Hypernuclei based on chiral interactions **JÜLICH**

Andreas Nogga, Forschungszentrum Jülich

19th International Conference on Hadron Spectroscopy and Structure in memoriam Simon Eidelman (HADRON 2021), Mexico City

- Motivation
- Chiral YN interactions and estimates of 3BF contributions
- SRG evolution of (hyper-)nuclear interactions
- Impact of an increased $E_{\Lambda}(^{3}_{\Lambda}H)$ on hypernuclear binding
- Light S = -2 hypernuclei
- Determination of CSB contact interactions and Λn scattering length
- Conclusions & Outlook

in collaboration with Johann Haidenbauer, Hoai Le, Ulf Meißner

J. Haidenbauer et al. [arXiv:2107.01134 [nucl-th]].
H. Le et al., Eur. Phys. J. A 57 (2021), 217 [arXiv:2103.08395 [nucl-th]].
H. Le et al., Eur. Phys. J. A 56 (2020) 301 [arXiv:2008.11565 [nucl-th]].
H. Le et al., Phys. Lett. B 801 (2020), 135189[arXiv:1909.02882 [nucl-th]].

Juli 29th, 2021

Hypernuclear interactions

Why is understanding hypernuclear interactions interesting?

- "phenomenologically"
 - hyperon contribution to the EOS, neutron stars, supernovae
 - Λ as probe to nuclear structure

(SN1987a, Wikipedia)

Hypernuclear interactions

Why is understanding hypernuclear interactions interesting?

Hypernuclear interactions have interesting properties

For example

- Particle conversion process is sometimes long-range part of the interaction
- experimental access to explicit chiral symmetry breaking

 $m_K \approx 500 \,\,\mathrm{MeV}$

suppressed by isospin symmetry (CSB!)

Chiral NN & YN & YY interactions

(adapted from Epelbaum, 2008)

additional constraints required (e.g. for YN only 35 data, but 23 parameters at NLO) **data too scarce** to uniquely determine the short range LECs!

Two realization for the YN interaction at NLO: NLO13 & NLO19 with different assumptions on the LECs

(J. Haidenbauer et al., 2013 & 2019)

YY interaction at NLO

(J. Haidenbauer et al., 2016 & 2019)

Chiral interactions include symmetries of QCD & retain flexibility to adjust to data Regulator required — cutoff is also used to estimate uncertainty July 29th, 2021

NLO13 / NLO19 - tool to estimate 3BF

- Regularization required •
 - Dependence on cutoff indicates uncertainty
- NLO13 and NLO19 interactions largely phase shift equivalent - differences indicate size of three-baryon interactions

⁽Haidenbauer at al., 2019)

3BF contribution in nuclear matter ?

Indication that 3BF contribution is significant at saturation density Probably less important for light hypernuclei

YY interaction

(Haidenbauer at al., 2019)

updated version consistent with Ξ -nuclei (only change in $\Xi N \ ^3S_1$)

SRG interactions

Similarity renormalization group is by now a **standard tool** to obtain soft effective interactions for various many-body approaches (NCSM, coupled-cluster, MBPT, ...)

Idea: perform a unitary transformation of the NN (and YN interaction) using a cleverly defined "generator"

$$\frac{dH_s}{ds} = \left[\underbrace{[T, H(s)]}_{\equiv \eta(s)}, H(s) \right] \qquad H(s) = T + V(s)$$

$$\stackrel{\equiv \eta(s)}{\equiv \eta(s)} \text{ this choice of generator drives } V(s) \text{ into a diagonal form in momentum space}$$

- V(s) will be phase equivalent to original interaction
- short range V(s) will change towards softer interactions
- 3BF, 4BF, ... can in principle be generated but are omitted here

• $\lambda = \left(\frac{4\mu_{BN}^2}{s}\right)^{1/4}$ is a measure of the width of the interaction in momentum space

(Bogner et al., 2007)

