

Are the $Z_{cs}(3985)$ and $Z_{cs}(4000)$ the same state?

Lu Meng (孟 璐)

Ruhr-Universität Bochum

29th July, 2021

Together with B. Wang (HBU), G.J. Wang(JAEA) and S.L. Zhu (PKU) Based on <u>arXiv:2104.08469</u>, PRD103, L021501, PRD102,111502(R)

Contents

	Experimental results from BESIII and LHCb	1
1	Theoretical interpretation of $Z_{cs}(3985)$ state	2
	$Z_{cs}(3985)$ state	3
	SU(3) flavor limit	4
	Heavy quark spin symmetry (HQSS)	5
	Calculation: Masses and widths	6
	Calculation: Masses and widths	7
	Calculation: Decays	8
	Calculation: Productions	9
2	Theoretical analysis in two-state scheme	10
	If the $Z_{cs}(3985)$ and $Z_{cs}(4000)$ are two different states	11
	Heavy guark spin symmetry violation effect	12
	Mixing effect is not significant	13
	Dimeson components of two states	14
3	Summary	15

Experimental results from BESIII and LHCb

- BESIII: $e^+e^- \rightarrow K^+(D^-_sD^{*0}+D^{*-}_sD^0)$ at $\sqrt{s} = 4.681~{\rm GeV}$
- LHCb: $Z_{cs}(4000)^+$ and $Z_{cs}(4220)^+$ in the $J/\psi K^+$ of the $B^+ \rightarrow J/\psi \phi K^+$

2103.01803

- $(M, \Gamma):$ (3982.5, 12.8) MeV VS (4003, 131) MeV
- Width difference: 10 times. Whether they are the same states?
- Molecular scheme: symmetries (and their possible breaking)+ effective field theory (EFT)

Theoretical interpretation of $Z_{cs}(3985)$ state

 $Z_{cs}(3985)$ state

• Near-threshold resonances

$Z_c(3900)$	$D^*\bar{D}/D\bar{D}^*$
$Z_{c}(4020)$	$D^* \bar{D}^*$
$Z_{cs}(3985)$	$D_s \bar{D}^* / D_s^* \bar{D}$

- A natural explanation:
 - $\Rightarrow Z_{cs}(3985): SU(3) \text{ partner of } Z_c(3900)$ PRD103,074029; 2011.09404; 2011.10495; 2011.09225...
 - $\Rightarrow Z_c, Z'_c, Z_{cs}$: molecular resonances
- Hadronic molecule: PRL67,556; RMP90,015004
 - \Rightarrow loosely bound states
 - \Rightarrow near-threshold di-hadron resonances

SU(3) flavor limit

• $\bar{P}V/\bar{V}P$ di-meson wave functions

$$|C = -\eta\rangle = |G = \eta\rangle = \frac{1}{\sqrt{2}} \left(|\bar{D}D^*\rangle + \eta |\bar{D}^*D\rangle \right)^{I=1}$$

•
$$Z_c(3900)$$
: $G = +1 \Rightarrow \eta = +1$

•
$$\hat{G}_U = \hat{C} e^{i\hat{U}_2\pi}, \hat{G}_V = \hat{C} e^{i\hat{V}_2\pi}$$

$$|G_U = +1\rangle = \frac{1}{\sqrt{2}} \left(|D_s^- D^{*+}\rangle + |D_s^{*-} D^+\rangle \right)$$

•
$$Z_{cs}(3985)^-$$
: U-spin partner of $Z_c(3900)^-$

• General notation:

 $|\bar{\mathsf{P}}\mathsf{V}/\bar{\mathsf{V}}\mathsf{P},\pm\rangle = \frac{1}{\sqrt{2}} \left(|\bar{\mathsf{P}}\mathsf{V}\rangle \pm |\bar{\mathsf{V}}\mathsf{P}\rangle\right)$

• Mxing: odd and even $G_{U/V}$ when SU(3)_f

Heavy quark spin symmetry (HQSS)

- $V^{\text{spin-space}} = v_1 + v_2 s_q \cdot s_{\bar{q}} + \text{HQSS}$ breaking terms
 - \Rightarrow The heavy part: spectator
 - \Rightarrow Heavy spin and light spin are conserved
- $\langle V \rangle$: HQSS partner states

$$\begin{split} \langle V_{q\bar{q}}^s \rangle_{\{\bar{\mathbf{v}}\mathbf{V}\}}^{1^+} &= \langle V_{q\bar{q}}^s \rangle_{\{\bar{\mathbf{p}}\mathbf{V},\bar{\mathbf{v}}\mathbf{P},+\}}^{1^+} \\ \langle V_{q\bar{q}}^s \rangle_{\{\bar{\mathbf{v}}\mathbf{V}\}}^{2^+} &= \langle V_{q\bar{q}}^s \rangle_{\{\bar{\mathbf{p}}\mathbf{V},\bar{\mathbf{v}}\mathbf{P},-\}}^{1^+} \end{split}$$

