

Ratios of partial wave amplitudes in the decays of J = 1 and J = 2 mesons[†]

Vanamali Shastry¹ with: Enrico Trotti¹ and Francesco Giacosa^{1,2}

¹Institute of Physics, Jan Kochanowski University, Kielce, Poland ²Institute for Theoretical Physics, Johann Wolfgang Goethe University, Frankfurt, Germany

> HADRON 2021 July 29, 2021

[†] Work supported by NCN, Poland

Plan

Introduction

Formalism Two Examples Modeling the decays

Results and Discussion

Conclusion

Introduction

Meson Phenomenology

Nonets	J^{PC}	Flavor states
Pseudoscalar (P)	0-+	$\pi^{\pm,0}, K^{\pm,0,ar{0}}, \eta_N, \eta_S (\eta, \eta')$
Vector (V_{μ})	1	$ ho^{\pm,0}, K^{*\pm,0,ar 0}, \omega_N, \omega_S \ (\omega, \ \phi).$
Axial-vector (A_{μ})	1++	$a_1^{\pm,0}, K_{1,A}^{\pm,0,\bar{0}}, f_{1,A}^N, f_{1,A}^S (f_1, f_1').$
Pseudovector (B_{μ})	1+-	$b_1^{\pm,0}, K_{1,B}^{\pm,0,\bar{0}}, f_{1,B}^{N}, f_{1,B}^{S}(h_1, h_1').$
Pseudotensor $(T_{\mu\nu})$	2^{-+}	$\Pi_2^{\pm,0}, K_2^{\pm,0,ar 0}, \eta_2^N, \eta_2^S (\eta_2, \eta_2'*).$
Tensor $(X_{\mu\nu})$	2^{++}	$a_2^{\pm,0}, K_2^{*\pm,0,\bar{0}}, f_2^N, f_2^S(f_2, f_2').$
Axial-tensor $(W_{\mu\nu})$	$2^{}$???, $K_2^{\prime\pm,0,ar{0}}$, ???.

Table 1: The nonets, their spin and parity, and the flavor states.

The decays of interest:

$$A_{\mu} \to V_{\mu}P, B_{\mu} \to V_{\mu}P, T_{\mu\nu} \to X_{\mu\nu}P, \text{ and } T_{\mu\nu} \to V_{\mu}P.$$

Formalism

Partial Waves

Scattering cross-section can be decomposed into (infinitely many) partial waves:

$$\frac{d\sigma}{d\Omega} = \frac{1}{k^2} \left| \sum_{\ell=0}^{\infty} (2\ell+1) e^{i\,\delta_\ell} \sin \delta_\ell P_\ell(\cos \theta) \right|^2 \tag{1}$$

The angular information is lost when calculating the decay width.

- Decay width is a number, scattering cross-section is a function of angles and momenta.
- Decays *do* proceed through partial waves (number of ℓ -channels are finite, restricted by the J^P values of the parent and daughters).
- Decompose the *amplitude*.
- Helicity formalism (Jacob & Wick, 1959); Tensor formalism (Zemach, 1965); Covariant helicity formalism (Chung, 1993 & 1997).

Helicity Amplitude

Spin states: $|J, M\rangle$ (parent), $|s, \lambda\rangle$, and $|\sigma, \nu\rangle$ (daughters).

$$|J, M\rangle = |\ell, m_{\ell}\rangle \oplus |S, \delta\rangle, \quad |S, \delta\rangle = |s, \lambda\rangle \oplus |\sigma, \nu\rangle \tag{2}$$

Uniwersytet Jana Kochanowskiego

The amplitude,

$$i\mathcal{M}^{J}(\theta,\phi;M) \propto D_{M\delta}^{J*}(\phi,\theta,0)F_{\lambda\nu}^{J}; \quad \delta = \lambda - \nu$$
(3)

In the frame of reference where momenta: $k_{0,\mu} = (M_p, \vec{0})$ (parent), $k_{1,\mu} = (E_{d,1}, 0, 0, -k)$, and $k_{2,\mu} = (E_{d,2}, 0, 0, k)$ (daughters) ($\theta = \phi = 0$), $i\mathcal{M}^J(0, 0; M) \propto F^J_{\lambda\nu}$ (4)

The helicity amplitudes $(F_{\lambda\nu}^J)$ are related to the ℓS coupling amplitudes $(G_{\ell S}^J)$ as,

$$F_{\lambda\nu}^{J} = \sum_{\ell S} \sqrt{\frac{2\ell+1}{2J+1}} \langle \ell 0 S \delta | J \delta \rangle \langle s \lambda \sigma - \nu | S \delta \rangle G_{\ell S}^{J}$$
(5)

$$a_1(1260) \rightarrow \rho \pi$$

The Lagrangian:

$$\mathcal{L} = ig_0 a_{1\mu} \rho^{\mu} \pi \tag{6}$$

The amplitude:

$$i\mathcal{M} = ig_0 \ \epsilon_\mu(0, M) \epsilon^{\mu*}(\vec{k}, \lambda) = -ig_0 \begin{cases} 1 & M = \lambda = \pm 1\\ \gamma & M = \lambda = 0 \end{cases}$$
(7)

