Quarkonium Suppression in the Open Quantum Systems Approach

Xiaojun Yao MIT

Review: XY, 2102.01736

The 19th International Conference on Hadron Spectroscopy and Structure in memoriam Simon Eidelman (HADRON2021)

July 29, 2021

Quarkonium as Probe of Quark-Gluon Plasma

 Static screening: suppression of color attraction —> melting at high T —> reduced production —> thermometer

$$T = 0: V(r) = -\frac{A}{r} + Br \longrightarrow T \neq 0:$$
 Confining part flattened

Quarkonium as Probe of Quark-Gluon Plasma

- Static screening: suppression of color attraction —> melting at high T —> reduced production —> thermometer
- Dynamical screening: related to imaginary potential, dissociation induced by dynamical process, lead to suppression even when T(QGP) < melting T
- Recombination: unbound heavy quark pair forms quarkonium, can happen below melting T, crucial for phenomenology and theory consistency

Quarkonium as Probe of Quark-Gluon Plasma

- Static screening: suppression of color attraction —> melting at high T —> reduced production —> thermometer
- Dynamical screening: related to imaginary potential, dissociation induced by dynamical process, lead to suppression even when T(QGP) < melting T
- Recombination: unbound heavy quark pair forms quarkonium, can happen below melting T, crucial for phenomenology and theory consistency

Simple Thermometer Picture Breaks Down

What QGP properties are we probing by measuring quarkonium?

This talk:

- In certain limit, we are probing chromoelectric correlators of QGP/nuclear medium
- Gauge invariant object, all-order (in coupling) construction
- Tools: open quantum systems + effective field theory (EFT)

Contents

- Introduction: open quantum system
- General procedure: derive semiclassical transport from open quantum system, with effective field theory
- Two temperature regimes:
 - High temperature: quantum Brownian motion, Langevin equations
 - Low temperature: quantum optical limit, Boltzmann equations
- Momentum-dependent & independent chromoelectric correlators of QGP

Open Quantum System

Total system = subsystem + environment: $H = H_S + H_E + H_I$

From Open Quantum System to Semiclassical Transport

Physical Pictures of Two Limits

• Quantum optical limit (low T)

Resolving power of QGP

Transitions between levels

Diffusion of heavy Q pair

Quantum Brownian motion (high T)

Wavefunction decoherence —> dissociation

Two Limits and Hierarchy of Time Scales

- Quantum optical limit (low T) $au_R \gg au_E, \ au_R \gg au_S$ • Quantum Brownian motion (high T) $au_R \gg au_E, \ au_R \gg au_S$ 1
- τ_E : environment correlation time, $\tau_E \sim \frac{1}{T}$ for QGP at equilibrium
- τ_S : subsystem intrinsic time scale, $\tau_S \sim \frac{1}{E_b}$, inverse of quarkonium binding energy
- τ_R : **subsystem relaxation time**, depends on coupling strength between subsystem and environment
- $\tau_R \gg \tau_E$: Markovian dynamics, environment correlation lost during subsystem evolution, generally true in weak coupling limit (between subsystem and environment)

Separation of Scales and NREFT

High Temperature 1: NRQCD $T \gg Mv^2$

Lindblad equation in limit of quantum Brownian motion

$$\frac{d\rho_S(t)}{dt} = -i \left[H_S + \Delta H_S, \rho_S(t) \right] + \frac{1}{N_c^2 - 1} \int \frac{d^3 q}{(2\pi)^3} D^>(q_0 = 0, \boldsymbol{q}) \\ \times \left(\widetilde{O}^a(\boldsymbol{q}) \rho_S(t) \widetilde{O}^{a\dagger}(\boldsymbol{q}) - \frac{1}{2} \left\{ \widetilde{O}^{a\dagger}(\boldsymbol{q}) \widetilde{O}^a(\boldsymbol{q}), \rho_S(t) \right\} \right)$$

Environment correlator $D^{>ab}(x_1, x_2) = g^2 \operatorname{Tr}_E(\rho_E A_0^a(t_1, \boldsymbol{x}_1) A_0^b(t_2, \boldsymbol{x}_2))$

