right) \delta_{\ell \ell^{\prime}}-B_{\ell^{\prime}, i, i}^{\vec{P}, \wedge}\left(E_{c m}\right) \delta_{i j}\right]=0 \quad \ell=0,2, \ldots
$$

$s=E_{c m}^{2}$

$$
\left[\begin{array}{cc}
D \bar{D} \rightarrow D \bar{D} & D \overline{\bar{D}_{s} \rightarrow D_{s} \bar{D}_{s}} \\
D_{s} \bar{D}_{s} \rightarrow D \bar{D} & D_{s} \bar{D}_{s} \rightarrow D_{s} \bar{D}_{s}
\end{array}\right] \quad \frac{\tilde{K}_{\ell, i j}^{-1}(s)}{\sqrt{s}}=\left[\begin{array}{cc}
a_{11}+b_{11} s & a_{12} \\
a_{12} & a_{22}+b_{22} s
\end{array}\right]
$$

Piecewise analysis of the energy region:

- 0^{++}channel close to $D \bar{D}$ threshold: $\ell=0$, ignore coupling to $D_{s} \bar{D}_{s}$.
- 2^{++}channel around first resonance ($\chi_{c 2}(3930)$): $\ell=2$, ignore coupling to $D_{s} \bar{D}_{s}$.
- 0^{++}channel $E_{c m} \sim 3.93-4.13 \mathrm{GeV}$: coupled channel analysis with $\ell=2$ (fixed from single channel analysis).
0^{++}and 2^{++}charmonia: finite volume spectrum [Prelovsek et al.,2011.02542]: Larger m_{c} (smaller κ_{c}). $E_{c m, n}=\sqrt{E_{n}^{2}-\vec{p}^{2}}, \vec{p}=\frac{2 \pi}{L} \vec{P}$. $\vec{P}^{2}=0,1,2$, two spatial volumes $L=24 a, 32 a$.

Black and dark blue data points: $J^{P C}=0^{++}$.
Light blue data points: $J^{P C}=2^{++}$and 2^{-+}.
Bold red lines $D \bar{D}$ non-interactng energies and green lines for $D_{s} \bar{D}_{s}$.
0^{++}charmonia: (low) energy region close to $D \bar{D}$ threshold
[Prelovsek et al.,2011.02542]

(b)

(c)

Left: $D \bar{D}$ scattering in s-wave, $\frac{\tilde{K}_{\ell=0,11}^{-1}(s)}{\sqrt{s}}=a_{11}+b_{11} s$. Equivalent to effective range expansion.
$t^{-1}=\frac{2}{E_{c m} p^{2 \ell}} \tilde{K}^{-1}-i \frac{2 p}{E_{c m}}$. Right: pole in the t-matrix.
Bound state just below threshold, $\boldsymbol{m}-2 \boldsymbol{m}_{\boldsymbol{D}}=-4_{-5.0}^{+3.7} \mathrm{MeV}$. Statistical errors only. Middle: number of $D \bar{D}$ events seen in expt. $\propto \rho|t|^{2}, \rho=2 p / E_{c m}$. Peak in number of events above threshold.

Shallow 0^{++}bound state

Not observed as yet in experiment.
Resampling of data to estimate statistical uncertainty, small number of samples give a virtual bound state.

Not clear if this state would also feature in a simulation with $m_{\pi}=m_{\pi}^{\text {phys }}$, $m_{K}=m_{K}^{\text {phys }}$.

Phenomenological models: shallow bound state suggested in [Gammermann et al.,hep-ph/0612179].
Discussion of experimental evidence in [Gamermann and Oset,0712.1758].
In a molecular picture, using heavy quark symmetry arguments, a 0^{++}partner to the $X(3872)$ is expected [Hildago Duque et al.,1305.4487], [Baru et al.,1605.09649].
2^{++}charmonia: $D \bar{D}$ scattering with $I=2$
[Prelovsek et al.,2011.02542]

Left: $D \bar{D}$ scattering in d-wave, $\frac{\tilde{K}_{\ell=2,11}^{-1}(s)}{\sqrt{s}}=a_{11}+b_{11} s=\frac{m^{2}-s}{g^{2}}$. Breit-Wigner form. $t^{-1}=\frac{2}{E_{c m} p^{2 \ell}} \tilde{K}^{-1}-i \frac{2 p}{E_{c m}}$. Right: pole in the t-matrix.

