Meson spectroscopy results from CMS

Leonardo Lunerti

Università and INFN Bologna

HADRON2021 19° International conference on hadron spectroscopy and structure

In this presentation

- I. Observation of well resolved signals consistent with $B_c^+(2S)$ and $B_c^{*+}(2S)$
- II. Measurement of the $B_c^+(2S)$ mass
- III. Measurement of the $B_c^+(2S)$ to B_c^+ and $B_c^{*+}(2S)$ to B_c^+ cross section ratios
- IV. Invariant mass distributions of the pair of pions emitted in the $B_c^{*+}(2S) \rightarrow B_c^{*+}\pi^+\pi^-$ decay

Results published in:

- <u>Physical Review Letters 122</u>, 132001 (2019) (results I and II)
- <u>Physical Review D 102, 092007 (2020)</u> (results III and IV)

Introduction

⁽⁻triplet) state are displayed in *red (blue)*

- B_c^+ is the **lighest meson** of the $\overline{b}c$ family
- Why is it interesting?
 - It's the only heavy meson consisting of two heavy quarks with different flavours
 - Transitions from excited states allow to study the QCD potential
 - > Only weak decay is allowed for the ground state
 - All excited B_c states (below the BD threshold) decay to the ground state via electromagnetic or hadronic transitions
- Rather **small production cross section** at hadron colliders:
 - $> B_c$ mesons mainly produced via $\mathbf{gg} \rightarrow B_c \ \overline{c}b$ at LHC
 - → Production cross section ~ α_s^4

Analysis strategy

- $B_c^+(2S)$ decays directly to $B_c^+\pi^+\pi^-$ while the $B_c^{*+}(2S)$ is expected to decay predominantly to $B_c^{*+}\pi^+\pi^-$ followed by the $B_c^{*+} \rightarrow B_c^+\gamma$ decay
- $B_c^+(2S) \qquad \begin{array}{l} B_c^{*+} \to B_c^+ \gamma \text{ decay} \\ \bullet \text{ The } \gamma \text{ from the } B_c^{*+} \text{ decay has very low energy (54 keV) and its} \\ \bullet \text{ detection is very challenging} \end{array}$
 - The two states can be seen as two **separate peaks** in the $B_c^+\pi^+\pi^-$ mass distribution if

 $\Delta M \equiv [M(B_c^{*+}) - M(B_c^{+})] - [M(B_c^{*+}(2S)) - M(B_c^{+}(2S))]$ is larger than the experimental resolution

- Since $M(B_c^{*+}) M(B_c^{+})$ is predicted to be larger than $M(B_c^{*+}(2S)) M(B_c^{+}(2S))$, the $B_c^{*+}(2S)$ state will be the **lower mass peak**
- Expected resolution (~ 6 MeV) smaller than the expected mass difference (~ 23 MeV)→ the peaks are resolved
- Total width predicted to be in the 50 − 90 keV range → cannot be measured

Experimental apparatus, data sample and event selection

Trigger selection targeting $J/\psi \rightarrow \mu^+\mu^-$ decay

- Level-1: custom hardware processors select events with two muons
- High-level trigger requires a pair of oppositesign muon having
 - \succ invariant mass in the range 2.9 3.3 GeV
 - \succ vertex fit χ^2 probability < 10%
 - \succ distance of closest approach < 0.5 cm
 - $> L_{xy} > 3\delta_{L_{xy}}$ and $\cos \theta > 0.9$
- Additional track compatible with being produced at the dimuon vertex

- Proton-proton collisions
 collected by CMS at a center of
 mass energy of 13 TeV in
 2015, 2016, 2017 and 2018
- Total integrated luminosity of 146.6 fb⁻¹

Observation of two excited B_c states: event selection

- *B*⁺_{*c*} candidate reconstructed combining **dimuon+track**
- $\mu^+\mu^-$ invariant mass constrained to the J/ψ mass
- Primary vertex selected as the one with the largest cos θ
- B_c^+ selection cuts:
 - $p_T > 15$ GeV, |y| < 2.4 and decay length $< 100 \ \mu m$
 - Kinematic fit probability $\chi^2 > 10\%$
 - If more than one candidate per event, the one with the higest p_{T} is selected

