MIXING AND CPV IN CHARM DECAYS AT LHCb

HADRON 2021, MEXICO (VIRTUAL)

CHARM PHYSICS

- Because of the severe GIM suppression, mixing is slow and CPV small (according to SM)
- m_c is (quite) close to the hadronic scale $\Lambda_{\rm QCD} \rightarrow \Lambda_{\rm QCD}/m_c$ perturbative expansion tricky
- Strong coupling $\alpha_s(m_c)$ is large \rightarrow higher order contributions and/or non-perturbative effects can be significant

 Long distance contributions are important

- Precise theoretical predictions
 are difficult
- Experimental input crucial to constrain charm dynamics
- Potential for measurable New Physics is great

CPV IN CHARM

- The only up-type quark decays where CPV can be studied
- Complementary to K and B
- All three types of CPV are realized in charm
 - Direct

PARAMETERS

Mixing comes from a mismatch between flavour and mass eigenstates

$$|D_{1,2}\rangle = p|D^0\rangle \pm q|\bar{D}^0\rangle$$

Usually described by

$$x = \Delta m_D / \Gamma_D$$
 and $y = \Delta \Gamma_D / 2 \Gamma_D$

- In case of CPV |q/p| and $\phi \approx \phi_{\lambda_f}$ or

$$\Delta x = \frac{1}{2} \left[x \cos \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) + y \sin \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) \right]$$
$$\Delta y = \frac{1}{2} \left[y \cos \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) - x \sin \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) \right]$$

SEARCH FOR TIME-DEPENDENT CPV IN $D^0 \rightarrow h^+h^-$ ($h \in \{K, \pi\}$) 4 arXiv:2105.09889

• Same channels as ΔA_{CP} discovery

$$A_{CP} = \frac{\Gamma(D^0(t) \to f) - \Gamma(\bar{D}^0(t) \to f)}{\Gamma(D^0(t) \to f) + \Gamma(\bar{D}^0(t) \to f)} = a_f^d + \Delta Y_f \frac{t}{\tau_D} + \mathcal{O}(x^2, y^2, xy)$$

- SM prediction is very small $\sim 10^{-5}$ (Kagan & Silvestrini, 2020, Li & Umeeda, 2020)
- We don't observe A_{CP}

Time-dep. nuisance parameters

$$A_{\text{raw}} = \frac{N(D^{0}(t) \to f) - N(\bar{D}^{0}(t) \to f)}{N(D^{0}(t) \to f) + N(\bar{D}^{0}(t) \to f)} \approx a_{f}^{d} + \Delta Y_{f} \frac{t}{\tau_{D}} + A_{\text{prod}}(f, t) + A_{\text{det}}(f, t)$$

Search for time-dependent CPV in $D^0 \rightarrow h^+h^-$

•
$$D^0$$
 from $D^{*+} \rightarrow D^0 \pi^+_{tag}$

- At $\sqrt{s} = 13 \text{ TeV}$ with $\mathcal{L} = 5.7 \text{ fb}^{-1}$
- * 58M $D^0 \rightarrow K^+ K^-$, 18M $D^0 \rightarrow \pi^+ \pi^-$, purity $\sim 95\%$

Residual combinatorial background subtracted using a sideband

5

arXiv:2105.09889

SEARCH FOR TIME-DEPENDENT CPV IN D^0 $\rightarrow h^+h^-$

- Momentum-dependent detection asymmetries A_{det} based on magnet field polarity and charge of π_{tag}^{\pm}
- $A_{det} + A_{prod} \rightarrow D^0 / \overline{D}^0$ momentum asym.
- Trigger correlates D⁰ decay time with kinematics $\rightarrow A_{det}(t), A_{prod}(t)$ become time-dependent
- Solution: equalize D^0 and \overline{D}^0 kinematics by reweighting

arXiv:2105.09889 6

LHCb

2017 MagUp

 $D^0 \rightarrow K^- \pi^+$

 $p_{\tau}(D^0)$ [GeV/c]