From Eq. (5),

$$F_{10}^{1} = \frac{1}{\sqrt{3}}G_{0} + \frac{1}{\sqrt{6}}G_{2}$$

$$F_{00}^{1} = \frac{1}{\sqrt{3}}G_{0} - \sqrt{\frac{2}{3}}G_{2}$$
(8)
(9)

The ratio of the PWAs:

$$\frac{G_2}{G_0} = \sqrt{2} \left(\frac{M_{d,1} - E_{d,1}}{2M_{d,1} + E_{d,1}} \right) = -0.045 \qquad (\text{expt.} = -0.062 \pm 0.02) \tag{10}$$

$\pi_2(1670) \to f_2(1270)\pi$

The Lagrangian:

$$\mathcal{L} = g_2 \,\pi_{2,\mu\nu} f_2^{\mu\nu} \pi + g_3 \,\pi_{2,\alpha\mu\nu} f_2^{\alpha\mu\nu} \pi \tag{11}$$

The amplitude:

$$i\mathcal{M}_{T}^{(J=2)}(0,0;M) = ig_{2} \epsilon_{\mu\nu}(\vec{0},M)\epsilon^{\mu\nu*}(\vec{k},\lambda) + i2g_{3} \left(k_{0} \cdot k_{1}\epsilon_{\mu\nu}(\vec{0},M)\epsilon^{\mu\nu*}(\vec{k}_{1},\lambda) - k_{0,\alpha}k_{1}^{\nu}\epsilon_{\mu\nu}(\vec{0},M)\epsilon^{\alpha\mu*}(\vec{k}_{1},\lambda)\right)$$
(12)

$$=i\begin{cases} \frac{(M_{d,1}^2 + 2E_{d,1}^2)}{3M_{d,1}^2}g_2 + 2g_3\frac{M_p}{M_{d,1}^2}E_{d,1}^3 & M = \lambda = 0\\ g_2\frac{E_{d,1}}{M_{d,1}} + g_3\frac{M_p}{M_{d,1}}(3k^2 + 2M_{d,1}^2) & M = \lambda = \pm 1\\ g_2 + 2g_3M_pE_{d,1} & M = \lambda = \pm 2 \end{cases}$$
(13)

$\pi_2(1670) \to f_2(1270)\pi$

From Eq. (5),

$$F_{20}^{2} = \frac{1}{\sqrt{5}}G_{0} + \sqrt{\frac{2}{7}}G_{2} + \frac{1}{\sqrt{70}}G_{4}$$

$$F_{10}^{2} = \frac{1}{\sqrt{5}}G_{0} - \frac{1}{\sqrt{14}}G_{2} + \sqrt{\frac{8}{35}}G_{4}$$

$$F_{00}^{2} = \frac{1}{\sqrt{5}}G_{0} - \frac{2}{\sqrt{7}}G_{2} + \frac{6}{\sqrt{35}}G_{4}$$
(14)

where, $G_0 = G_{02}^2$, $G_2 = G_{22}^2$ and $G_4 = G_{42}^2$.

$$\frac{G_2}{G_0} = \begin{cases} -0.023 & g_3 = 0\\ f(g_3/g_2) & g_3 \neq 0 \end{cases}$$
(expt. = -0.18 ± 0.06) (15)

 $g_2 = g_c^{PT} \sqrt{2} \cos \beta_t$ and $g_3 = g_d^{PT} \sqrt{2} \cos \beta_t$.

Lagrangian

J = 1

$$\mathcal{L} = ig_c^A \operatorname{Tr}\{A_{\mu}[V^{\mu}, P]\} + ig_d^A \operatorname{Tr}\{\mathcal{R}_{\mu\nu}[\mathcal{V}^{\mu\nu}, P]\} + g_c^B \operatorname{Tr}\{B_{\mu}\{V^{\mu}, P\}\} + g_d^B \operatorname{Tr}\{\mathcal{B}_{\mu\nu}\{\mathcal{V}^{\mu\nu}, P\}\}$$
(16)