- B_c^{(*)+}(2S) reconstructed combining B_c⁺ candidate
 + two opposite-sign tracks from a common vertex
- B_c^+ in the 6.2 6.355 GeV mass window
- $B_c^{(*)+}(2S)$ selection cuts:
 - > Leading (subleading) pion $p_T > 0.8 (0.6)$ GeV
 - $\succ |y| < 2.4$
 - ▶ Kinematic vertex fit χ^2 probability > 10%
 - > Only $B_c^+\pi^+\pi^-$ candidate with highest p_T is kept

$B_c^+ \rightarrow J/\psi \pi^+$ mass distribution: signal and background fit

B_c^+ signal peak

 Sum of two gaussian functions with a common mean

Background

- Combinatorial J/ψ + uncorrelated charged track paramatrized by first order Chebyshev polynomial
- Partially reconstructed B_c^+ described by generalized ARGUS function (<u>ARGUS Coll.</u>)
- $B_c^+ \rightarrow J/\psi K^+$ decays modelled using custom shape determinated from simulation studies

$B_c^{(*)+}(2S) \rightarrow B_c^+ \pi^+ \pi^-$ mass distribution: signal and background fit

$B_c^+(2S)$ and $B_c^{*+}(2S)$ signal peaks

• Two gaussian superposition for $B_c^+(2S)$ and $B_c^{*+}(2S)$ peaks

Background

- Third order Chebyshev polynomial modelling the combinatorial background
- The shape used for modelling $B_c^+ \rightarrow J/\psi K^+$ decay identical to the signal
 - ▶ normalization fixed by the ratio of $B_c^+ \rightarrow J/\psi K^+$ and $B_c^+ \rightarrow J/\psi \pi^+$ yields

Observation of **two peaks** rather than one is established with a significance of **6**. **5 standard deviations**

Measurement of $B_c^+(2S)$ mass

Systematic uncertainties

\Rightarrow

 $M(B_c^+(2S)) = 6871.0 \pm 1.2 \text{ (stat)} \pm 0.8 \text{ (syst)} \pm 0.8 (B_c^+)\text{MeV}$

Cross section ratios: reconstruction efficiency

$$R^{(*)+} = \frac{\sigma\left(B_c^{(*)+}(2S)\right)}{\sigma(B_c^+)} \mathcal{B}\left(B_c^{(*)+}(2S) \to B_c^+\pi^+\pi^-\right) = \frac{N\left(B_c^{(*)+}(2S)\right)}{N(B_c^+)} \frac{\epsilon(B_c^{(*)+}(2S))}{\epsilon\left(B_c^{(*)+}(2S)\right)}$$

- Efficiencies evaluated by computing the fraction of generated B^{*+}_c(2S) events (within the phase space region of the analysis) that survive all the reconstruction and selection steps
- Reconstruction efficiencies systematics
 - Potential residual mismatches between the running conditions and the settings used in simulations (Spread)
 - ► Uncertainty in the **reconstruction efficiency** of the **two pions** emitted in the $B_c^{(*)+}(2S) \rightarrow B_c^{(*)+}\pi^+\pi^-$ decay (*Pions*)

	Central	Stat.	Spread	Pions
$\epsilon(\mathrm{B_{c}(2S)^{+}})/\epsilon(\mathrm{B_{c}^{+}})$	0.196	1.1%	1.8%	4.2%
$\epsilon(\mathrm{B}^*_\mathrm{c}(\mathrm{2S})^+)/\epsilon(\mathrm{B}^+_\mathrm{c})$	0.187	1.0%	1.6%	4.2%
$\epsilon(\mathrm{B}^*_\mathrm{c}(\mathrm{2S})^+)/\epsilon(\mathrm{B}_\mathrm{c}(\mathrm{2S})^+)$	0.955	1.4%	0.9%	—

$$R^+ = (3.47 \pm 0.63 \,(\text{stat}) \pm 0.33 \,(\text{syst}))\%,$$

 $R^{*+} = (4.69 \pm 0.71 \,(\text{stat}) \pm 0.56 \,(\text{syst}))\%,$ and $R^{*+}/R^+ = 1.35 \pm 0.32 \,(\text{stat}) \pm 0.09 \,(\text{syst}).$

