Resonance studies in the Bethe-Salpeter framework

Gernot Eichmann

LIP \& IST Lisboa

Hadron 2021
Mexico City
July 30, 2021

Resonances

Light mesons
(PDG 2020)
$\left\langle j^{\mu}(x) j^{\nu}(0)\right\rangle=\int \mathcal{D}[\psi, \bar{\psi}, A] e^{-S} j^{\mu}(x) j^{\nu}(0)$

Lattice:

Resonances

$$
\begin{aligned}
\langle[\underbrace{\left[\bar{\psi} \gamma^{\mu} \psi\right](x)}_{j^{\mu}(x)} \underbrace{\left[\bar{\psi} \gamma^{\nu} \psi\right](0)}_{j^{\nu}(0)}\rangle & =\gamma_{\alpha \beta}^{\mu} \gamma_{\rho \sigma}^{\nu}\left\langle\bar{\psi}_{\alpha}(x) \psi_{\beta}(x) \bar{\psi}_{\rho}(0) \psi_{\sigma}(0)\right\rangle
\end{aligned}
$$

$q \bar{q}$ four-point function \mathbf{G} contains all meson poles:

Pole in momentum space
\Rightarrow exponential decay in Euclidean time

Bethe-Salpeter wave function

= overlap with state
Same poles in all n-point function
that carry meson quantum numbers (but overlap may be small)

hadronic vacuum polarization

quark-photon vertex

hybrid operators

four-quark operators

Functional methods

Derive exact relations for n－point functions from path integral：

$$
\begin{aligned}
& Z=\int \mathcal{D}[\psi, \bar{\psi}, A] e^{-S}=e^{-\Gamma} \\
& \text { - Dyson-Schwinger equations (DSEs) } \\
& \text { - nPI eqs. of motion }
\end{aligned}
$$

$$
\begin{aligned}
& \vdots \\
& \square=G(-0-\mathrm{m} \\
& \xrightarrow{\text { 妾 }} \\
& \text { 的 }]=G^{\prime}(-\mathrm{O} \text {. } \\
& G^{\prime \prime} \text { E } \\
& = \\
& G^{\prime \prime}(\\
& \text { rom }
\end{aligned}
$$

－Functional renormalization group（FRG）eqs．
much progress，approaching quantitative precision：
see Monday B1 \＆Friday A7：
J．Papavassiliou，J．Rodriguez－Quintero，
M．Huber，F．Gao，B．El－Bennich，．．．
－quark mass generation
－gluon mass gap
－three－gluon vertex
－glueballs
compliated structure \＆eqs． for higher n－point functions， more efficient：solve Bethe－Salpeter equations

Bethe-Salpeter equations

Solve homogeneous BSE:

BSE = eigenvalue equation, pole in $G \Leftrightarrow$ eigenvalue $=1$

$$
K G_{0} \Gamma_{i}=\lambda_{i} \Gamma_{i}
$$

- $q \bar{q}$ irreducible kernel
- chiral symmetry constraints (V + AV WTI)
- can be systematically derived from effective action, depends on QCD's n-point functions

 ..

Ladder

Simplest attempt:

$$
\frac{-i \not p+m}{p^{2}+m^{2}}
$$

Analytic structure of G, T, etc. would look like this:

- breaks chiral symmetry: free propagators \Leftrightarrow NJL model
- generates bound-state poles in G and T, possibly also resonances
- but also quark thresholds \& cuts: "hadrons" decay into quarks, no confinement
would be ok if elementary d.o.f. were not quarks but hadrons (\rightarrow EFTs)

Rainbow-ladder

Better: rainbow-ladder truncation

Maris, Roberts, PRC 56 (1997), Maris, Tandy, PRC 60 (1999),

Analytic structure of G, T, etc. would look like this:

"constituent-quark mass":

nonperturbative effect

- chiral symmetry
- dynamical propagators do not have real poles \Rightarrow no quark thresholds
- but no resonances, only bound states

Pion form factor

- Pion electromagnetic form factor has ρ pole:

Maris, Tandy, PRC 61 (2000), ...