- Rearrangement and selection rules: $|(\bar{c}q_1)_{j_1}(c\bar{q}_2)_{j_2}; J^P \rangle \Rightarrow |(\bar{c}c)_h(\bar{q}_1q_2)_l; J^P \rangle$
- Example

$$\begin{split} |\bar{\mathbf{P}}\mathbf{V}/\bar{\mathbf{V}}\mathbf{P},+\rangle &= \frac{1}{\sqrt{2}} \left(|0^{-}_{\bar{c}c},1^{-}_{q_{1}\bar{q}_{2}};1^{+}\rangle - |1^{-}_{\bar{c}c},0^{-}_{q_{1}\bar{q}_{2}};1^{+}\rangle \right) \\ Z_{c}(3900) \sim &|\bar{D}D^{*}/\bar{D}^{*}D,+\rangle \sim \frac{1}{\sqrt{2}} \left(|\eta_{c}\rho\rangle - |J/\psi\pi\rangle \right) \end{split}$$

Calculation: Masses and widths

• Coupled-channel Lippmann-Schwinger equations (LSEs):T = V + VGT

Channel	1	2	3
Z_c/Z_c'	$J/\psi\pi$	$\bar{D}D^*/\bar{D}^*D$	\bar{D}^*D^*
Z_{cs}/Z_{cs}'	$J/\psi K$	$\bar{D}_s D^* / \bar{D}_s^* D$	$\bar{D}_s^* D^*$

• Interaction

$$V_{ij} = \begin{bmatrix} 0 & v_{12} & v_{12} \\ v_{12} & C_d + \frac{C'_d}{2}(\boldsymbol{p}^2 + \boldsymbol{p}'^2) & v_{23} \\ v_{12} & v_{23} & C_d + \frac{C'_d}{2}(\boldsymbol{p}^2 + \boldsymbol{p}'^2) \end{bmatrix}$$

• Masses and widths of $Z_c(3900)$ and $Z_c(4020)$ as input

Calculation: Masses and widths

(M,Γ)	This work	Exp
Z_{cs}	(3984, 27)	(3982.5, 12.8)
Z'_{cs}	(4130, 29)	

- $Z_{cs}(3985)$: agree with the experiment results well
- Predict $Z_{cs}(4130)$, SU(3)_F partner of $Z_c(4020)$ and HQSS partner of $Z_{cs}(3985)$

PRD102,111502(R)

Calculation: Decays

Z_c/Z_{cs}	$\frac{\Gamma_2}{\Gamma_1} > 10$	
Z_c^\prime/Z_{cs}^\prime	$\frac{\Gamma_3}{\Gamma_1} > 10$	$\frac{\Gamma_3}{\Gamma_2} \sim 1$

- $Z_{c(s)} \rightarrow \bar{D}_{(s)}D^*/\bar{D}^*_{(s)}D$ is dominant: fall apart
- $Z_{c(s)} \rightarrow J/\psi \pi(K)$ is suppressed: recluster the heavy quarks
- $Z_{c(s)}: \overline{D}_{(s)}D^*/\overline{D}_{(s)}^*D$ interaction is not attractive enough but confine them for a finite time

• Coupled-channel effect from $J/\psi\pi(K)$ is tiny

PRD102,111502(R)

Calculation: Productions

• The parameters are extracted from the $Z_c(3900)$ data

PRD102,114019; PRD92,092006

• The event distribution of $Z_{cs}(3985)$ are consistent with the experimental results PRD103, L021501

Theoretical analysis in two-state scheme

If the $Z_{cs}(3985)$ and $Z_{cs}(4000)$ are two different states

- Bad SU_F(3) symmetry
 - \Rightarrow Only one Z_c state with $J^P = 1^+$ near the $\bar{D}D^*/\bar{D}^*D$ threshold
 - ⇒ Two Z_{cs} states (narrower one and broader one) with $J^P = 1^+$ near the $\bar{D}_s D^* / \bar{D}_s^* D$ threshold
- Good HQSS: $Z_c(3900)$ and $Z_c(4020)$