Unfortunately: ΛNN SRG induced-3BFs are large,

probably much larger than chiral ones! (see also Wirth et al. (2016))

Correlation of separation energies

Separation energies of s-shell hypernuclei are strongly correlated (to

- YN interaction: NLO 600 (2015)
- no CSB in YN and masses added here (yet)
- strong overbinding for $\lambda \gtrsim 1.0 \text{ fm}^{-1}$
- but A=3 and A=5 consistently predicted for $\lambda \approx 0.836 \text{ fm}^{-1}$

p-shell hypernuclei

Separation energies of p-shell hypernuclei are also correlated (to ${}^5_{\Lambda}He$)

- YN interaction: NLO19(600)
- $^{7}_{\Lambda}$ Li astonishingly well reproduced at "magic" $\lambda \approx 0.836 \text{ fm}^{-1}$
- A=6 in our calculations not particle stable
- NCSM works for narrow resonances
- Coulomb contribution in A = 6 (⁴He is used as baseline)

Increased binding of ${}^3_{\Lambda}H$

- ${}^{3}_{\Lambda}$ H is used to determine relative strength of ${}^{3}S_{1}/{}^{1}S_{0}$ interactions or relative size of $a_{3}^{\Lambda N}$ and $a_{1}^{\Lambda N}$
- Jurič et al. (1973!)
 new: Adam et al. (2019)

 $E_{\Lambda} \begin{pmatrix} {}^{3}_{\Lambda} \mathrm{H} \end{pmatrix} = (130 \pm 50) \text{ keV}$ $E_{\Lambda} \begin{pmatrix} {}^{3}_{\Lambda} \mathrm{H} \end{pmatrix} = (410 \pm 120) \text{ keV}$

- separation energies of light hypernuclei have often been obtained many years ago from emulsion data
- systematic uncertainties?
- different experiments contradict each other

What would be the impact on hypernuclear binding in general if ${}^3_\Lambda H$ the binding increases?

Equivalent to: What happens if $a_1^{\Lambda N}$ increases?

(Le et al., 2020)

Increasing $a_1^{\Lambda N}$

... improves the description of ${}^{4}_{\Lambda}$ He

Increasing $a_1^{\Lambda N}$...

... does not distort the description of $^7_\Lambda Li$

In summary: an increase of the hypertriton binding energy is not excluded by binding energies of other light hypernuclei!

S = -2 hypernuclei — $^{6}_{\Lambda\Lambda}$ He

• $\Lambda\Lambda$ excess binding energy

 $\Delta B_{\Lambda\Lambda} = B_{\Lambda\Lambda} - 2B_{\Lambda}$ $= 2E \begin{pmatrix} A-1\\ \Lambda \end{pmatrix} - E \begin{pmatrix} A\\ \Lambda \end{pmatrix} - E \begin{pmatrix} A-2\\ \Lambda \end{pmatrix}$

- NN, YN and YY interactions contribute
- use NN and YN that describe nuclei and single Λ hypernuclei
- small λ_{YY} dependence
- LO overbinds YY
- NLO predicts binding fairly well

Can an S = -2 bound state for A = 4,5 be expected?

• A = 5: $\Lambda\Lambda$ excess binding energy & A = 4: binding energy

- A = 5: LO & NLO predicts bound state
- A = 4: NLO unbound, LO at threshold to binding (see also Contessi et al., 2019)
- excess energy larger for A = 5 than for A = 6 (in contrast to Filikhin et al., 2002!)

S = -2 bound state for A = 5 can be expected,

for A = 4 less likely but not ruled out!

