DFNC - IFUSP

Kaon and Nucleon States with Hidden Charm

July, 2021
Brenda Bertotto Malabarba*
Prof. A. M. Torres *, Prof. K. P. Khemchandani*, Dr.
Xiu-Lei Ren ${ }^{\dagger}$ and Prof. Li-Sheng Geng ${ }^{\star}$

[^0]
Motivation

K^{*}
The interaction between K and D / D^{*} is attractive and form the states $D_{s 0}$ (2317) and $D_{s 1}(2460)$;

The $D \bar{D}^{*}$ interaction is also attractive and forms the states $X(3872)$ and $Z_{c}(3900)$;

The quantum numbers of the state formed by $K D \bar{D}^{*}$ correspond to the quantum numbers of a K^{*} state (with hidden charm).

So far, there is no experimental search for Kaons in the energy region of $m_{K}+M_{D}+M_{D^{*}} \approx 4370 \mathrm{MeV}$, the last one listed by the PDG is $K(3100)$.

Motivation

N^{*}
Recently, the LHCb collaboration has claimed the existence of pentaquarks with hidden charm and non-zero strangeness with masses around $\sim 4500 \mathrm{MeV}$

The interaction between N and D / D^{*} is also attractive and form, for example, the state $\Lambda_{c}(2595)$;

The $N D \bar{D}^{*}$ threshold lies around 4814 MeV and considering the strong $N D$ interaction (binding energy $\sim 200 \mathrm{MeV}$) we can get states $\sim 4600 \mathrm{MeV}$, close to the P_{c} masses found ${ }^{1,2}$;

1 Phys. Rev. Lett., 122(22):222001,2019, ${ }^{2}$ Phys. Rev. Lett., 115:072001,2015-R. Aaij et al.;

Motivation

(a) K^{*} molecular state

(b) N^{*} molecular state

Three Body Interaction

It may be illustrated as

with $T=T^{1}+T^{2}+T^{3}$.

Three Body Interaction

These diagrams can be mathematically written as the series

$$
\begin{aligned}
& T^{1}=t_{1}+t_{1} G t_{2}+t_{1} G t_{3}+t_{1} G t_{2} G t_{1}+t_{1} G t_{2} G t_{3}+\ldots \\
& T^{2}=t_{2}+t_{2} G t_{1}+t_{2} G t_{3}+t_{2} G t_{1} G t_{2}+t_{2} G t_{1} G t_{3}+\ldots \\
& T^{3}=t_{3}+t_{3} G t_{1}+t_{3} G t_{2}+t_{3} G t_{1} G t_{3}+t_{3} G t_{1} G t_{2}+\ldots
\end{aligned}
$$

that can be written as the Faddeev equations for the problem

$$
\begin{aligned}
& T^{1}=t_{1}+t_{1} G T^{2}+t_{1} G T^{3}, \\
& T^{2}=t_{2}+t_{2} G T^{1}+t_{2} G T^{3}, \\
& T^{3}=t_{3}+t_{3} G T^{1}+t_{3} G T^{2},
\end{aligned}
$$

with $T=T^{1}+T^{2}+T^{3}$.

Fixed Center

We use the Fixed Center Approximation (FCA) to solve the Faddeev equations

- $D \bar{D}^{*}$ form a cluster and the $3^{r d}$ particle rescatters with the members of the cluster;

With $T=T^{1}+T^{2}$.

Fixed Center

Such that, all we need to solve is

$$
T^{1}=t_{1}+t_{1} G T^{2}, \quad T^{2}=t_{2}+t_{2} G T^{1}
$$

where t_{1} is the two-body t-matrix for $K D(N D), t_{2}$ the one between $K \bar{D}^{*}\left(N \bar{D}^{*}\right)$ and G is the propagator in the cluster ${ }^{3}$

$$
\begin{align*}
G_{K} & =\frac{1}{2 M_{a}} \int \frac{d^{3} \mathbf{q}}{(2 \pi)^{3}} \frac{F_{a}(\mathbf{q})}{q_{0}^{2}-\mathbf{q}^{2}-m_{K}^{2}+i \epsilon} \tag{1}\\
G_{N} & =\frac{1}{2 M_{a}} \int \frac{d^{3} \mathbf{q}}{(2 \pi)^{3}} \frac{m_{N}}{\omega_{N}(\mathbf{q})} \frac{F_{a}(\mathbf{q})}{q_{0}-\omega(\mathbf{q})+i \epsilon^{\prime}} \tag{2}
\end{align*}
$$

and F_{a} is a form factor related to the molecular nature of the cluster.
${ }^{3}$ Phys. Rev., C83:065207, 2011 - Ju-Jun Xie, A. Martínez Torres, E. Oset