J = 2

$$\mathcal{L} = g_c^{PT} \operatorname{Tr} \{ T_{\mu\nu} \{ X^{\mu\nu}, P \} \} + g_d^{PT} \operatorname{Tr} \{ \mathcal{T}_{\alpha\mu\nu} \{ X^{\alpha\mu\nu}, P \} \}$$
$$+ i g_c^T \operatorname{Tr} \{ W_{\mu\nu} \{ X^{\mu\nu}, P \} \} + i g_d^T \operatorname{Tr} \{ W_{\alpha\mu\nu} \{ X^{\alpha\mu\nu}, P \} \}$$
$$+ i g_{\nu}^{PT} \operatorname{Tr} \{ T_{\mu\nu} [V^{\mu}, \partial^{\nu} P] \} + i g_t^{PT} \operatorname{Tr} \{ \mathcal{T}_{\alpha\mu\nu} [\mathcal{V}^{\alpha\mu}, \partial^{\nu} P] \}$$
$$+ g_{\nu}^T \operatorname{Tr} \{ W_{\mu\nu} [V^{\mu}, \partial^{\nu} P] \} + g_t^T \operatorname{Tr} \{ W_{\alpha\mu\nu} [\mathcal{V}^{\alpha\mu}, \partial^{\nu} P] \}$$
(17)

where, $\mathcal{A}^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}$, $\mathcal{B}^{\mu\nu} = \partial^{\mu}B^{\nu} - \partial^{\nu}B^{\mu}$, $\mathcal{V}^{\mu\nu} = \partial^{\mu}V^{\nu} - \partial^{\nu}V^{\mu}$, $\mathcal{T}_{\alpha\mu\nu} = \partial_{\alpha}T_{\mu\nu} - \partial_{\mu}T_{\alpha\nu}$, $\mathcal{X}^{\alpha\mu\nu} = \partial^{\alpha}X^{\mu\nu} - \partial^{\mu}X^{\alpha\nu}$, and $\mathcal{W}_{\alpha\mu\nu} = \partial_{\alpha}W_{\mu\nu} - \partial_{\mu}W_{\alpha\nu}$.

Lagrangian

J = 1

$$\mathcal{L} = ig_c^A \operatorname{Tr}\{A_{\mu}[V^{\mu}, P]\} + ig_d^A \operatorname{Tr}\{\mathcal{R}_{\mu\nu}[\mathcal{V}^{\mu\nu}, P]\} + g_c^B \operatorname{Tr}\{B_{\mu}\{V^{\mu}, P\}\} + g_d^B \operatorname{Tr}\{\mathcal{B}_{\mu\nu}\{\mathcal{V}^{\mu\nu}, P\}\}$$
(18)

J = 2

$$\mathcal{L} = g_c^{PT} \operatorname{Tr} \{ T_{\mu\nu} \{ X^{\mu\nu}, P \} \} + g_d^{PT} \operatorname{Tr} \{ \mathcal{T}_{\alpha\mu\nu} \{ X^{\alpha\mu\nu}, P \} \}$$

+ $i g_c^{AT} \operatorname{Tr} \{ W_{\mu\nu} \{ X^{\mu\nu}, P \} \} + i g_d^{AT} \operatorname{Tr} \{ W_{\alpha\mu\nu} \{ X^{\alpha\mu\nu}, P \} \}$
+ $i g_v^{PT} \operatorname{Tr} \{ T_{\mu\nu} [V^{\mu}, \partial^{\nu} P] \} + i g_t^{PT} \operatorname{Tr} \{ \mathcal{T}_{\alpha\mu\nu} [\mathcal{V}^{\alpha\mu}, \partial^{\nu} P] \}$
+ $g_v^{AT} \operatorname{Tr} \{ W_{\mu\nu} [V^{\mu}, \partial^{\nu} P] \} + g_t^{AT} \operatorname{Tr} \{ W_{\alpha\mu\nu} [\mathcal{V}^{\alpha\mu}, \partial^{\nu} P] \}$ (19)

Contact interactions (No derivatives), Vector interactions (1 derivative), Derivative interactions (2 derivatives), Tensor interactions (3 derivatives).

Mixing

$$\begin{pmatrix} |f_1(1285)\rangle \\ |f_1(1420)\rangle \end{pmatrix} = \begin{pmatrix} \cos\theta_a & -\sin\theta_a \\ \sin\theta_a & \cos\theta_a \end{pmatrix} \begin{pmatrix} |\bar{n}n\rangle_a \\ |\bar{s}s\rangle_a \end{pmatrix}$$
(20)

i needed because of mixing of opposite C-states; $\pm i$ needed as vector and tensor modes of decay have opposite C-behavior.

