

19th International Conference on Hadron Spectroscopy and Structure

LHCb results in charmed baryons

Zhihao Xu (on behalf of the LHCb collaboration)

Hadron 2021 July 26 to 31, 2021

Introduction

- LHCb collected the **largest samples** of reconstructed charmed hadrons during LHC Run 1 and Run 2.
- Providing the most precise measurements of properties and production of known charmed baryons.

LHCb experiment

- $\sigma_{\mathrm{IP}} = 20 \ \mathrm{\mu m}$ $\sigma_{\tau} = 45 \ \mathrm{fs}$
- $\sigma_p / p \sim 0.5\% 1\%$ $\sigma_E / E = \frac{10\%}{\sqrt{E}} \pm 1\%$
- $\epsilon(K \to K) \sim 95\%$ Mis-ID $\epsilon(\pi \to K) \sim 5\%$

LHCb designed for study charmed and bottom hadron.
Excellent vertex, tracking and PID performance.

Excited Ω_c^0

- In 2017, LHCb observed five new excited Ω_c^0 in $m(\Xi_c^+K^-)$. PHYS. REV. LETT. 118 (2017) 182001
- In 2021, LHCb observed 4 of them from $\Omega_b \rightarrow \Omega_c \pi$. <u>ARXIV:2107.03419</u>. FIND MORE DETAILS IN SARA ELIZABETH MITCHELL'S TALK.

State	Observable	Measurement
Ω_b^-	m	$6044.3 \pm 1.2 \pm 1.1 ^{+0.19}_{-0.22} \mathrm{MeV}$
	${\mathcal R}$	$1.35 \pm 0.11 \pm 0.05$
Threshold	Significance	Stat. Sys. 4.3σ
$\Omega_c(3000)^0$	Significance	62σ
	ΔM	$37.6 \pm 0.9 \pm 0.9 \text{ MeV}$
		$29992 + 09 + 09^{+0.19}$ MeV
	Г	48 + 21 + 25 MeV
	\mathcal{P}	$0.11 \pm 0.02 \pm 0.04$
	J rejection	$0.5 \sigma (J = 1/2), 0.8 \sigma (J = 3/2), 0.4 \sigma (J = 5/2)$
$\Omega_{c}(3050)^{0}$	Significance	9.9 σ
	ΔM	$88.5 \pm 0.3 \pm 0.2 \mathrm{MeV}$
	m	$3050.1 \pm 0.3 \pm 0.2 \substack{+0.19 \\ -0.22}$ MeV
	Γ	$< 1.6 \mathrm{MeV}, 95\% \mathrm{CL}$
	${\cal P}$	$0.15 \pm 0.02 \pm 0.02$
	J rejection	$2.2 \sigma (J = 1/2), 0.1 \sigma (J = 3/2), 1.2 \sigma (J = 5/2)$
$\Omega_{c}(3065)^{0}$	Significance	11.9σ
	ΔM	$104.3 \pm 0.4 \pm 0.4 {\rm MeV}$
	m	$3065.9 \pm 0.4 \pm 0.4 \pm 0.4 {+0.19 \atop -0.22} {\rm MeV}$
	Γ	$1.7\pm1.0\pm0.5\mathrm{MeV}$
	${\mathcal P}$	$0.23 \pm 0.02 \pm 0.02$
	J rejection	$3.6 \sigma (J = 1/2), 0.6 \sigma (J = 3/2), 1.2 \sigma (J = 5/2)$
$\Omega_c(3090)^0$	Significance	7.8σ
	ΔM	$129.4 \pm 1.1 \pm 1.0 {\rm MeV}$
	m	$3091.0 \pm 1.1 \pm 1.0^{+0.19}_{-0.22} \mathrm{MeV}$
	Г	$7.4\pm3.1\pm2.8\mathrm{MeV}$
	${\cal P}$	$0.19 \pm 0.02 \pm 0.04$
	J rejection	$0.3 \sigma (J = 1/2), 0.8 \sigma (J = 3/2), 0.5 \sigma (J = 5/2)$
$\Omega_{c}(3120)^{0}$	\mathcal{P}	< 0.03, 95% CL

4

Zhihao Xu(UCAS) @HADRON2021

$$\Xi_c^{**0} \to \Lambda_c^+ K^-$$

PHYS. REV. LETT. 124 (2020) 222001

- Three excited Ξ_c^0 were observed in $m(\Lambda_c^+ K^-)$.
- Using LHCb 2016-2018 data, at 13 TeV and 5.4 fb⁻¹.
- Multivariate method was used in the selection of Λ_c^+ .

