The $D \bar{D}$ bound state

in the $\psi(3770) \rightarrow \gamma D \bar{D}$ decay

Based on Eur. Phys. J. C (2020)80:510 By Lianrong Dai, GT and Eulogio Oset

Dr. Genaro Toledo
Instituto de Física UNAM, MEXICO

- The $\boldsymbol{D} \overline{\boldsymbol{D}}$ bound state
- Description of the $\psi(3770) \rightarrow \gamma D \bar{D}$ decay
- Results. Signature on invariant mass
- Conclusions

D \bar{D}

D. Gamermann, E. Oset, D. Strottman, M. Vicente Vacas, Phys.

Rev. D 76, 074016 (2007)

Predicted state

J. Nieves, M. Valderrama, Phys. Rev. D 86, 056004 (2012)
C. Hidalgo-Duque, J. Nieves, M. Valderrama, Phys. Rev. D 87, 076006 (2013)

Analogous to $K \bar{K}$ a good representation of $f_{0}(980)$

Chiral unitary approach for the meson-meson interaction in coupled channels found dynamically generated states

$$
f_{0}(500), K_{0}^{*}(700), a_{0}(980)
$$

J.A. Oller, E. Oset, Nucl. Phys. A 620, 438 (1997). (Erratum: [Nucl. Phys. A 652, 407 (1999)])
N. Kaiser, Eur. Phys. J. A 3, 307 (1998)
M.P. Locher, V.E. Markushin, H.Q. Zheng, Eur. Phys. J. C 4, 317 (1998)
J. Nieves, E. Ruiz Arriola, Nucl. Phys. A 679, 57 (2000)

$$
e^{+} e^{-} \rightarrow J / \psi D \bar{D}
$$

P. Pakhlov et al., [Belle], Phys. Rev. Lett. 100, 202001 (2008)
K. Chilikin et al., [Belle], Phys. Rev. D 95, 112003 (2017)
E. Wang, W.H. Liang, E. Oset, arXiv:1902.06461 [hep-ph]

An accumulation of strength close to DD threshold found a natural explanation in terms of the predicted bound state with a mass of 3730 MeV , but with large uncertainties, so far unconclusive

New reactions to observe

$$
\begin{aligned}
& B^{+} \rightarrow D^{0} \bar{D}^{0} K^{-} \\
& B^{0} \rightarrow D^{0} \bar{D}^{0} K^{0}
\end{aligned}
$$

D. Gamermann, E. Oset, B. Zou, Eur. Phys. J. A 41, 85 (2009)
C.W. Xiao, E. Oset, Eur. Phys. J. A 49, 52 (2013)

Better suited to search for

Radiative decays

$$
\psi(3770) \rightarrow \gamma D \bar{D}
$$

$D^{+} D^{-}$

Tree level and loop contributions

$D^{0} \bar{D}^{0}$

Only loop contributions

$\psi(3770) \rightarrow \gamma D^{+} D^{-}$

(a)

(b)

(c)

Amplitude $\quad t_{a}+t_{b}+t_{c}=-2 e g_{\psi} \epsilon^{\mu}(\psi) \epsilon^{\nu}(\gamma)$

$$
\begin{aligned}
& \times\left(g_{\mu \nu}+p_{2 \mu} p_{1_{\nu}} \frac{1}{p_{1} \cdot k+i \epsilon}+p_{1 \mu} p_{2 v} \frac{1}{p_{2} \cdot k+i \epsilon}\right) \\
& g_{\psi}=13.7
\end{aligned}
$$

There is no tree level for the neutral case

(a)

(b)

(c)

(d)

This is the only contribution for the neutral case

$$
\begin{gathered}
\text { Amplitude } \quad t_{L}=\epsilon_{\mu}(\psi) \epsilon_{\nu}(\gamma) T^{\mu \nu} \\
T^{\mu \nu}=a g^{\mu \nu}+b P^{\mu} P^{\nu}+c P^{\mu} k^{\nu}+d \underline{k^{\mu}} P^{\nu}+e k^{\mu} k^{\nu}
\end{gathered}
$$

Gauge invariance

$$
T^{\mu \nu} k_{\nu}=0 \quad a+d(P \cdot k)=0
$$

Lorentz condition b, c, e do not contribute

$$
t=a \epsilon_{\mu}(\psi) \epsilon^{\mu}(\gamma) ; \quad a=-d(P \cdot k)
$$

$D^{0} \bar{D}^{0}$

(a)

