

Inelastic interaction of antinuclei with matter: first experimental constraints with ALICE

Manuel Colocci¹ on behalf of the ALICE Collaboration

¹CERN

Introduction

- Antinuclei in space (searched by AMS-02, GAPS) may result from:
 - Dark Matter annihilation (or decay) and/or segregated antimatter (signal)
 - Interaction of cosmic rays with the interstellar gas (background)
- Yields (for both channels) depend mainly on:
 - Antinuclei formation mechanisms
 - Particle transport in the galaxy (e.g. diffusion, convection)
 - Attenuation due to inelastic scatterings with the interstellar gas

Antinuclei σ_{inel} measurements

Relevant inel. cross sections (σ_{inel}) only poorly constrained for antinuclei heavier than \overline{p} :

- Antideuterons (\overline{d}) measured at U70 (Serpukhov) only at p = (13.3, 25) GeV/c [1]
- No measurements for ${}^{3}\overline{\text{He}}$ performed so far

Still today, σ_{inel} of antinuclei are mostly taken from some parametrizations based e.g.

- on a combination of $\sigma_{tot/el}(\bar{p}p)$ with Glauber model (Geant4) [2]
- on a combination of antiproton and antineutron σ_{inel} [3]

[1] Denisov et al., Nuclear Physics B 31 (1971) 253
[2] Uzhinsky et al., Physics Letters B 705 (2011) 235
[3] Moiseev, Ormes, Astroparticle Physics 6 (1997) 379

The ALICE experiment

The ALICE experiment

hermal-FIST CSM (PLB 785 (2018) 171-174

ALICE pp, 7 TeV

 10^{2}

pp, 13 TeV Pb-Pb, 2.76 TeV

Pb-Pb, 5.02 TeV (Prel.)

 $-V_{c} = 3 dV/dy - V_{c} = dV/dy$

10

Multiplicity Classes:

V0A (Pb-side) for p-Pb V0M for pp and Pb-Pb

- Coalescence (PLB 792 (2019) 132-137

(Anti)nuclei measurements in ALICE (among many others)

- Production yields of d, t, ³He, ⁴He, ³_ΛH and of the corresponding antiparticles measured in all collision systems/energies at LHC → to better understand (anti)nucleisynthesis mechanisms in hadron-hadron collisions: Hadron coalescence vs SHM
- Highest precision determination of ${}^{3}_{\Lambda}$ H lifetime and of ${}^{3}_{\Lambda}$ H separation energy (B_{Λ}) \rightarrow See F. Mazzaschi talk, Fri. 30/09

0

+

2d / (p

0.005

0.004

0.003

0.002

0.001

Method(s) to measure σ_{inel}

TOF/TPC matching efficiency in Pb-Pb coll.

High statistics No access to very-low momenta

Antiparticle/particle raw ratio in pp, p-Pb coll.

Access to low momenta Background from secondary particles

Antiparticle-to-particle ratio

ALI-PUB-490962

Antiparticle-to-particle ratios are mainly sensitive to the variation of the inelastic cross section \rightarrow they can be used to measure $\sigma_{inel}(\overline{d}-A)$, $\sigma_{inel}(^{3}\overline{He}-A)$

Antiparticle/particle raw ratio in pp, p-Pb coll. Access to low momenta Background from secondary particles

Antideuteron-to-deuteron raw ratio

 $\sigma_{\text{inel}}(\bar{d})$ can be experimentally constrained by varying $\sigma_{\text{inel}}(\bar{d})$ in simulations

 $\sigma_{inel}(d)$ is fixed to the Geant4 parameterisations

$\sigma_{inel}(\bar{d})$ can be experimentally constrained by varying $\sigma_{inel}(\bar{d})$ in simulations

 $\sigma_{inel}(d)$ is fixed to the Geant4 parameterisations

³He signal (Pb-Pb collisions)

~17k ${}^{3}\overline{\text{He}}$ reconstructed in Pb-Pb coll. (TPC) ~0.7k ${}^{3}\overline{\text{He}}$ reconstructed in pp coll. (TPC)

$\sigma_{inel}(^{3}\overline{He}-A)$

- TOF-to-TPC counts and ³He-to-³He raw ratio employed
- Both methods provide compatible results (higher precision in Pb-Pb)

1st ever measurement of ³He absorption cross section in matter

- Exp. data at very low momentum (*p* < 1.5 GeV/*c*) show large discrepancy w.r.t. Geant4 parametrization
- For *p* > 2.5 GeV/c Geant4 overestimates σ_{inel} by ~20%

[1] Carlson et al., Phys Rev D 89 (2014) 076005 [2] Korsmeier et al., Phys Rev 97 (2018) 103011

³He source: cosmic rays (II)

- 2^{nd 3}He source from interactions of cosmic rays with interstellar matter
- pp, p-³He, ³He-p, ³He-³He mostly relevant
- Production cross section in pp from [1]: EPOS LHC + coalescence afterburner Scaling factor $(A_T A_P)^{11/15}$ for the other collision systems

Particle transport in the galaxy

Transport equation can be solved using GALPROP code [1]

- Propagation parameters (common for all particles) are constrained from available cosmic ray measurements [2]
- Propagation from GALPROP down to the boundaries of Solar System
 → Helioshere (shielding cosmic rays) needs to be taken into account
 → Force Field approximation [3] accounts for solar modulation

[1] <u>https://galprop.stanford.edu/</u>
[2] Boschini et al, Astrophys J Suppl 250 (2020) 27
[3] Gleeson, Axford, Astrophys J 154 (1968) 1011

M. Colocci - HADRON-2021 - 29/July/2021

ANNIHILATIO

PROPAGATIO

SOURCE(S

³He annihilation

- ³He nuclei may interact inelastically with ISM and get "absorbed"
- Proton and Helium targets mostly relevant
- $\sigma_{inel}(^{3}\overline{He}-p)$ from Geant4 rescaled using ALICE experimental data
- 8% uncertainty from A scaling [1] is valid for all targets

Results: ³He flux near Earth

M. Colocci - HADRON-2021 - 29/July/2021

Summary and outlook

Unique tracking/PID capability of ALICE allows one to *clearly* identify light nuclei and antinuclei produced in hadron-hadron collisions at the LHC

Low-energy antideuteron and ³He inelastic cross sections experimentally constrained for the first time (among many other measurements!)

Impact on ³He flux near Earth evaluated \rightarrow Small impact from the uncertainty on σ_{inel} (³He-A) \rightarrow High transparency of the galaxy to ³He flux

Thanks for your attention