Amplitudes

J = 1

$$i\mathcal{M} = ig_c \ \epsilon_{\mu}(0, M) \epsilon^{\mu*}(\vec{k}, \lambda) + i2g_d \left(k_0 \cdot k_1 \ \epsilon^{\mu}(\vec{0}, M) \epsilon^*_{\mu}(\vec{k}_1, \lambda) - k_0^{\nu} \ k_{1,\mu} \ \epsilon^{\mu}(\vec{0}, M) \epsilon^*_{\nu}(\vec{k}_1, \lambda)\right)$$
$$= -i \begin{cases} g_c + 2g_d \ M_p \ E_{d,1} & M = \lambda = \pm 1 \\ \gamma(g_c + 2g_d \ M_p \ E_{d,1} - 2g_d \ M_p \ \beta k) & M = \lambda = 0 \end{cases}$$
(23)

 $g_c \in \{g_c^A, g_c^B\}, g_d \in \{g_d^A(=0), g_d^B\}, \gamma = \frac{E_{d,1}}{M_{d,1}}, \text{ and } \beta = \frac{k}{E_{d,1}}.$

Amplitudes

J = 2, vector mode:

$$i\mathcal{M} = -g_{\nu}^{PT} \epsilon_{\mu\nu}(\vec{0}, M) \epsilon^{\mu*}(\vec{k_1}, \lambda) k_2^{\nu} - g_t^{PT} \left[2k_0 \cdot k_1 \epsilon_{\mu\nu}(\vec{0}, M) \epsilon^{\mu*}(\vec{k_1}, \lambda) - 2k_{0,\mu} k_1^{\nu} \epsilon_{\alpha\nu}(\vec{0}, M) \epsilon^{\mu*}(\vec{k_1}, \lambda) k_2^{\nu} \right]$$
(24)

$$= \frac{k}{\sqrt{2}} \begin{cases} g_{\nu}^{PT} + 2g_{t}^{PT}M_{p}E_{d,1} & M = \lambda = \pm 1\\ \frac{2}{\sqrt{3}} \left(\frac{E_{d,1}}{M_{d,1}}g_{\nu}^{PT} + 2g_{t}^{PT}\frac{M_{p}}{M_{d,1}}(2k^{2} + M_{d,1}^{2}) \right) & M = \lambda = 0 \end{cases}$$
(25)

PWA from amplitude

J = 2, vector mode:

$$F_{10}^{2} = \sqrt{\frac{3}{10}}G_{1} + \frac{1}{\sqrt{5}}G_{3}$$

$$F_{00}^{2} = \sqrt{\frac{2}{5}}G_{1} - \sqrt{\frac{3}{5}}G_{3}$$
(26)

where, $G_1 = G_{01}^2$ and $G_3 = G_{31}^2$.

$$\frac{G_3}{G_1} = \begin{cases} -0.13 & g_t^{PT} = 0\\ f(g_t^{PT}/g_v^{PT}) & g_t^{PT} \neq 0 \end{cases}$$
(expt. = -0.72 ± 0.2) (27)

Decay Widths

The decays widths:

$$\begin{split} \Gamma_{1 \to 10} &= \frac{k}{24\pi M_p^2} \left(2(g_c + 2g_d M_p E_{d,1})^2 + \frac{1}{M_{d,1}^2} \left(g_c E_{d,1} + 2g_d M_p M_{d,1}^2 \right)^2 \right) \quad (28) \\ \Gamma_{2 \to 20} &= \frac{k}{40\pi M_p^2} \left[(g_c + 2g_d M_p E_{d,1})^2 \left(\frac{4k^4}{9M_{d,1}^4} + \frac{10k^2}{3M_{d,1}^2} + 5 \right) \right. \\ &\quad + 2g_d^2 \frac{k^4 M_p^2}{9M_{d,1}^2} \left(\frac{8k^2}{M_{d,1}^2} + 17 \right) \right] \quad (29) \\ \Gamma_{2 \to 10} &= \frac{k}{40\pi M_p^2} \left[(g_\nu^{PT} + 2g_t^{PT} M_p E_{d,1})^2 \frac{k^3}{3} \left(\frac{2k^2}{M_{d,1}^2} + 5 \right) + \frac{8}{3} (g_t^{PT})^2 \frac{M_p^2}{M_{d,1}^2} k^6 \right. \\ &\quad - \frac{8}{3} g_t^{PT} (g_\nu^{PT} + 2g_t^{PT} M_p E_{d,1}) k^4 \frac{M_p E_{d,1}}{M_{d,1}^2} \right] \quad (30) \end{split}$$

Results and Discussion

$$\begin{array}{ccc} g^A_c \mbox{(GeV)} & g^B_c \mbox{(GeV)} & g^B_d \mbox{(GeV}^{-1)} & \theta_a & \theta_{pv} \\ \hline -3.26 \pm 0.14 & -6.63 \pm 0.73 & 4.37 \pm 0.38 & (26.8 \pm 1.9)^\circ & (25.0 \pm 5.7)^\circ \end{array}$$

Table 2: The values of the parameters used in the Lagrangian.

