

Resonance studies in the Bethe-Salpeter framework

Gernot Eichmann

LIP & IST Lisboa

Hadron 2021 Mexico City July 30, 2021

Resonances

Resonances

 $q \overline{q}$ four-point function ${\boldsymbol{G}}$ contains all meson poles:

Same poles in all n-point function

that carry meson quantum numbers (but overlap may be small)

<ロト < 回ト < 回ト < 回ト

Functional methods

Derive exact relations for n-point functions from path integral:

$$Z \ = \int \mathcal{D}[\psi,\bar{\psi},A] \, e^{-S} \ = \ e^{-\Gamma}$$

- Dyson-Schwinger equations (DSEs)
- Functional renormalization group (FRG) eqs.
- nPI eqs. of motion

much progress, approaching quantitative precision: see Monday B1 & Friday A7: J. Papavassiliou, J. Rodriguez-Quintero, M. Huber, F. Gao, B. El-Bennich, ...

- quark mass generation
- gluon mass gap
- three-gluon vertex
- glueballs

< ロ ト < 同 ト < 三 ト < 三 ト

compliated structure & eqs. for higher n-point functions, more efficient: solve Bethe-Salpeter equations

Bethe-Salpeter equations

Solve homogeneous BSE:

BSE = eigenvalue equation,pole in G \Leftrightarrow eigenvalue = 1

 $KG_0 \Gamma_i = \lambda_i \Gamma_i$

- qq irreducible kernel
- chiral symmetry constraints (V + AV WTI)
- can be systematically derived from effective action, depends on QCD's n-point functions

イロト イポト イヨト イヨト

Ladder

Simplest attempt:

Analytic structure of G, T, etc. would look like this:

- · breaks chiral symmetry: free propagators ⇔ NJL model
- generates bound-state poles in G and T, possibly also resonances
- but also quark thresholds & cuts: h "hadrons" decay into quarks, no confinement

would be ok if elementary d.o.f. were not quarks but hadrons (\rightarrow EFTs)

July 30, 2021 5/18

Rainbow-ladder

Analytic structure of G, T, etc. would look like this:

- dynamical propagators do not have real poles ⇒ no quark thresholds
- but no resonances, only **bound states**

July 30, 2021 6/18

И

Pion form factor

Pion electromagnetic form factor has ρ pole: ٠ Maris, Tandy, PRC 61 (2000),

Absence of width has no visible effect on spacelike behavior

GE, Fischer, Weil, Williams, PLB 797 (2019)

Sar

イロト イポト イヨト イヨト

Hadronic vacuum polarization

Vector current correlator = **HVP** (\rightarrow muon g-2 problem)

 Depends only on quark propagator and quark-photon vertex

C. Lehner, CERN Seminar 2021

• Quark-photon vertex has 12 tensors:

Ball-Chiu vertex, determined by WTI, depends only on quark propagator

Ball, Chiu, PRD 22 (1980)

Transverse part, contains dynamics (VM poles, cuts, ...), 8 dressing functions

contributes 80% to g-2, resonance dynamics important

Beyond rainbow-ladder

Much work also done for baryons (mostly RL)

GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, PPNP 91 (2016) Barabanov et al., PPNP 116 (2021)

- also scalar and axialvector mesons move into right ballpark
- but still bound states

Gernot Eichmann (LIP Lisboa)

July 30, 2021 9/18

Sac

Resonances?

Resonance **mechanism** depends on truncations: need internal $\pi\pi$ dynamics

- Need internal four-point functions, must come from higher-order truncations
- Implement $\pi\pi$ dynamics explicitly

Williams PLB 798 (2019), Miramontes, Sanchis-Alepuz, EPJA 55 (2019), Santowsky, GE, Fischer, Wallbott, Williams, PRD 102 (2020)

see talk by A. Miramontes right after

- Generates ππ cut,
 ρ meson becomes resonance
- How to extract resonance information on 2nd sheet?

イロト イポト イヨト イヨト

Simpler system: scalar BSE $\Gamma = KG_0 \Gamma$

Wick 1954, Cutkosky 1954, Nakanishi 1969, ...

Gernot Eichmann (LIP Lisboa)

July 30, 2021 11/18

Sac

Im t

Contour deformations

Maris, PRD 52 (1995), Strauss, Fischer, Kellermann PRL 109 (2012), Windisch, Huber, Alkofer PRD 87 (2013), ...

• Poles in propagators and kernel produce **cuts** in outermost integration variable *x*

$$\Gamma(X, Z, t) = \int_{0}^{\infty} dx \int_{-1}^{1} dz \ \mathbf{K}(X, x, Z, z) \ \mathbf{G}_{\mathbf{0}}(x, z, t) \ \Gamma(x, z, t)$$

All possible cuts lie inside yellow area With contour deformations, can cover entire complex t plane

GE, Duarte, Pena, Stadler, PRD 100 (2019)

イロト イロト イヨト イヨト

Gernot Eichmann (LIP Lisboa)

<u>১ ব ≣ ১ ছ ৩ ৭ ৫</u> July 30, 2021 12/18

Eigenvalues in complex t plane: ۰

To extract resonances from homogeneous BSE, search for poles on 2nd sheet defined by

$$\frac{1}{\lambda(t)} \stackrel{!}{=} \boldsymbol{c} + \boldsymbol{0} \cdot \boldsymbol{a}$$

<ロト < 回ト < 回ト < 回ト

Gernot Eichmann (LIP Lisboa)

590

 To access 2nd sheet, use Schlessinger method / Continued fraction:

Schlessinger, Phys. Rev. 167 (1968), Tripolt, Haritan, Wambach, Moiseyev, PLB 774 (2017)

$$f(z) = \frac{c_1}{1 + \frac{c_2 (z - z_1)}{1 + \frac{c_3 (z - z_2)}{1 + \frac{c_4 (z - z_3)}{1 + \frac{c_4 (z -$$

- Works well for ρ meson with clear resonance pole

Williams PLB 798 (2019), Miramontes, Sanchis-Alepuz, EPJA 55 (2019), Santowsky, GE, Fischer, Wallbott, Williams, PRD 102 (2020)

Rainbow-ladder + $\pi\pi$, scale set by f_{π} :

$$M_{\rho} = 638(2) \text{ MeV}, \qquad \Gamma_{\rho} = 108(4) \text{ MeV}$$

→ A. Miramontes

<ロト < 回ト < 回ト < 回ト

 To access 2nd sheet, use Schlessinger method / Continued fraction:

Schlessinger, Phys. Rev. 167 (1968), Tripolt, Haritan, Wambach, Moiseyev, PLB 774 (2017)

• For scalar model less clear: virtual state? GE, Duarte, Pena, Stadler, PRD 100 (2019)

Solve scattering equation $T = K + KG_0 T$ GE. Duarte, Pena. Stadler, PRD 100 (2019)

Contour deformations become more complicated: two cuts, can overlap

• Can still cover **parts** of complex *t* plane:

 Advantage: two-body unitarity is automatic, can directly compute amplitude on 2nd sheet

Partial-wave decomposition:

 $f_{l}(t)_{ll} = \frac{f_{l}(t)_{l}}{1 - 2i\tau(t)f_{l}(t)_{l}}$

<ロト < 回 > < 回 > < 回 > < 回 >

Solve scattering equation $T = K + KG_0 T$

GE, Duarte, Pena, Stadler, PRD 100 (2019)

<ロト < 回ト < 回ト < ヨト < ヨト

Solve scattering equation $T = K + KG_0 T$

GE, Duarte, Pena, Stadler, PRD 100 (2019)

<ロト < 回ト < 回ト < 回ト

Solve scattering equation $T = K + KG_0 T$

GE, Duarte, Pena, Stadler, PRD 100 (2019)

c = 3

<ロト < 回ト < 回ト < 回ト

Solve scattering equation $T = K + KG_0 T$

GE, Duarte, Pena, Stadler, PRD 100 (2019)

<ロト < 回ト < 回ト < 回ト

Solve scattering equation $T = K + KG_0 T$

GE, Duarte, Pena, Stadler, PRD 100 (2019)

<ロト < 回ト < 回ト < 回ト

Solve scattering equation $T = K + KG_0 T$

GE, Duarte, Pena, Stadler, PRD 100 (2019)

c = 7

<ロト < 回ト < 回ト < 回ト

Solve scattering equation $T = K + KG_0 T$

GE, Duarte, Pena, Stadler, PRD 100 (2019)

c = 8

イロト イロト イヨト イヨト

Solve scattering equation $T = K + KG_0 T$

GE, Duarte, Pena, Stadler, PRD 100 (2019)

イロト イロト イヨト イヨト

Four-quark states

• Four-body system forms two-body clusters, resonance dynamics automatic GE, Fischer, Heupel, PLB 753 (2016)

 BSE dynamically generates meson poles in BS amplitude, light scalar mesons look like meson molecules

diquark pole

meso

pole

 $\begin{array}{l} f_i\left(\left. \mathcal{S}_0,\bigtriangledown,\bigtriangledown,\diamondsuit,\circlearrowright,\circ \right) \right. \rightarrow \ \text{1500 MeV} \\ f_i\left(\left. \mathcal{S}_0,\bigtriangledown,\diamondsuit,\diamondsuit,\circlearrowright,\circ \right) \right. \rightarrow \ \text{1500 MeV} \\ f_i\left(\left. \mathcal{S}_0,\bigtriangledown,\diamondsuit,\diamondsuit,\circ \right) \right. \rightarrow \ \text{1200 MeV} \\ f_i\left(\left. \mathcal{S}_0,\bigtriangledown,\diamondsuit,\diamondsuit,\circ \right) \right. \rightarrow \ \text{350 MeV} \, \text{!} \end{array}$

- Similar for heavy-light states: X(3872), ... Wallbott, GE, Fischer, PRD 100 (2019), PRD 102 (2020) Review: GE, Fischer, Heupel, Santowsky, Wallbott, FBS 61 (2020)
- qq admixture for σ meson is small Santowsky, GE, Fischer, Wallbott, Williams, PRD 102 (2020)

8

 m_a [MeV]

10

M [GeV]

15

1.0

0.5

0.0

<ロト < 回 > < 回 > < 回 > < 回 >

2

 $\doteq a_0/f_0$

к

Summary

- Functional methods: resonance dynamics for qq & qqq states depends on truncations (higher n-point functions)
- Recent progress & technical advances using contour deformations

Williams PLB 798 (2019), Miramontes, Sanchis-Alepuz, EPJA 55 (2019), GE, Duarte, Pena, Stadler, PRD 100 (2019), Santowsky, GE, Fischer, Wallbott, Williams, PRD 102 (2020), Miramontes, Sanchis-Alepuz, Alkofer, PRD 103 (2021)

Four-quark states form internal two-body clusters, resonance dynamics automatic

GE, Fischer, Heupel, Santowsky, Wallbott, FBS 61 (2020)

Thank you!

<ロト < 回 > < 回 > < 回 > < 回 >