Fixed Center

$F_{a}(\mathbf{q})$ is given by ${ }^{4,5,6}$

$$
\begin{gather*}
F_{a}(\mathbf{q})=\frac{1}{N} \int_{|\mathbf{p}|,|\mathbf{p}-\mathbf{q}|<\Lambda} d^{3} \mathbf{p} f_{a}(\mathbf{p}) f_{a}(\mathbf{p}-\mathbf{q}) \tag{3}\\
f_{a}(\mathbf{p})=\frac{1}{\omega_{a 1}(\mathbf{p}) \omega_{a 2}(\mathbf{p})} \cdot \frac{1}{M_{a}-\omega_{a 1}(\mathbf{p})-\omega_{a 2}(\mathbf{p})} \tag{4}
\end{gather*}
$$

with $N=F_{a}(\mathbf{q}=0)$, and $\omega_{A}(\mathbf{p})=\sqrt{m_{A}^{2}+\mathbf{p}^{2}}$.
${ }^{4}$ PRD81,014029(2010) - D. Gamermann, J. Nieves, E. Oset, and E. Ruiz Arriola, ${ }^{5}$ Few Body Syst.,61(4):35,2020 - A. Martínez Torres, K. P. Khemchandani, L. Roca and E. Oset , ${ }^{6}$ Phys. Rev., D83:116002, 2011 - A. Martínez Torres, E. J. Garzón, E. Oset, and L. R. Dai.

Fixed Center

We have 3 possible configurations of the system: $\left|K X, I=1 / 2, I_{3}=1 / 2\right\rangle, \quad\left|K Z_{c}, I=1 / 2, I_{3}=1 / 2\right\rangle \quad$ and $\left|K Z_{c}, I=3 / 2, I_{3}=3 / 2\right\rangle$

Let's consider for example the case $\left|K X, I=1 / 2, I_{3}=1 / 2\right\rangle$.

$$
|K X\rangle=|K, 1 / 2,1 / 2\rangle \otimes\left|D \bar{D}^{*}, 0,0\right\rangle,
$$

So t_{1} for the process $K X \rightarrow K X$ is given by

$$
\langle K X| t_{1}|K X\rangle_{1}=\left\{t_{1}\right\}_{11}=\frac{1}{4}\left(3 t_{K D}^{I=1}+t_{K D}^{I=0}\right)
$$

where the subscript $\{11\}$ stands for $K X \rightarrow K X$ scattering.

Fixed Center

Repeating the process for the channels $K X \rightarrow K Z$ and $K Z \rightarrow K Z$ we get for t_{1}

	$K X$	$K Z$
$K X$	$\frac{1}{4}\left(3 t_{K D}^{I=1}+t_{K D}^{I=0}\right)$	$\frac{\sqrt{3}}{4}\left(t_{K D}^{I=1}-t_{K D}^{I=0}\right)$
$K Z$	$\frac{\sqrt{3}}{4}\left(t_{K D}^{I=1}-t_{K D}^{I=0}\right)$	$\frac{1}{4}\left(t_{K D}^{I=1}+3 t_{K D}^{I=0}\right)$

Calculations of t_{2} : change $D \rightarrow \bar{D}^{*}$ and add a global minus sign on the non-diagonal terms.

$$
\begin{equation*}
t_{A B}=V_{A B}+V_{A B} G_{A B} t_{A B}, \quad \text { Bethe-Salpeter } \tag{5}
\end{equation*}
$$

Two Body Interactions - K*

$G_{A B}$ is the two-body loop function for the channel made of hadrons A and B: It is regularized with a cut-off or with dimensional regularization

$K X$ and $K Z_{c}$

In case of the $K D / K \bar{D}^{*}$ system, we have followed Ref. Phys. Rev., $D 76: 0740$ 16, 2007 where the amplitude $V_{A B}$ is obtained from the following Lagrangian

$$
\begin{equation*}
\mathcal{L}=\frac{1}{4 f^{2}}\left\{\partial^{\mu} P\left[\phi, \partial_{\mu} P\right] P^{\dagger}-P\left[\phi, \partial_{\mu}\right] \partial^{\mu} P^{\dagger}\right\}, \tag{6}
\end{equation*}
$$

Two Body Interactions - K*

$$
\begin{gathered}
P=\left(\begin{array}{lll}
D^{0} & D^{+} & D_{s}^{+}
\end{array}\right) \quad P^{\dagger}=\left(\begin{array}{c}
\bar{D}^{0} \\
D^{-} \\
D_{s}^{-}
\end{array}\right) \\
\phi=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} \pi^{0}+\frac{1}{\sqrt{6}} \eta & \pi^{+} & K^{+} \\
\pi^{-} & -\frac{1}{\sqrt{2}} \pi^{0}+\frac{1}{\sqrt{6}} \eta & K^{0} \\
K^{-} & \bar{K}^{0} & -\frac{2}{\sqrt{6}} \eta
\end{array}\right)
\end{gathered}
$$