Resonance, $\quad \boldsymbol{m}-M_{\mathrm{av}}=905_{-22}^{+14} \mathrm{MeV}, g=4.5_{-1.5}^{+0.7} \mathrm{GeV}^{-1}$ (statistical errors only).
Expt. $\chi_{c 2}(3930): ~ \boldsymbol{m}-M_{\mathrm{av}}=854 \pm 1 \mathrm{MeV}, g=2.65 \pm 0.12 \mathrm{GeV}^{-1}$.
Middle: number of $D \bar{D}$ events seen in expt. $\propto \rho|t|^{2}, \rho=2 p / E_{c m}$.
0^{++}charmonia: coupled channel scattering around $D_{s} \bar{D}_{s}$ threshold
Two states found. a_{12} small.
[Prelovsek et al.,2011.02542]

Narrow resonance close to $D_{s} \bar{D}_{s}$ threshold (weakly coupled to $D \bar{D}$). (statistical errors only) $\boldsymbol{m}-2 \boldsymbol{m}_{D_{s}}=-0.2_{-4.9}^{+0.16} \mathrm{MeV}, g=0.10_{-0.03}^{+0.21} \mathrm{GeV}^{-1}$.
Expt. $\chi_{c 0}(3930)$:
$\boldsymbol{m}-2 \boldsymbol{m}_{D_{s}}=-12.9 \pm 1.6 \mathrm{MeV}, g=0.67 \pm 0.10 \mathrm{GeV}^{-1}$. Expt. $X(3915)$:
$\mathbf{m}-2 \boldsymbol{m}_{D_{s}}=-18.3 \pm 1.9 \mathrm{MeV}, g=0.72 \pm 0.10 \mathrm{GeV}^{-1}$.
[Polosa and Lebed,1602.08421]: proposed $X(3915)$ to
 be a $c \bar{c} \bar{s} s$ state. See also e.g. [Liu et al.,2103.12425].
0^{++}charmonia: coupled channel scattering around $D_{s} \bar{D}_{s}$ threshold

Two states found.

[Prelovsek et al.,2011.02542]

Broad resonance (coupling mostly to $D \bar{D}$). (statistical errors only)
$\boldsymbol{m}-\boldsymbol{M}_{\mathrm{av}}=880_{-20}^{+28} \mathrm{MeV}, g=1.35_{-0.08}^{+0.04} \mathrm{GeV}^{-1}$.
Expt. $X(3860)$:
$\boldsymbol{m}-M_{\mathrm{av}}=793_{-35}^{+48} \mathrm{MeV}, g=2.5_{-0.9}^{+1.2} \mathrm{GeV}^{-1}$.

0^{++}charmonia: coupled channel scattering around $D_{s} \bar{D}_{s}$ threshold

Two states found.

[Prelovsek et al.,2011.02542]

Narrow resonance gives rise to dip in $D \bar{D} \rightarrow D \bar{D}$ events and sharp rise in $D_{s} \bar{D}_{s} \rightarrow D_{s} \bar{D}_{s}$ and $D \bar{D} \rightarrow D_{s} \bar{D}_{s}$ above $2 m_{D_{s}}$.

Broad resonance gives peak in $D \bar{D} \rightarrow D \bar{D}$.

0^{++}and 2^{++}charmonia: final spectrum

Unphysical quark masses used in the simulation.
Middle: mass $=m-E^{\text {ref }}+E_{\text {exp }}^{r e f}$.
$E^{\text {ref }}=2 m_{D}$ for 0^{++}(pink) bound state.
$E^{\text {ref }}=2 m_{D_{s}}$ for 0^{++}narrow resonance.
$E^{r e f}=M_{\mathrm{av}}=\frac{1}{4}\left(3 m_{J / \psi}+m_{\eta_{c}}\right)$ for others (pink and blue).
[Prelovsek et al.,2011.02542]

Statistical errors only.

Blue crosses: $\chi_{c 0}(1 P)$ and $\chi_{c 2}(1 P)$ extracted from FV energies. $J^{P C}=0^{++}, X(3915)$ and $\chi_{c 0}(3930)$ may be the same state.

Summary

Presented an investigation of vector and scalar charmonia.

* A number of simplifications are made (the thresholds considered, unphysical quark masses, single lattice spacing).
* These simplifications can be removed in future work.
* Only statistical uncertainty quantified: qualitative comparison with experiment.
\star Vector channel around $D \bar{D}$ threshold: demonstration of methods.
- Smaller m_{c} set: m and g for $\psi(3770)$ consistent with experiment (and $J^{P C}=3^{--}$with mass consistent with $X(3842)$).
\star Scalar channel around $D \bar{D}$ to above $D_{s} \bar{D}_{s}$:
- State just below $D \bar{D}$ threshold, not yet observed in experiment.
- Narrow resonance just below $D_{s} \bar{D}_{s}$ which may be related to $X(3915) / \chi_{c 0}(3930)$.
- Broad resonance which may be related to $X(3860)$.
- $\left(J^{P C}=2^{++}\right.$similar to $\left.\chi_{c 2}(3930)\right)$
* Consider additional channels in the future.