GeV/c

vsym. [%] Entries /

0.05

0.04 (0.25

0.03

0.02

0.01

SEARCH FOR TIME-DEPENDENT CPV IN $D^0 \rightarrow h^+h^-$

- $\Delta Y_{K^+K^-}$ and $\Delta Y_{\pi^+\pi^-}$ agree withing 0.5σ
- Compatible with no CPV within 2σ
- Precision improved by a factor of two
- Small systematic uncertainty \rightarrow great prospects for future LHCb measurements (σ approaching SM prediction $\mathcal{O}(10^{-5})$, LHCB-TDR-023-001)

- The Γ difference ($y \neq 0$) between neutral charm-meson eigenstates has been established in the past years (PRL 122, 011802 (2019), PLB 753 (2016), PRD 87, 012004 (2013))
- The mass difference $(x \neq 0)$ has so far been elusive; the most precise measurement by LHCb reported $x_{CP} = (2.7 \pm 1.6) \times 10^{-3}$ (PRL 122, 231802 (2019)
- $D^{*+} \rightarrow D^0 \pi^+_{tag}$ $D^0 \rightarrow K^0_S \pi^+ \pi^-$
- $\mathcal{L} = 5.4 \, \text{fb}^{-1}$
- 30.6M signal events
- Exploits multi-body final state; sensitive to local CPV

arXiv:2106.03744

- Rich resonant structure
- Many interfering amplitudes
 - $\bullet D^0 \xrightarrow{\rm DCS} {\cal K}^{*+} \pi^- \to {\cal K}^0_S \pi^+ \pi^-$
 - $\bullet \ D^0 \xrightarrow{\rm mix} \bar{D}^0 \xrightarrow{\rm CF} K^{*+}\pi^- \to K^0_S\pi^+\pi^-$
 - $D^0 \xrightarrow{\mathrm{CF}} K^{*-} \pi^+ \to K^0_{\mathrm{S}} \pi^+ \pi^-$
 - $D^0 \xrightarrow{CP} K^0_S \rho^0 \to K^0_S \pi^+ \pi^-$
- Dalitz plot divided into \pm bins; strong-phase difference is \sim constant in each bin
- Strong-phases constrained using CLEO and BES-III inputs
- Measure a time-dep. ratio for each \pm bin; "bin-flip" (PRD 99, 012007 (2019))
- Most detector effects cancel

- Ratios of ± bins
- Deviations from constant values due to mixing
- Red lines are fit projections where $x_{CP} \equiv 0 \rightarrow y_{CP}$ alone can't reproduce observation

$$\begin{split} x_{CP} &= (3.97 \pm 0.46 \pm 0.29) \times 10^{-3} \\ y_{CP} &= (4.59 \pm 1.20 \pm 0.85) \times 10^{-3} \end{split}$$

• First measurement of non-zero $x (> 7\sigma)$

arXiv:2106.03744

11

- Difference of ratios for D^0 and \bar{D}^0
- No CPV observed (slope)

 $\Delta x = (0.27 \pm 0.18 \pm 0.01) \times 10^{-3}$ $\Delta y = (0.20 \pm 0.36 \pm 0.13) \times 10^{-3}$

Limits significantly improved

- WA significantly improved for both mixing and CPV
- Blue contours include the presented $D^0 \rightarrow h + h^-$ result

• Especially Δx and Δy statistically dominated \rightarrow future improvement

arXiv:2106.03744

Measurement of CP asymmetry in $D^0 \rightarrow K^0_S K^0_S$ decays

- Two similarly sized contributions \rightarrow great for CPV observation
- A_{CP} can be large; up to 1% (Nierste & Schacht, 2015)
- Improved methods over previous analysis on a smaller dataset (JHEP 11 (2018) 048) \rightarrow 30% sensitivity improvement
 - Nuisance production and detection asymmetries removed by a weighting technique exploiting $D^0 \rightarrow K^+ K^-$ calib. sample
 - Sample split into consistent sub-samples (K⁰_S daughters tracking, primary interaction origin, etc.)
- $\mathcal{L} = 2 \text{ fb}^{-1} (\text{previous analysis}) \rightarrow 6 \text{ fb}^{-1}$
- 8k signal events