- Residue at pole $=g_{\rho \pi \pi}$

RL
Mader, GE, Blank, Krassnigg, PRD 84 (2011)
GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, PPNP 91 (2016)

Absence of width has no visible effect on spacelike behavior

GE, Fischer, Weil, Williams, PLB 797 (2019)
\Rightarrow Main part of dynamics preserved even though ρ is not yet resonance

Hadronic vacuum polarization

Vector current correlator $=$ HVP $(\rightarrow$ muon g -2 problem $)$

C. Lehner, CERN Seminar 2021

Goecke, Fischer, Williams,
PLB 704 (2011)

- Depends only on quark propagator and quark-photon vertex
\qquad ${ }^{-1}=$ \qquad $\underbrace{-1}$

- Quark-photon vertex has 12 tensors:

$$
\Gamma^{\mu}(k, Q)=\left[i \gamma^{\mu} \Sigma_{A}+2 k^{\mu}\left(i k \cdot \Delta_{A}+\Delta_{B}\right)\right]+\left[i \sum_{j=1}^{8} f_{j} \tau_{j}^{\mu}(k, Q)\right]
$$

Ball-Chiu vertex, determined by WTI, depends only on quark propagator

Ball, Chiu, PRD 22 (1980)
contributes 80% to $\mathrm{g}-2$, resonance dynamics important

Beyond rainbow-ladder

Kernel from 3PI effective action
Williams, Fischer, Heupel, PRD 93 (2016)

Much work also done for baryons (mostly RL)
GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, PPNP 91 (2016)
Barabanov et al., PPNP 116 (2021)

- also scalar and axialvector mesons move into right ballpark
- but still bound states

Resonances?

Resonance mechanism depends on truncations: need internal $\pi \pi$ dynamics

- Need internal four-point functions, must come from higher-order truncations
- Implement $\pi \pi$ dynamics explicitly

Williams PLB 798 (2019), Miramontes, Sanchis-Alepuz, EPJA 55 (2019), Santowsky, GE, Fischer, Wallbott, Williams, PRD 102 (2020)

- Generates $\pi \pi$ cut, ρ meson becomes resonance
- How to extract resonance information on 2nd sheet?

[^0]
Extracting resonances

Simpler system: scalar BSE $\Gamma=K G_{0} \Gamma$
Wick 1954, Cutkosky 1954, Nakanishi 1969, ...

- BSE \rightarrow eigenvalue spectrum of $K G_{o}$

Condition for pole: $1 / \lambda=c$
\Rightarrow poles move with coupling parameter c

Extracting resonances

- Contour deformations

Maris, PRD 52 (1995), Strauss, Fischer, Kellermann PRL 109 (2012), Windisch, Huber, Alkofer PRD 87 (2013), ..

- Poles in propagators and kernel produce cuts in outermost integration variable x

$$
\Gamma(X, Z, t)=\int_{0}^{\infty} d x \int_{-1}^{1} d z K(X, x, Z, z) G_{o}(x, z, t) \Gamma(x, z, t)
$$

All possible cuts lie inside yellow area

With contour deformations, can cover entire complex t plane

GE, Duarte, Pena, Stadler, PRD 100 (2019)

Extracting resonances

- Eigenvalues in complex t plane:

To extract resonances from homogeneous BSE, search for poles on 2nd sheet defined by

$$
\frac{1}{\lambda(t)} \stackrel{!}{=} c+0 \cdot i
$$

2nd sheet

Extracting resonances

- To access 2nd sheet, use Schlessinger method / Continued fraction:

Schlessinger, Phys. Rev. 167 (1968),
Tripolt, Haritan, Wambach, Moiseyev, PLB 774 (2017)

- Works well for ρ meson with clear resonance pole Williams PLB 798 (2019), Miramontes, Sanchis-Alepuz, EPJA 55 (2019), Santowsky, GE, Fischer, Wallbott, Williams, PRD 102 (2020)

Rainbow-ladder $+\pi \pi$, scale set by f_{π} :

$$
M_{\rho}=638(2) \mathrm{MeV}, \quad \Gamma_{\rho}=108(4) \mathrm{MeV}
$$

$$
f(z)=\frac{c_{1}}{1+\frac{c_{2}\left(z-z_{1}\right)}{1+\frac{c_{3}\left(z-z_{2}\right)}{1+\frac{c_{4}\left(z-z_{3}\right)}{\ldots}}}}
$$

Extracting resonances

- To access 2nd sheet, use Schlessinger method / Continued fraction:

Schlessinger, Phys. Rev. 167 (1968),
Tripolt, Haritan, Wambach, Moiseyev, PLB 774 (2017)

$$
f(z)=\frac{c_{1}}{1+\frac{c_{2}\left(z-z_{1}\right)}{1+\frac{c_{3}\left(z-z_{2}\right)}{1+\frac{c_{4}\left(z-z_{3}\right)}{\cdots}}}}
$$

- For scalar model less clear: virtual state?