Cross section ratios: dependence on B_c^+ kinematics

Probing the cross section ratios dependence on the kinematics of the B_c^+ meson

Events splitted into three B_c^+ meson p_T bins and (independently) into three |y|bins:

→
$$p_T$$
 bins = [15, 22.5, 30, 60] GeV

$$\rightarrow$$
 |y| bins = [0,0.4,0.8,2.4]

None of the measured ratios show significant variations with the p_T or |y| of the B_c^+ meson

Cross section ratios: systematics

$B_c^+ \rightarrow J/\psi \pi^+$	Relative systematic uncertainties given in %				
 > 1st order polynomial → exponential > Double-gaussian → Student > B_c^{(*)+}(2S) → B_c⁺π⁺π⁻ > Double gaussian → single gaussian > Signal yield evaluated by subtracting the background after side-band fit only > Chebyshev polynomial → δ^λexp(vδ) 		R^+	<i>R</i> *+	R^{*+}/R^{+}	
	$J/\psi\pi^+$ fit model	5.5	5.5		
	$B_c^+\pi^+\pi^-$ fit model	5.9	2.9	2.9	
	Efficiencies: statistical uncertainty	1.1	1.0	1.4	
	Efficiencies: spread among years	1.8	1.6	0.9	
	Efficiencies: pion tracking	4.2	4.2		
	Decay kinematics	1.5	6.9	4.2	
Reconstruction efficiencies systematics (slide 10)	Helicity angle	1.0	6.0	3.5	
	Total	9.5	12.0	6.4	

• Assuming $\pi^+\pi^-$ kinematics reflect the existence of an intermediate resonance

> → Generated $B_c^{(*)+}(2S)$ events reweighted so that their $\pi^+\pi^-$ invariant mass distribution match that in the data

- Assuming $\pi^+\pi^-$ kinematics are dependent on the spins of the $B_c^+(2S)$ and $B_c^{*+}(2S)$ states
 - Generated $B_c^{(*)+}(2S)$ events reweighted so that ditribution of the angle between π^- and π^+ , in the dipion rest frame, match that in the data

Invariant mass distribution of the dipion system

- Data derived from $B_c^+\pi^+\pi^-$ mass distribution
- Background subtraction
 - > Shape evaluated measuring the $B_c^+\pi^\pm\pi^\pm$ invariant mass
 - > Normalization to the $B_c^+\pi^+\pi^-$ spectrum in the invariant mass sideband region
- Systematic uncertainties evaluated by varying the models used to fit the invariant $B_c^+\pi^+\pi^-$ mass distribution
 - > signal and the background composition of the $B_c^+\pi^+\pi^-$ mass distribution
 - ▷ contributions from $B_c^+ \rightarrow J/\psi K^+$ and partially reconstructed B_c^+ decays

- B_c(2S)⁺ and B^{*}_c(2S)⁺ dipion invariant mass distributions are compatible with each other within the uncertainties
- They have **shapes different** from the distributions predicted from the **phase space simulations**

Summary

- Signals consistent with the $B_c^+(2S)$ and $B_c^{*+}(2S)$ states have been separately observed for the first time by CMS
 - The **two peaks** are **well resolved**, with a measured mass differenece of $\Delta M = 29.1 \pm 1.5 \text{ (stat)} \pm 0.7 \text{ (syst)} \text{ MeV}$
 - > The $B_c^+(2S)$ mass is measured to be 6871.0 ± 1.2 (stat) ± 0.8(syst) ± 0.8 (B_c^+) MeV
 - > Because of the low-energy photon emitted in the $B_c^{*+} \rightarrow B_c^+ \gamma$ radiative decay is not reconstructed, the **true value** of the $B_c^{*+}(2S)$ mass remains **unknown**
- The ratios of the B⁺_c(2S) to B⁺_c, B^{*+}_c(2S) to B⁺_c and B^{*+}_c(2S) to B⁺_c(2S) production cross section have been measured by CMS
 - > No significant dependences on the transverse momentum or rapidity of the B_c^+ mesons have been observed for any of these ratios