13

arXiv:2105.01565

Cheng & Chiang, 2012

MEASUREMENT OF CP ASYMMETRY IN $D^0 \rightarrow K^0_S K^0_S$ DECAYS arXiv:2105.01565

• Time-integrated A_{CP} from a 3D fit to $\Delta m = m(K_S^0 K_S^0 \pi^+) - m(K_S^0 K_S^0)$ and $m(K_S^0)$ of both K_S^0

Highest precision to date

$$A_{CP}(D^0 \rightarrow K^0_S K^0_S) = (3.1 \pm 1.2 \pm 0.4 \pm 0.2)\%$$
stat. syst. control sample

- Compatible with zero within 2.4 σ

SEARCH FOR CPV IN $D^+_{(\mathrm{s})} o h^+ \pi^0$ and $D^+_{(\mathrm{s})} o h^+ \eta, h \in \{K,\pi\}$

- 7 decays; first $A_{CP}(D^+_{(s)} \rightarrow h^+h^0)$ measurement at hadron collider
- $A_{CP}(D^+ \rightarrow \pi^+ \pi^0) = 0$ in SM because of isospin rules \rightarrow good place to look for NP
- Neutral particles in final state challenging at hadron colliders
- Can't form displaced D decay vertex with only one track
 - Can use converted $\gamma \rightarrow e^+e^-$ (low efficiency)
 - Can use $h^0 \rightarrow e^+e^-\gamma$ (low branching fraction)
- Asym. extracted from 2D fit

15

arXiv:2103.11058

SEARCH FOR CPV IN $D^+_{(s)} \rightarrow h^+\pi^0$ and $D^+_{(s)} \rightarrow h^+\eta$, $h \in \{K, \pi\}$ 16 arXiv:2103.11058

- $D^+_{(s)} \to K^0_S h^+$ control samples used to subtract A_{prod} and A_{det}
- $A_{CP}(D^+_{(s)} \rightarrow K^0_S h^+)$ known with high precision (PRL 122, 191803 (2019))

$$\begin{aligned} A_{CP}(D^+ \to \pi^+ \pi^0) &= (-1.3 \pm 0.9 \pm 0.6)\% \\ A_{CP}(D^+ \to K^+ \pi^0) &= (-3.2 \pm 4.7 \pm 2.1)\% \\ A_{CP}(D^+ \to \pi^+ \eta) &= (-0.2 \pm 0.8 \pm 0.4)\% \\ A_{CP}(D^+ \to K^+ \eta) &= (-6 \pm 10 \pm 4 \)\% \\ A_{CP}(D^+_s \to K^+ \pi^0) &= (-0.8 \pm 3.9 \pm 1.2)\% \\ A_{CP}(D^+_s \to \pi^+ \eta) &= (0.8 \pm 0.7 \pm 0.5)\% \\ A_{CP}(D^+_s \to K^+ \eta) &= (0.9 \pm 3.7 \pm 1.1)\% \end{aligned}$$

- All compatible with CP symmetry
- First 5 are most precise measurements to date

SUMMARY

- LHCb collected the largest sample of charm decays; leading to new world-best measurements
 - Time-integrated CP asymmetries (including channels with neutrals)
 - Time-dependent CP asymmetries and mixing parameters (including first observation of a mass difference between neutral D mass eigenstates)
- Precision of the measurements is mostly limited by statistics \rightarrow improvement expected
- More interesting Run 2 analyses in the pipeline
- Run 3 (starting next year) higher luminosity, upgraded trigger and detector

✓ Stay tuned!

THANK YOU!