(b)

$$
\begin{aligned}
t_{L}= & -2 e g_{\psi} \epsilon^{\mu}(\psi) \epsilon^{\nu}(\gamma) i \\
& \times \int \frac{d^{4} q}{(2 \pi)^{4}} 2 q_{\mu}(2 P-2 q)_{\nu} t_{D^{+} D^{-} \rightarrow D^{0} \bar{D}^{0}} \\
& \times \frac{1}{(P-q)^{2}-m_{D}^{2}+i \epsilon} \\
& \times \frac{1}{q^{2}-m_{D}^{2}+i \epsilon} \frac{1}{(P-q-k)^{2}-m_{D}^{2}+i \epsilon}
\end{aligned}
$$

Propagator $D(q) \rightarrow \frac{1}{q^{2}-m_{D}^{2}+i \epsilon}$

$$
\begin{aligned}
& \equiv \frac{1}{2 \omega(\boldsymbol{q})}\left(\frac{1}{q^{0}-\omega(\boldsymbol{q})+i \epsilon}-\frac{1}{q^{0}+\omega(\boldsymbol{q})-i \epsilon}\right) \\
& \rightarrow \frac{1}{2 \omega(\boldsymbol{q})} \frac{1}{q^{0}-\omega(\boldsymbol{q})+i \epsilon}
\end{aligned}
$$

$$
\text { with } \omega(\boldsymbol{q})=\sqrt{\boldsymbol{q}^{2}+m_{D}^{2}} \text {. }
$$

Perform the q^{0} integration analytically, using Cauchy theorem

keeping only the $\epsilon^{i}(\gamma)$

$$
\begin{aligned}
t_{L}= & -2 e g_{\psi} t_{D^{+} D^{-} \rightarrow D^{0} \bar{D}^{0}} \epsilon^{i}(\psi) \epsilon^{j}(\gamma) 4 \int \frac{d^{3} q}{(2 \pi)^{3}} \\
& \times \frac{1}{2 \omega(\boldsymbol{q})} \frac{1}{2 \omega(\boldsymbol{P}-\boldsymbol{q})} \frac{1}{2 \omega(\boldsymbol{P}-\boldsymbol{q}-\boldsymbol{k})} \\
& \times \frac{1}{\frac{\left(q_{i} P_{j}-q_{i} q_{j}\right)}{P^{0}-\omega(\boldsymbol{q})-\omega(\boldsymbol{P}-\boldsymbol{q})+i \epsilon}} \\
& \times \frac{1}{P^{0}-\omega(\boldsymbol{q})-k^{0}-\omega(\boldsymbol{P}-\boldsymbol{q}-\boldsymbol{k})+i \epsilon}
\end{aligned}
$$

in order to get the d coefficient we must look at the $k^{i} P^{j}$

$$
d P^{i} k^{j} \epsilon_{j}(\psi) \epsilon_{i}(\gamma) \quad d=d_{1}+d_{2}
$$

$$
d_{2}=4 e g_{\psi} \frac{1}{\boldsymbol{k}^{2}} \int \frac{d^{3} q}{(2 \pi)^{3}} \boldsymbol{q} \cdot \boldsymbol{k}\left\{q^{2}-\frac{(\boldsymbol{q} \cdot \boldsymbol{k})^{2}}{\boldsymbol{k}^{2}}\right\}
$$

$$
\begin{array}{r|}
d_{1}=-8 e g_{\psi} \frac{1}{\boldsymbol{k}^{2}} \int \frac{d^{3} q}{(2 \pi)^{3}} \boldsymbol{q} \cdot \boldsymbol{k} \frac{1}{2 \omega_{1}} \frac{1}{2 \omega_{1}} \frac{1}{2 \omega_{2}} \\
\\
\times \frac{1}{P^{0}-2 \omega_{1}+i \epsilon} \frac{1}{P^{0}-k^{0}-\omega_{1}-\omega_{2}+i \epsilon}
\end{array}
$$