Dissipation effect, important for thermalization

Approximations:

R.Katz, P.B.Gossiaux, 1504.08087

Stochastic Schrödinger equation with dissipation

T.Miura, Y.Akamatsu, M.Asakawa, A.Rothkopf, 1908.06293

Semiclassical limit Langevin equations J.-P. Blaizot, M.A.Escobedo, 1711.10812

12

High Temperature 2: pNRQCD $Mv \gg T \gg Mv^2$

Lindblad equation in limit of quantum Brownian motion

$$\frac{d\rho_S(t)}{dt} = -i \left[H_S + \Delta H_S, \, \rho_S(t) \right] + \frac{D(\omega = 0, \mathbf{R} = 0)}{N_c^2 - 1} \left(L_{\alpha i} \rho_S(t) L_{\alpha i}^{\dagger} - \frac{1}{2} \left\{ L_{\alpha i}^{\dagger} L_{\alpha i}, \, \rho_S(t) \right\} \right)$$

N.Brambilla, M.A.Escobedo, M.Strickland, A.Vairo, P.V.Griend, J.H.Weber, 2012.01240, 2107.06222

Evolution determined by transport coefficients

$$D(\omega = 0, \mathbf{R} = 0) = g^2 \int dt \, \langle E_i(t, \mathbf{R}) \mathcal{W}_{[t,0]} E_i(0, \mathbf{R}) \rangle_T$$
$$\Sigma(\omega = 0, \mathbf{R} = 0) = g^2 \operatorname{Im} \int dt \, \langle \mathcal{T} E_i(t, \mathbf{R}) \mathcal{W}_{[t,0]} E_i(0, \mathbf{R}) \rangle_T$$

D is just the heavy quark diffusion coefficient

Why HQ diffusion coefficient affects quarkonium? $T \gg M v^2$ binding energy effect is subleading

Low Temperature: pNRQCD $Mv \gg Mv^2 \gtrsim T$

Quantum optical and semiclassical limits: Boltzmann equation

$$\frac{\partial}{\partial t}f_{nl}(\boldsymbol{x},\boldsymbol{k},t) + \frac{\boldsymbol{k}}{2M} \cdot \nabla_{\boldsymbol{x}}f_{nl}(\boldsymbol{x},\boldsymbol{k},t) = \mathcal{C}_{nl}^{+}(\boldsymbol{x},\boldsymbol{k},t) - \mathcal{C}_{nl}^{-}(\boldsymbol{x},\boldsymbol{k},t)$$

Dissociation term

T.Mehen, XY: 1811.07027, 2009.02408

$$\begin{aligned} \mathcal{C}_{nl}^{-} &= \frac{T_F}{N_c} \sum_{i_1, i_2} \int \frac{d^3 p_{\rm cm}}{(2\pi)^3} \frac{d^3 p_{\rm rel}}{(2\pi)^3} \frac{d^4 q}{(2\pi)^4} (2\pi)^4 \delta^3 (\boldsymbol{k} - \boldsymbol{p}_{\rm cm} + \boldsymbol{q}) \delta(E_{nl} - E_p + q^0) \\ &\times \langle \psi_{nl} | r_{i_1} | \Psi_{\boldsymbol{p}_{\rm rel}} \rangle \langle \Psi_{\boldsymbol{p}_{\rm rel}} | r_{i_2} | \psi_{nl} \rangle D_{i_1 i_2} (q^0, \boldsymbol{q}) f_{nl}(\boldsymbol{x}, \boldsymbol{k}) \end{aligned}$$

Chromoelectric correlator of QGP (gauge invariant, scale independent)

$$D_{i_1 i_2}(q^0, \boldsymbol{q}) = g^2 \int dt \, d^3 R \, e^{i q^0 (t_1 - t_2) - i \boldsymbol{q} \cdot (\boldsymbol{R}_1 - \boldsymbol{R}_2)} \langle E_{i_1}(t_1, \boldsymbol{R}_1) \mathcal{W} E_{i_2}(t_2, \boldsymbol{R}_2) \rangle_T$$