- Partial widths of $a_1(1260) \rightarrow \rho \pi$ and $f'_1(1420) \rightarrow K^*K$ decays used to find g_c^A and θ_a .
- D/S-ratio and partial width of $b_1(1235) \rightarrow \omega \pi$ decay, and partial width of $h_1(1415) \rightarrow K^*K$ decay used to estimate the values of g_c^B , g_d^B , & θ_{pv} .
- The value mixing angle for 1^{++} singlets $((26.8 \pm .19)^{\circ})$ matches the expt value $((24^{+4.0}_{-3.4})^{\circ}(LHCb, 2013))$.
- Mixing angle for 1⁺⁻ singlets is considerably larger (at (25.0 ± 5.7)° as opposed to the expt value ((0.6 ± 2.6)° (BESIII, 2017)).

J = 1

Decay	$ \vec{k} $ (MeV)	D/S	
		(Theor.)	(Expt.)
$a_1(1260) \rightarrow \rho \pi$	352	-0.045 ± 0.018	-0.062 ± 0.02
$f_1'(1420) \to K^{*\pm}K^{\pm}$	161	-0.0076 ± 0.0008	
$b_1(1235) \rightarrow \omega \pi$	347.2	0.277 ± 0.05	0.277 ± 0.027
$h_1(1170) \rightarrow \rho \pi$	303	0.28 ± 0.13	
$h_1'(1415) \to K^{*\pm}K^{\pm}$	139.1	0.021 ± 0.007	

Table 3: The ratios of PWA for some the axial- and pseudo-vector meson decays.

- Local interactions are sufficient to reproduce the experimental results for 1⁺⁺, non-kaonic states.
- Non-local interactions are essential for the 1^{+-} states.
- The value of the *D/S*-ratio decreases as the 3-momentum carried by the decay products decreases.

J = 1

Decay	Width (MeV)		
	(Theor.) (Expt.)		
$a_1(1260) \rightarrow \rho \pi$	420 ± 170	dominant (420 ± 35)	
$f_1'(1420) \to K^*K$	44.5 ± 4.8	44.5 ± 4.2	
$b_1(1235) \rightarrow \omega \pi$	110 ± 20	110 ± 7	
$h_1(1170) o ho \pi$	133 ± 62	seen	
$h_1'(1415) \to K^*K$	91 ± 30	seen ($\Gamma_{tot} = 90 \pm 20$)	

Table 4: The decay widths of the axial-vector and pseudovector mesons.

J = 2, tensor mode

g_c^{PT} (GeV)	g_d^{PT} (GeV ⁻¹)	g_c^T (GeV)	$g_d^T ({\rm GeV^{-1}})$	β_D
49.67 ± 18.79	-12.14 ± 4.23	14.73	-5.06 ± 0.38	$(35.85 \pm 0.46)^{\circ}$

Table 5: The values of the parameters used in the Lagrangian.

- D/S-ratio and width of $\pi_2(1670) \rightarrow f_2(1270)\pi$ (PDG, 2020), widths of $K_2(1770) \rightarrow K_2^*(1430)\pi$ and $f_2(1270)K$ (Koenigstein, 2016) decays used to estimate g_c^i and g_d^i , (i = PT, AT), and β_D .
- The kaon mixing angle has nearly the same magnitude as $((\beta_D \approx -39^\circ))$ Barnes, 2003), but opposite sign.
- The ratio $g_c^i/g_d^i \sim M_P^2$.

J = 2, tensor mode

Decay	$ \vec{k} $	$D/S\left(rac{G_2}{G_0} ight)$		$G/S\left(rac{G_4}{G_0} ight)$
	(MeV)	(Theor.) (Expt.)		(Theor.)
$\pi_2(1670) \to f_2 \pi$	325.3	-0.18 ± 0.1	-0.18 ± 0.06	0.091 ± 0.051
$\pi_2(1670) \to f_2' \pi$	58.8	-0.0021 ± 0.0012	×××	0.001 ± 0.0005
$K_2(1770) \rightarrow K_2^*\pi$	285.3	0.083 ± 0.045	×××	-0.041 ± 0.022
$K_2(1770) \rightarrow f_2 K$	53.4	0.0036 ± 0.002	×××	-0.0018 ± 0.001

Table 6: The ratios of PWA for some the pseudo-tensor meson decays.

- Non-local interactions are essential to explain the D/S-ratio as well as the F/P-ratio of the decay of pseudotensors.
- G-waves $(\ell = 4)$ are as important as the D-waves $(\ell = 2)$.
- *D*-waves and *G*-waves have opposite phase.
- *D*-waves interfere with *S*-waves destructively in the iso-vector decay.
- *D*-waves interfere with *S*-waves constructively in the kaon decays.