GE, Duarte, Pena, Stadler, PRD 100 (2019)

Scattering amplitude

Solve scattering equation $T=K+K G_{0} T$
GE, Duarte, Pena, Stadler, PRD 100 (2019)

- Contour deformations become more complicated: two cuts, can overlap

- Can still cover parts of complex t plane:

- Advantage: two-body unitarity is automatic, can directly compute amplitude on 2nd sheet

Partial-wave decomposition:

$$
f_{l}(t)_{l u}=\frac{f_{l}(t)_{I}}{1-2 i \tau(t) f_{l}(t)_{I}}
$$

Scattering amplitude

Solve scattering equation $T=K+K G_{0} T$
GE, Duarte, Pena, Stadler, PRD 100 (2019)

$\operatorname{Re} f_{0}(t)$

$c=1$

Scattering amplitude

Solve scattering equation $T=K+K G_{0} T$
GE, Duarte, Pena, Stadler, PRD 100 (2019)

$\operatorname{Re} f_{0}(t)$

$c=2$

Scattering amplitude

Solve scattering equation $T=K+K G_{0} T$
GE, Duarte, Pena, Stadler, PRD 100 (2019)

$\operatorname{Re} f_{0}(t)$

$$
c=3
$$

Scattering amplitude

Solve scattering equation $T=K+K G_{0} T$
GE, Duarte, Pena, Stadler, PRD 100 (2019)

$\operatorname{Re} f_{0}(t)$

$c=4$

Scattering amplitude

Solve scattering equation $T=K+K G_{0} T$
GE, Duarte, Pena, Stadler, PRD 100 (2019)

$\operatorname{Re} f_{0}(t)$

$$
c=5
$$

Scattering amplitude

Solve scattering equation $T=K+K G_{0} T$
GE, Duarte, Pena, Stadler, PRD 100 (2019)

$\operatorname{Re} f_{0}(t)$

$c=7$

Scattering amplitude

Solve scattering equation $T=K+K G_{0} T$
GE, Duarte, Pena, Stadler, PRD 100 (2019)

$\operatorname{Re} f_{0}(t)$

$c=8$

Scattering amplitude

Solve scattering equation $T=K+K G_{0} T$
GE, Duarte, Pena, Stadler, PRD 100 (2019)

Four-quark states

- Four-body system forms two-body clusters,
resonance dynamics automatic GE, Fischer, Heupel, PLB 753 (2016)

- BSE dynamically generates meson poles in BS amplitude, light scalar mesons look like meson molecules

$$
\begin{aligned}
& f_{i}\left(\mathcal{S}_{0}, \nabla\right) \rightarrow 1500 \mathrm{MeV} \\
& f_{i}\left(\mathcal{S}_{0}, \nabla \circlearrowleft\right) \rightarrow 1500 \mathrm{MeV} \\
& f_{i}\left(\mathcal{S}_{0}, \nabla \triangle\right) \rightarrow 1200 \mathrm{MeV} \\
& f_{i}\left(\mathcal{S}_{0}, \nabla \triangle\right) \rightarrow 350 \mathrm{MeV}!
\end{aligned}
$$

- Similar for heavy-light states: X(3872), ...

Wallbott, GE, Fischer, PRD 100 (2019), PRD 102 (2020)
Review: GE, Fischer, Heupel, Santowsky, Wallbott, FBS 61 (2020)

- $q \bar{q}$ admixture for σ meson is small

Santowsky, GE, Fischer, Wallbott, Williams, PRD 102 (2020)

Summary

- Functional methods: resonance dynamics for q $\bar{q} \& q q q$ states depends on truncations (higher n-point functions)
- Recent progress \& technical advances using contour deformations
Williams PLB 798 (2019), Miramontes, Sanchis-Alepuz, EPJA 55 (2019), GE, Duarte, Pena, Stadler, PRD 100 (2019),
Santowsky, GE, Fischer, Wallbott, Williams, PRD 102 (2020),
Miramontes, Sanchis-Alepuz, Alkofer, PRD 103 (2021)
- Four-quark states form internal two-body clusters, resonance dynamics automatic
GE, Fischer, Heupel, Santowsky, Wallbott, FBS 61 (2020)

Thank you!

[^0]: see talk by A. Miramontes right after