$$\Xi_c^{**0} \to \Lambda_c^+ K^-$$

PHYS. REV. LETT. 124 (2020) 222001

- Gell-Mann-Okubo formula for charmed baryons: $m(\Omega_c^{**}) - m(\Xi_c^{**}) = m(\Xi_c^{**}) - m(\Sigma_c^{**})$
- After this analysis, we have: $m(\Omega_c^0(3050)) - m(\Xi_c^0(2923))$ $\approx m(\Xi_c^0(2923)) - m(\Sigma_c^0(2800)) \approx 125 \text{ MeV}$ $m(\Omega_c^0(3065)) - m(\Xi_c^0(2939)) \approx 125 \text{ MeV}$ $m(\Omega_c^0(3090)) - m(\Xi_c^0(2965)) \approx 125 \text{ MeV}$
- They should belong to the same flavour multiplets? If so, their quantum number should be the same. Spin-parities test should be done to confirm that.
- More topic...
 - Dominant decay $(\Xi_c^+\pi^-, \Xi_c^{\prime+}\pi^-)$.
 - Inner structure (molecular states?).

$$\mathcal{B}(\Xi_c^0 \to \Lambda_c^+ \pi^-)$$

PHYS. REV. D102 (2020) 071101(R)

- Usually, Ξ_c^0 decay into the charmless final states by the $c \rightarrow s$ transition. It also can decay in to $\Lambda_c^+\pi^-$ by $cs \rightarrow dc$ weak scattering.
- For this decay, there are two amplitudes (SUUD and WS), and their interference can be positive or negative.

$$\mathcal{B}(\Xi_c^0 \to \Lambda_c^+ \pi^-)$$

PHYS. REV. D102 (2020) 071101(R)

- Firstly measured the $\mathcal{B}(\Xi_c^0 \to \Lambda_c^+ \pi^-)$ in 2017-2018 LHCb data.
- This branching fraction was determined by two observables:

$$\mathcal{R}_1 \equiv \frac{N(\Xi_c^0)}{N(\Lambda_c^+)} = \frac{f_{\Xi_c^0}}{f_{\Lambda_c^+}} \mathcal{B}(\Xi_c^0 \to \Lambda_c^+ \pi^-)$$

And

$$\mathcal{R}_2 \equiv \frac{N(\Xi_c^0)}{N(\Xi_c^+)} = \frac{f_{\Xi_c^0}}{f_{\Xi_c^+}} \cdot \frac{\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)}{\mathcal{B}(\Xi_c^+ \to pK^-\pi^+)} \cdot \mathcal{B}(\Xi_c^0 \to \Lambda_c^+\pi^-)$$

- The result of these observables: $\mathcal{R}_1 = (0.095 \pm 0.003 \pm 0.012)\%$ $\mathcal{R}_2 = (5.70 \pm 0.19 \pm 0.07)\%$
- Then the branching fraction can be calculate:

 $\mathcal{B}(\mathcal{Z}_{c}^{0} \to \Lambda_{c}^{+}\pi^{-}) = (0.55 \pm 0.02 \pm 0.18)\%$

Sys.

Stat.

[derivation]

$$\mathcal{B}(\Xi_c^0 \to \Lambda_c^+ \pi^-)$$

PHYS. REV. D102 (2020) 071101(R)

- Interference between SUUD and WS can be obtained from this measurement.
- This result is in agreement with the positive assuming.

Lifetimes of charmed baryons

- The expected lifetime of single charmed baryons hierarchy should be:
 - $\tau_{\Xi_{c}^{+}} > \tau_{\Lambda_{c}^{+}} > \tau_{\Xi_{c}^{0}} > \tau_{\Omega_{c}^{0}}$ $\xrightarrow{Frontiers of Physics 10.6 (2015): 101406.}{International Journal of Modern Physics A 30.10 (2015): 1543005.}$ $\tau_{\Xi_{c}^{+}} > \tau_{\Omega_{c}^{0}} > \tau_{\Lambda_{c}^{+}} > \tau_{\Xi_{c}^{0}}$ $\xrightarrow{JHEP 11(2018)014}{JHEP 11(2018)014}}$
- Measurement results before 2018:

 $\tau_{\Xi_c^+} > \tau_{\Lambda_c^+} > \tau_{\Xi_c^0} > \tau_{\Omega_c^0}$

• LHCb Run-1 result with signals from semileptonic beauty-hadron decays:

$$\tau_{\Xi_c^+} > \tau_{\Omega_c^0} > \tau_{\Lambda_c^+} > \tau_{\Xi_c^0}$$

Or

PHYS. REV. LETT. 121 (2018) 092003 PHYS. REV. D100 (2019) 032001

Zhihao Xu(UCAS) @HADRON2021

Lifetimes of Ω_c^0 and Ξ_c^0

PAPER-2021-021 (IN PREPARATION)

- The lifetimes of Ω_c^0 and Ξ_c^0 baryons is measured in 2016-2018 data.
- Both Ω_c^0 and Ξ_c^0 were reconstructed in the $pK^-K^-\pi^+$ final states.