Two Body Interactions - N^{*}

We have used two models to describe the $N D-N D^{*}$ coupled channel system:

- The first one of Ref. Phys. Rev., D79:054004, 2009, which uses arguments based on $\mathrm{SU}(4)$ and heavy quark spin symmetries;
- The second one of Ref. Eur. Phys. J., A51(2):16, 2015, which uses arguments of $\operatorname{SU(8)}$ spin flavor symmetry

In both cases there is a dynamical generation of $\Lambda_{c}(2595)$ in the $N D, N D^{*}$ and coupled channels;

At higher energies, there are differences between the states predicted by the two models.

Results - $K^{* 7}$

Figures (c) and (d) show the results for the $K X \rightarrow K X / K Z \rightarrow K Z$ with $I=1 / 2$ and $J^{P}=1^{-}$

(c) $K X \rightarrow K X$ without the transition $K X \rightarrow K Z$

(d) $\mathrm{KZ} \rightarrow \mathrm{KZ}$ without the transition

These results correspond to a situation where the transition $\mathrm{KX} \rightarrow \mathrm{KZ}_{c}$ is switch off

Phys. Lett. B 2018.08.034 - Xiu-Lei Ren, Brenda B. Malabarba, Li-Sheng Geng, K.P.Khemchandani and A. Martínez Torres

Results - K^{*}

Switching on $K X \rightarrow K Z_{c}$

Thus, our study shows the generation of $K^{*}(4307)$.

A similar result has been also found in Ref. Chin. Phys. C43 (2019) 014012 with a different model.

Observations of K^{*}

A K^{*} state with such a molecular nature can be observed in the $K J / \psi \pi$ invariant mass since $Z_{c}(3900) \rightarrow J / \psi \pi$

$$
B \rightarrow J / \psi \pi K \pi
$$

Which was used by the Belle collaboration to observe the $X(3872)$ in the $J / \psi \pi \pi$ invariant mass distribution ${ }^{8}$.

Our group has studied this decay in Ref. Phys. Rev. D 102, 016005 (2020)
${ }^{8}$ Phys. Rev., D91(5):051 101, 2015 - A. Bala et al. (Belle Collaboration)

Results - N^{*}

SU(4) and Heavy-quark Spin Symmetries

Figure: Modulus squared of the T-matrix for the $N X \rightarrow N X$ (left) and $N Z_{c} \rightarrow N Z_{c}$ (right) transitions for $I\left(J^{P}\right)=1 / 2\left(1 / 2^{+}\right)$as functions of \sqrt{s}

Results - N^{*}

Figure: Modulus squared of the T-matrix for the $N X \rightarrow N X$ (left) and $N Z_{c} \rightarrow N Z_{c}$ (right) transitions for $I\left(J^{P}\right)=1 / 2\left(3 / 2^{+}\right)$as functions of \sqrt{s}

Results - N^{*}

Spin-parity	Mass(MeV)	Width(MeV)
$1 / 2^{+}$	$4404-4410$	2
$1 / 2^{+}$	$45556-4560$	$\sim 4-20$
$3 / 2^{+}$	$4467-4513$	$\sim 3-6$
$3 / 2^{+}$	$4558-4565$	$\sim 5-14$

So we find degenerated N^{*} states with spin-parities $1 / 2^{+}$and $3 / 2^{+}$

Results - N^{*}

The N^{*} state can decay to channels like $N J / \psi \gamma, N J / \psi \pi$ and also to channels like $\pi \Sigma_{c} \bar{D}$.

(a)

(b)

(c)

The $J / \psi p$ invariant mass reconstructed in Ref. Phys. Rev. Lett., 122(22):222001, 2019 shows fluctuations around 4400 MeV and 4550 MeV .

Conclusions

Our findings imply that a K^{*} meson around 4307 MeV should be observed in experimental investigations;

Treating $D \bar{D}^{*}$ as a cluster leads us to the generation of a state with molecular nature;

The result found here is a prediction for a K^{*} with hidden charm.

Conclusions

The generation of $\Lambda_{c}(2595)$ in the $D N-D^{*} N$ system together with the clustering of $D\left(D^{*}\right)$ and $\bar{D}^{*}(\bar{D})$ as $X(3872)$ or $Z_{c}(3900)$ produces enough attraction to form isospin $1 / 2$ states with masses around $4400-4600 \mathrm{MeV}$ and positive parity;

Thank You!

@CNPq

[^0]: ${ }^{*}$ University of São Paulo, ${ }^{\dagger}$ Mainz University, ${ }^{\star}$ Beihang University