More general than the previous case:

Binding energy effect matters here: different quarkonium states respond differently Finite momentum transfer, momentum dependence

Chromoelectric Correlator of QGP

Staple shaped Wilson lines

$$D_{i_1 i_2}(q^0, \boldsymbol{q}) = g^2 \int dt \, d^3 R \, e^{i q^0 (t_1 - t_2) - i \boldsymbol{q} \cdot (\boldsymbol{R}_1 - \boldsymbol{R}_2)} \langle E_{i_1}(t_1, \boldsymbol{R}_1) \mathcal{W} E_{i_2}(t_2, \boldsymbol{R}_2) \rangle_T$$

For dissociation: final-state interaction For recombination: initial-state interaction

Inclusive v.s. Differential Reaction Rates

Take dissociation rate as example

$$R_{nl}^{-} = \sum_{i_{1},i_{2}} \int \frac{d^{3}p_{\rm cm}}{(2\pi)^{3}} \frac{d^{3}p_{\rm rel}}{(2\pi)^{3}} \frac{d^{4}q}{(2\pi)^{4}} (2\pi)^{4} \delta^{3}(\boldsymbol{k} - \boldsymbol{p}_{\rm cm} + \boldsymbol{q}) \delta(E_{nl} - E_{p} + q^{0}) d_{i_{1}i_{2}}^{nl}(\boldsymbol{p}_{\rm rel}) D_{i_{1}i_{2}}(\boldsymbol{q}^{0}, \boldsymbol{q})$$
$$d_{i_{1}i_{2}}^{nl}(\boldsymbol{p}_{\rm rel}) = \frac{T_{F}}{N_{c}} \langle \psi_{nl} | r_{i_{1}} | \Psi_{\boldsymbol{p}_{\rm rel}} \rangle \langle \Psi_{\boldsymbol{p}_{\rm rel}} | r_{i_{2}} | \psi_{nl} \rangle$$
Inclusive rate

$$R_{nl}^{-} = \int \frac{d^3 p_{\text{rel}}}{(2\pi)^3} \, \bar{d}^{nl}(\boldsymbol{p}_{\text{rel}}) D\left(\frac{p_{\text{rel}}^2}{M} - E_{nl}, \boldsymbol{R} = 0\right)$$
$$D(q^0, \boldsymbol{R} = 0) = g^2 \int dt \, e^{iq^0 t} \langle E_i(t, \boldsymbol{R}) \mathcal{W}_{[t,0]} E_i(0, \boldsymbol{R}) \rangle_T$$

Momentum independent distribution

Zero frequency limit = HQ diffusion coefficient, appear in quantum Brownian motion Differential rate

$$(2\pi)^3 \frac{dR_{nl}^-}{d^3 p_{\rm cm}} = \int \frac{d^3 p_{\rm rel}}{(2\pi)^3} \, \bar{d}^{nl}(\boldsymbol{p}_{\rm rel}) D\Big(\frac{p_{\rm rel}^2}{M} - E_{nl}, \boldsymbol{p}_{\rm cm} - \boldsymbol{k}\Big)$$

Momentum dependent distribution

Similar to PDF v.s. TMDPDF, though different in time axis

Phenomenological Results for Bottomonia

Lindblad equation for quantum Brownian motion

N.Brambilla, M.A.Escobedo, M.Strickland, A.Vairo, P.V.Griend, J.H.Weber arXiv:2012.01240

Uncertainty of transport coefficients

Coupled Boltzmann equation for quantum optical limit

XY, W.Ke, Y.Xu, S.A.Bass, B.Müller, 2004.06746

Uncertainty of nPDF dominates

Summary

- What are we probing by measuring quarkonium in heavy ion collisions? Chromoelectric correlator of QGP
- Open quantum + EFT: derive quantum and semiclassical transport equations
 - High temperature: Langevin equations, dynamics governed by heavy quark diffusion coefficient & another transport coefficient
 - Low temperature: Boltzmann equations, dynamics governed by energy and momentum dependent chromoelectric correlator