$$
\times t_{D^{+}+D^{-}, D^{0} \bar{D}^{0}}
$$

$$
\begin{aligned}
& \times \frac{1}{2 \omega_{1}} \frac{1}{2 \omega_{1}} \frac{1}{2 \omega_{2}} \\
& \times \frac{1}{P^{0}-2 \omega_{1}+i \epsilon} \frac{1}{P^{0}-k^{0}-\omega_{1}-\omega_{2}+i \epsilon} \\
& \times\left\{\frac{1}{\omega_{1}^{2}}+\frac{1}{\omega_{2}^{2}}-\frac{1}{\omega_{1}\left(P^{0}-2 \omega_{1}+i \epsilon\right)}\right. \\
& \left.-\frac{1}{\omega_{1}\left(P^{0}-k^{0}-\omega_{1}-\omega_{2}+i \epsilon\right)}\right\} t_{D^{+} D^{-}, D^{0} \bar{D}^{0}}
\end{aligned}
$$

with $\omega_{1}=\sqrt{\boldsymbol{q}^{2}+m_{D}^{2}}$ and $\omega_{2}=\sqrt{(\boldsymbol{q}+\boldsymbol{k})^{2}+m_{D}^{2}}$.

$$
\begin{aligned}
& \frac{d \Gamma}{d M_{\mathrm{inv}}\left(D^{0} \bar{D}^{0}\right)} \\
& =\frac{1}{8 M_{\psi}^{2}} \frac{M_{\mathrm{inv}}\left(D^{0} \bar{D}^{0}\right)}{(2 \pi)^{3}} \\
& \quad \times \int d E_{1} \overline{\sum \sum|t|^{2} \Theta\left(1-A^{2}\right) \Theta\left(M_{\psi}-k-E_{1}\right)}
\end{aligned}
$$

$$
A \equiv \cos \theta\left(\boldsymbol{p}_{1}, \boldsymbol{k}\right)
$$

$$
=\frac{1}{2 p_{1} k}\left\{\left(M_{\psi}-k-E_{1}\right)^{2}-m_{D}^{2}-p_{1}^{2}-k^{2}\right\}
$$

Angle between the photon and the D°
E_{1} is the energy of the D^{0}

$T=[1-V G]^{-1} V$.

$$
D^{+} D^{-}, D^{0} \bar{D}^{0}, D_{s} \bar{D}_{s}, \eta \eta
$$

Channels, as done in
L.R. Dai, J.J. Xie, E. Oset, Eur. Phys. J. C 76, 121 (2016)
$V_{i j}$ used in the prediction study D. Gamemam, E. oset. D. Strotman, M. Vicent vacas, Phys. Rev. D 76, 074016 (2007)

$$
V_{D^{+} D^{-}, \eta \eta}=a, V_{D^{0} \bar{D}^{0}, \eta \eta}=a \quad a=42 \text { in order to obtain a width } \Gamma \simeq 36 \mathrm{MeV}
$$

The G function is a diagonal function of the meson-meson loops, computed either using dimensional regularization or cut off regularization

$$
G_{\eta \eta}=-i \frac{1}{8 \pi} \frac{1}{M_{\mathrm{inv}}} q_{\eta} \quad q_{\eta}=\frac{\lambda^{1 / 2}\left(M_{\mathrm{inv}}^{2}, m_{\eta}^{2}, m_{\eta}^{2}\right)}{2 M_{\mathrm{inv}}}
$$

$D^{0} \bar{D}^{0}$
 $D^{+} D^{-}$

$D^{0} \bar{D}^{0}$

$D^{+} D^{-}$

Tree level dominated

- We have made a study of the $\psi(3770) \rightarrow \gamma \mathrm{D}^{-}$decay, looking at the $D^{+} D^{-}$. and $D^{0} \bar{D}^{0}$ mass distributions close to threshold.
- The production of $D^{0} \bar{D}^{0}$ is particularly suited in studying the dynamics of the DD^{-} interaction because the tree level contribution is zero and the process goes with a loop mechanism that involves the $\mathrm{D}+\mathrm{D} \rightarrow \mathrm{D} 0 \mathrm{D}^{-} 0$ scattering amplitude.
- We have used the results of a theory that predicts a DD^{-}bound state and this has as a consequence that the $\mathrm{D} 0 \mathrm{D}^{-} 0$ mass distribution accumulates close to threshold and diverts drastically from a phase space distribution.
- The rates that we obtain for the mass distribution can be reachable at BESIII facility and we encourage the performance of the experiment that could shed light on the issue of this possible D^{-}bound state, and in any case it would provide information on the $\mathrm{DD}^{-} \rightarrow \mathrm{DD}^{-}$interaction.

G. Toledo, Hadron 20