• Neglect the $J/\psi\pi$ and $J/\psi K$ channels

Heavy quark spin symmetry violation effect

$$V_{\{\bar{\mathbf{P}}\mathbf{V},\bar{\mathbf{V}}\mathbf{P}\}}^{1^{+}} = \frac{1}{2\Lambda} \begin{bmatrix} c_{a}^{+} + c_{a}^{-} & c_{a}^{+} - c_{a}^{-} \\ c_{a}^{+} - c_{a}^{-} & c_{a}^{+} + c_{a}^{-} + 4\delta c_{a} \end{bmatrix} + \mathsf{NLO term}$$

$$V_{\{\bar{\mathbf{P}}\mathbf{V},\bar{\mathbf{V}}\mathbf{P},+-\}}^{1^{+}} = \begin{bmatrix} \frac{c_{a}^{+} + \delta c_{a}}{\Lambda} & \frac{\delta c_{a}}{\Lambda} \\ \frac{\delta c_{a}}{\Lambda} & \frac{c_{a}^{-} + \delta c_{a}}{\Lambda} \end{bmatrix} + \begin{bmatrix} \frac{c_{b}^{+}(\mathbf{p}^{2} + \mathbf{p}'^{2})}{\Lambda^{3}} \\ \frac{c_{b}^{-}(\mathbf{p}^{2} + \mathbf{p}'^{2})}{\Lambda^{3}} \end{bmatrix}$$

- δc_a HQSS breaking effect, inducing the mixing of $|PV/VP, +\rangle$ and $|PV/VP, -\rangle$
- 5 LECs, 4 input: masses and widths of $Z_{cs}(3985)$ and $Z_{cs}(4000)$
- Set $\delta c_a = 0$ and determine the other 4 LECs
- Varying δc_a to make $-0.4 < R_{\text{HQSSB}} < 0.4$

$$R_{\text{HQSSB}} = \frac{4\delta c_a}{|c_a^+ + c_a^-|}$$

2104.08469

Mixing effect is not significant

- Relative orders for M and Γ do not change
- Mixing angle of $|\mathtt{PV}/\mathtt{VP},+\rangle$ and $|\mathtt{PV}/\mathtt{VP},-\rangle$ is tiny

Dimeson components of two states

broad, $Z_{cs}(4000)$	Corresponding	$ ar{\mathtt{P}}\mathtt{V}/ar{\mathtt{V}}\mathtt{P},+ angle$	$\stackrel{HQSS}{\longleftrightarrow}$	$ \bar{\mathtt{V}}\mathtt{V},1^+\rangle$	\leftarrow	$Z_{cs}(4220)$,broad state
narrow, $Z_{cs}(3985)$	tiny mixing	$ ar{\mathtt{P}}\mathtt{V}/ar{\mathtt{V}}\mathtt{P},- angle$	$\stackrel{HQSS}{\longleftrightarrow}$	$ \bar{\mathtt{V}}\mathtt{V},2^+\rangle$	\leftarrow	Prediction

• $|Z_{cs}(4000)\rangle = |\bar{D}_s^*D/\bar{D}_sD^*, +\rangle$ and $Z_{cs}(3985) = |\bar{D}_s^*D/\bar{D}_sD^*, -\rangle$

 $\mathcal{R}(Z_{cs} \to \bar{D}_s^* D/Z_{cs} \to \bar{D}_s D^*) \approx 0.5$

• Tensor $\bar{D}_s^* D^*$ state as the HQSS partner of $Z_{cs}(3985)$.

 $M = 4126 \pm 3 \text{ MeV}, \quad \Gamma = 13 \pm 6 \text{ MeV}.$

• $Z_{cs}(3985) \rightarrow J/\psi K$ is suppressed compared with $Z_{cs}(4000) \rightarrow J/\psi K$ in the HQSS limit.

$$\begin{split} |\bar{\mathbf{P}}\mathbf{V}/\bar{\mathbf{V}}\mathbf{P},+\rangle &= \frac{1}{\sqrt{2}} \left(|0^{-}_{\bar{c}c},1^{-}_{q_{1}\bar{q}_{2}};1^{+}\rangle - |1^{-}_{\bar{c}c},0^{-}_{q_{1}\bar{q}_{2}};1^{+}\rangle \right) \\ |\bar{\mathbf{P}}\mathbf{V}/\bar{\mathbf{V}}\mathbf{P},-\rangle &= |1^{-}_{\bar{c}c},1^{-}_{q_{1}\bar{q}_{2}};1^{+}\rangle \end{split}$$

Summary

Summary

• Based on molecule scheme

(a) $Z_{cs}(3985)$ as the SU(3)_F partner of $Z_c(3900)$.

(b) Implications $Z_{cs}(3985)$ and $Z_{cs}(4000)$ as two different states.

• Take home messages

- $\Rightarrow Z_{cs}(3985) \rightarrow J/\psi K$ in suppressed in the two states schemes
- \Rightarrow Tensor $Z_{cs}(4126)$ in two states schemes
- Compact tetraquark scheme: predict more states (two nonets)

2103.08331

Thanks for your attention!