J = 2, vector mode

g_v^{PT}	g_t^{PT} (GeV ⁻²)	g_v^T	$g_t^T (\mathrm{GeV}^{-2})$
1.798 ± 0.16	0.638 ± 0.057	8.23 ± 0.4	0.95 ± 0.14

Table 7: The values of the parameters used in the Lagrangian.

- F/P-ratio and width of $\pi_2(1670) \rightarrow \rho \pi$ (PDG, 2020), widths of $K_2(1770) \rightarrow K^* \pi$, $K^* \eta$ and ρK (Koenigstein, 2016) decays used to estimate g_v^i , and g_t^i (i = PT, AT).
- The ratio $g_v^i/g_t^i \sim M_P^2$.

J = 2, vector mode

Decay	$ \vec{k} $ (MeV)	$F/P\left(rac{G_3}{G_1} ight)$	
		(Set-1)	(Expt.)
$\pi_2(1670) \rightarrow \rho \pi$	646	-0.72 ± 0.2	-0.72 ± 0.16
$\pi_2(1670) \to K^*K$	452.4	-0.476 ± 0.098	$\times \times \times$
$K_2(1770) \rightarrow \rho K$	611.3	-0.113 ± 0.034	$\times \times \times$
$K_2(1770) \rightarrow \omega K$	607.3	-0.11 ± 0.025	$\times \times \times$
$K_2(1770) \rightarrow \phi K$	440.6	-0.038 ± 0.009	$\times \times \times$
$K_2(1770) \rightarrow K^* \pi$	652.8	-0.099 ± 0.022	$\times \times \times$
$K_2(1770) \rightarrow K^* \eta$	507.4	-0.064 ± 0.015	$\times \times \times$

Table 8: The F/P-ratios for some the pseudo-tensor meson decaying to vector and pseudoscalar mesons.

J = 2, decay widths

Decay	Width (MeV)			
	(Theor.)	(Ref.)		
$\pi_2(1670) \to f_2 \pi$	146.4 ± 81.5	146.4 ± 9.7	146.4 ± 9.7	
$\pi_2(1670) \to f_2' \pi$	8.64 ± 4.67		0.1 ± 0.1	
$\pi_2(1670) \to \rho \pi$	80.6 ± 22.4	80.6 ± 10.8	80.6 ± 10.8	
$\pi_2(1670) \to K^*K$	26.9 ± 5.5	10.9 ± 3.7	11.7 ± 1.6	
$K_2(1770) \to K_2^*\pi$	84.5 ± 45.2	seen	84.5 ± 5.6	
$K_2(1770) \rightarrow f_2 K$	5.8 ± 3.19	seen	5.8 ± 0.4	
$K_2(1770) \rightarrow \rho K$	14.5 ± 4.32		22.2 ± 3.0	
$K_2(1770) \rightarrow \omega K$	7.02 ± 1.59	seen	8.3 ± 1.1	
$K_2(1770) \to \phi K$	2.35 ± 0.53	seen	4.2 ± 0.6	
$K_2(1770) \to K^*\pi$	27.2 ± 6.35	seen	25.5 ± 3.4	
$K_2(1770) \to K^*\eta$	7.8 ± 1.8		10.5 ± 1.4	

Table 9: The decay widths for some the pseudo-tensor meson decays.

UK Uniwersytet Jana Kochanowskiego w Kielcach

Pseudotensor iso-singlets

- $\eta_2(1645)$ and $\eta_2(1870)^{\dagger}$ arise due to iso-singlet mixing.
- Sign and magnitude of the mixing angle (β_{pt}) is disputed.
- Large β_{pt} implies (unphysically) large $\eta_2(1870) \rightarrow a_2\pi$ decay width.
- $\beta_{pt} = 0$ implies $\eta_2(1870) \rightarrow a_2 \pi$ decay is forbidden.
- β_{pt} must be small but non-zero.

Figure 1: (L) Ratio of DW of $\eta_2(1870)$ to $a_2\pi/f_2\eta$; (R) DW of $\eta_2(1645)$ to $a_2\pi, K^*K$.

Conclusion

Conclusion

- Covariant helicity formalism has been used to analyse the decay of J = 1, 2 mesons.
- Non-local interactions are as important as the local interactions to explain the partial wave amplitudes of meson decays.
- In the decay of axial-vector (pseudovector) mesons, *D*-waves interfere destructively (constructively) with the *S*-waves.
- The mixing angle in the pseudovector iso-singlets is larger than the expt value.
- The *D*-waves interfere destructively with the *G*-waves in pseudotensor decays.
- Amplitudes of the higher partial waves become smaller as $|\vec{k}|$ decreases.
- Kaons (K_2) mix substantially; more data needed to estimate.
- Pseudotensor iso-singlet mixing is (probably) small but non-zero.