CSB contributions in $^{4}_{\Lambda}$ He

- perturbative calculations of CSB
- breakdown in kinetic energy, YN and NN interaction
- kinetic energy less important for chiral interactions

interaction	$\langle T \rangle_{\rm CSB}$	$\langle V_{YN} \rangle_{\rm CSB}$	V_{NN}^{CSB}	$\Delta E_{\Lambda}^{pert}$	ΔE_A
NLO13(500)	44	200	16	261	265
NLO13(550)	46	191	20	257	261
NLO13(600)	44	187	20	252	256
NLO13(650)	38	189	18	245	249
NLO19(500)	14	224	5	243	249
NLO19(550)	14	226	7	247	252
NLO19(600)	22	204	12	238	243
NLO19(650)	26	207	12	245	250

interaction	$\langle T \rangle_{\rm CSB}$	$\langle V_{YN} \rangle_{\rm CSB}$	V_{NN}^{CSB}	$\Delta E_{\Lambda}^{pert}$	ΔE_{Λ}
NLO13(500)	5	-90	15	-71	-66
NLO13(550)	5	-86	18	-63	-56
NLO13(600)	4	-83	19	-59	-53
NLO13(650)	3	-80	17	-59	-55
NLO19(500)	1	-84	3	-80	-75
NLO19(550)	2	-81	2	-77	-72
NLO19(600)	4	-82	6	-71	-67
NLO19(650)	4	-79	9	-66	-69

JÜLICH Forschungszentrum

(Schulz et al., 2016; Yamamoto, 2015)

(Haidenbauer et al., 2021)

How model-dependent are predictions for the Λn scattering length?

July 29th, 2021

18

Prediction for Λn **scattering**

- assuming the current experimental situation for ${}^{4}_{\Lambda}$ He / ${}^{4}_{\Lambda}$ He
- without CSB: $a_s^{\Lambda n} \approx 2.9 \ fm$ with CSB: $a_s^{\Lambda n} \approx 3.3 \ fm$
- improved description of Λp data
- almost independent of cutoff & NLO variant
- CSB of $a_t^{\Lambda n}$ is smaller

	$a_s^{\Lambda p}$	$a_t^{\Lambda p}$	$a_s^{\Lambda n}$	$a_t^{\Lambda n}$	$\chi^2(\Lambda p)$	$\chi^2(\Sigma N)$	χ^2 (total)
NLO13(500)	-2.604	-1.647	-3.267	-1.561	4.47	12.13	16.60
NLO13(550)	-2.586	-1.551	-3.291	-1.469	3.46	12.03	15.49
NLO13(600)	-2.588	-1.573	-3.291	-1.487	3.43	12.38	15.81
NLO13(650)	-2.592	-1.538	-3.271	-1.452	3.70	12.57	16.27
NLO19(500)	-2.649	-1.580	-3.202	-1.467	3.51	14.69	18.20
NLO19(550)	-2.640	-1.524	-3.205	-1.407	3.23	14.19	17.42
NLO19(600)	-2.632	-1.473	-3.227	-1.362	3.45	12.68	16.13
NLO19(650)	-2.620	-1.464	-3.225	-1.365	3.28	12.76	16.04

(Haidenbauer et al., 2021)

An accurate prediction for the Λn interaction is possible using hypernuclei!

Conclusions & Outlook

- YN & YY interactions are interesting
 - EOS and hyperon puzzle
 - access to explicit chiral symmetry breaking
- YN & YY interactions not well understood
 - conversion processes often drive long range part of interaction
 - scarce YN, almost no YY data
- Hypernuclei provide important constraints
 - ${}^{1}S_{0} \Lambda N$ scattering length & ${}^{3}_{\Lambda} H$ & impact on other hypernuclei
 - ${}^{1}S_{0} \Lambda\Lambda$ scattering length & ${}^{6}_{\Lambda\Lambda}$ He & predictions for A=4,5
 - CSB of ΛN scattering & ${}^4_{\Lambda}{
 m He}$ / ${}^4_{\Lambda}{
 m H}$
- J-NCSM
 - reliable predictions are possible for ranges of interactions for S = -1 and -2
 - **need SRG induced 3BFs** to validate choice of λ_{YN} (see also Wirth et al. (2016))
 - estimates of chiral 3BFs are needed (implementing Petschauer et al., (2016))
 - study sensitivity to p-wave interaction
 - study CSB of p-shell hypernuclei