More details: arxiv:hep-ph/2107.13501

References

- LHCb, 2013: R. Aaij, et al. [LHCb], Phys.Rev.Lett 112 (2014), 091802.
- BESIII, 2017: M. Ablikim et al. [BESIII], Phys.Rev.D 98 (2017), 072005.
- Tayduganov, 2012: A. Tayduganov, E. Kou and A. Le Yaouanc, Phys.Rev.D 85 (2011), 074011.
- Barnes, 2003: T. Barnes, N. Black and P. R. Page, Phys.Rev.D 68 (2003), 054014.
- Cheng, 2012: H-Y. Cheng, Phys.Lett.B 707 (2012), 116-120.
- Jacob & Wick, 1959: M. Jacob and G. C. Wick, Ann. Phys. 7 (1959), 404-428.
- Zemach, 1965: C. Zemach, Phys.Rev 140 (1965), B97-B108.
- Chung, 1993: S. U. Chung, Phys.Rev.D 48 (1993), 1225-1239.
- Chung, 1997: S. U. Chung, Phys.Rev.D 57 (1997), 431-442.
- PDG, 2020: P. A. Zyla, et al., PTEP 2020 (2020), 083C01.
- Koenigstein, 2016: A. Koenigstein and F. Giacosa, Eur. Phys. J.A 52 (2016), 356.

Thank You!

Additional Info

Choice of ℓ

Example: $2^{-+} \rightarrow 2^{++}0^{-+}$

 $J = 2, s = 2, \sigma = 2$ $\Rightarrow S = 2$ $J \in |\ell - S| \dots (\ell + S)$ For the given J and S, $\ell = 0, 1, 2, 3, 4$. Parity $\Rightarrow (-1)^{\ell + S + 1} = -1$ $\Rightarrow (-1)^{\ell} = 1 \Rightarrow \ell \in \{\text{even}\}$ $\boxed{\ell = 0, 2, 4}$

PWAs

PWAs for J = 1:

$$G_2 = \sqrt{\frac{2}{3}} \left(g_c \left(\frac{M_{d,1} - E_{d,1}}{M_{d,1}} \right) + 2g_d M_p (E_{d,1} - M_{d,1}) \right)$$
(31)

$$G_0 = \frac{1}{\sqrt{3}} \left(g_c \left(\frac{2M_{d,1} + E_{d,1}}{M_{d,1}} \right) + 2g_d M_p (2E_{d,1} + M_{d,1}) \right)$$
(32)

PWAs for J = 2, vector decay mode:

$$G_{1} = \frac{1}{M_{d,1}} \sqrt{\frac{2}{15}} \left(-2g_{t}^{PT} M_{p} \left(3E_{d,1}M_{d,1} + 4k^{2} + 2M_{d,1}^{2} \right) + g_{v}^{PT} (2E_{d,1} + 3M_{d,1}) \right)$$
(33)

$$G_{3} = \frac{2}{\sqrt{5}M_{d,1}} \left(2g_{t}^{PT} M_{p} \left(E_{d,1}M_{d,1} - 2k^{2} - M_{d,1}^{2} \right) + g_{v}^{PT} (E_{d,1} - M_{d,1}) \right)$$
(34)

PWAs

PWAs for J = 2, tensor decay mode:

$$\begin{aligned} G_{0} &= \frac{\sqrt{5}}{3\left(16+3\sqrt{2}\right)M_{d,1}^{2}} \left[\left(18\sqrt{2}E_{d,1}^{3}g_{d}M_{P} + 6\sqrt{2}E_{d,1}^{2}g_{c} + 4E_{d,1}M_{d,1}(5g_{c} + 14g_{d}M_{d,1}M_{P}) \right. \\ &+ M_{d,1}\left(\left(28+3\sqrt{2}\right)g_{c}M_{d,1} + 20g_{d}M_{P}\left(3k^{2} + 2M_{d,1}^{2}\right)\right)\right) \right] \end{aligned} \tag{35}$$

$$G_{2} &= -\frac{\sqrt{14}}{3\left(16+3\sqrt{2}\right)M_{d,1}^{2}} \left[\left(6\sqrt{2}E_{d,1}^{3}g_{d}M_{P} + 2\sqrt{2}E_{d,1}^{2}g_{c} + E_{d,1}M_{d,1}\left(\left(12+\sqrt{2}\right)g_{c}\right) - 8\left(3+\sqrt{2}\right)g_{d}M_{d,1}M_{P}\right) + M_{d,1}\left(\left(12+\sqrt{2}\right)g_{d}M_{P}\left(3k^{2} + 2M_{d,1}^{2}\right) - 3\left(4+\sqrt{2}\right)g_{c}M_{d,1}\right)\right) \right] \end{aligned} \tag{36}$$

$$G_{4} &= \frac{2\sqrt{70}}{3\left(16+3\sqrt{2}\right)M_{d,1}^{2}} \left[\left(-3\sqrt{2}E_{d,1}^{3}g_{d}M_{P} - \sqrt{2}E_{d,1}^{2}g_{c} + E_{d,1}M_{d,1}\left(\left(2+\sqrt{2}\right)g_{c} + \left(\sqrt{2}-4\right)g_{d}M_{d,1}M_{P}\right) + M_{d,1}\left(\left(2+\sqrt{2}\right)g_{d}M_{P}\left(3k^{2} + 2M_{d,1}^{2}\right) - 2g_{c}M_{d,1}\right)\right) \right] \end{aligned} \tag{37}$$

Ratios of PWAs for η_2 and η'_2 decays

Decay	D/S	G/S	F/P
$\eta_2(1645) \to a_2(1320) \pi$	-0.122 ± 0.065	0.063 ± 0.034	
$\eta_2(1645) \to K^*K$			-0.51 ± 0.09
$\eta_2(1870) \to a_2(1320) \pi$	-0.125 ± 0.067	0.056 ± 0.030	
$\eta_2(1870) \rightarrow f_2(1270) \eta$	-0.017 ± 0.0095	0.0085 ± 0.0047	
$\eta_2(1870) \to K^*K$			-0.46 ± 0.09

Table 10: The ratios of the PWAs for some decays of $\eta_2(1645)$ and $\eta_2(1870)$.

Widths of η_2 and η'_2 decays

Decay	Width (MeV)				
	$\beta_{pt} = 12.4^{\circ}$	$\beta_{pt} = -42^{\circ}$	$\beta_{pt} = 0.0^{\circ}$	$\beta_{pt} = -1.98^{\circ}$	$\beta_{pt} = 2.8^{\circ}$
$\eta_2(1645) \to a_2(1320) \pi$	194 ± 103	112.2 ± 59.8	203 ± 108	203 ± 108	202 ± 108
$\eta_2(1645) \rightarrow K^*K$	4.4 ± 0.8	0.39 ± 0.07	9.6 ± 1.7	10.5 ± 1.9	8.3 ± 1.5
$\eta_2(1870) \to a_2(1320) \pi$	241 ± 130	2347 ± 1266	0	6.3 ± 3.4	12.6 ± 6.8
$\eta_2(1870) \to f_2(1270) \eta$	18.2 ± 10.1	65.7 ± 36.3	5.1 ± 2.81	3.7 ± 2.0	7.4 ± 4.1
$\eta_2(1870) \to K^*K$	75.6 ± 14.8	87.8 ± 17.1	59.4 ± 11.6	56.4 ± 11.0	63.4 ± 12.4

Table 11: The widths of some decays of $\eta_2(1645)$ and $\eta_2(1870)$. The choice of angles is discussed in the text.

Iso-singlet mixing

"Physical states are admixtures of flavor states."

Iso-singlet mixing due to $U(1)_A$ breaking (mixing between singlet and octet states or $|\bar{n}n\rangle$ and $|\bar{s}s\rangle$ states).

- Large mixing angle $(\theta \sim -40^\circ)$ among the pseudoscalars \Rightarrow mass difference between η and η' .
- Small mixing angle $(\theta \sim -3^{\circ})$ among the vectors $\Rightarrow \omega$ and ϕ are nearly the same as flavor states.
- Similar mixing observed among other iso-singlets: $f_1(1285) - f'_1(1420)(\theta \sim \pm 24^{\circ} \text{ (LHCb, 2013)}),$ $h_1(1170) - h_1(1415)(\theta \sim \pm 3^{\circ} * \text{ (BESIII, 2017)}), \text{ etc.}$

Kaon mixing

"Physical states are admixtures of flavor states."

"Kaons no C"!

- Strange states with same J^P can mix.
- Axial kaons ($K_1(1270)$, $K_1(1400)$) are mixtures of the $K_{1,A}$ and $K_{1,B}$ states ($\theta \in [-35^\circ, +72^\circ] *$ (Tayduganov, 2012)).
- Kaon mixing in $J = 1^+$ sector decides the mixing angles of the respective iso-singlets, through the Gell-Mann-Okubo mass relations (Cheng, 2021; source of uncertainty: large width of $a_1(1260)$).
- 2⁻ kaons ($K_2(1770)$, $K_2(1820)$) are mixtures of ${}^1D_2(2^{-+})$ and ${}^3D_2(2^{--})$ states ($\theta \sim -39^\circ *$ (Barnes, 2003)).