Prompt: candidates from *pp* interaction point. **Secondary:** candidates from *b*-hadron decay.

Zhihao Xu(UCAS) @HADRON2021

New Lifetimes of Ω_c^0 and Ξ_c^0

PAPER-2021-021 (IN PREPARATION)

• Results from this analysis:

 $\tau_{\Omega_{c}^{0}} = (276.5 \pm 13.4 \pm 4.3 \pm 0.7) \text{ fs}$ $\tau_{\Xi_{c}^{0}} = (148.0 \pm 2.3 \pm 2.2 \pm 0.2) \text{ fs}$

• Combine with previous results:

PHYS. REV. LETT. 121 (2018) 092003 PHYS. REV. D100 (2019) 032001 $\tau_{\Omega_c^0} = (274.6 \pm 12.4) \text{ fs}$ $\tau_{\Xi_c^0} = (152.0 \pm 2.0) \text{ fs}$

Doubly charmed baryons

- Doubly charmed baryons were predicted by SU(4) multiplet. $\Xi_{cc}^{++}(ucc), \Xi_{cc}^{+}(dcc), \Omega_{cc}^{+}(scc)$.
- A lot of Ξ_{cc}^{++} study done by LHCb:

$$\Xi_{cc}^+ \rightarrow \Lambda_c^+ K^- \pi^+$$

SCPMA 63 (2020) 221062

- Search for Ξ_{cc}^+ in $\Lambda_c^+ K^- \pi^+$ final states.
- Using all LHCb data, 9 fb⁻¹.
- No significant signal was observed.
- Local (global) significance is 2.7σ (1.7 σ)
- Upper limit of $\mathcal{R}(\Lambda_c^+/\Xi_{cc}^{++})$ were set at 95% CL.

$$\mathcal{R}(\Lambda_c^+) \equiv \frac{\sigma(\Xi_{cc}^+) \times \mathcal{B}(\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+)}{\sigma(\Lambda_c^+)}$$
$$\mathcal{R}(\Xi_{cc}^{++}) \equiv \frac{\sigma(\Xi_{cc}^+) \times \mathcal{B}(\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+)}{\sigma(\Xi_{cc}^{++}) \times \mathcal{B}(\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+)}$$

New Search for Ξ_{cc}^+ in $\Xi_c^+ \pi^- \pi^+$

PAPER-2021-019 (IN PREPARATION)

- Search for Ξ_{cc}^+ in $\Xi_c^+ \pi^- \pi^+$ final states.
- Using LHCb 2016-2018 data, at 13 TeV and 5.4 $\rm fb^{-1}.$
- No significant signal. Local significance is 2.3σ

• Combine with $\Xi_{cc}^+ \rightarrow \Lambda_c^+ K^- \pi^+$ result. <u>SCPMA 63 (2020) 221062</u>

New Search for Ξ_{cc}^+ in $\Xi_c^+ \pi^- \pi^+$

PAPER-2021-019 (IN PREPARATION)

- Combined local (global) significance 4.0 σ (2.9 σ). Best fit found around 3623.0 MeV.
- Upper limit scan done in 3.4 3.8 GeV on *R* for different lifetime hypotheses at 95% CL.

16

New Search for Ω_{cc}^+ in $\Xi_c^+ K^- \pi^+$

ARXIV:2105.06841

- First searching for Ω_{cc}^+ in $\Xi_c^+ K^- \pi^+$ final states.
- Using LHCb 2016-2018 data, at 13 TeV and 5.4 $\rm fb^{-1}.$

• 3.2σ (1.8σ) for local (global) significance, the largest local significance found around 3876.1 MeV.

New Search for Ω_{cc}^+ in $\Xi_c^+ K^- \pi^+$

ARXIV:2105.06841

- Global significance $< 3\sigma$
- Upper limit scan done in 3.6 4.0 GeV on *R* for different lifetime hypotheses at 95% CL.

$$R = \frac{\sigma(\Omega_{cc}^+) \times \mathcal{B}(\Omega_{cc}^+ \to \Xi_c^+ K^- \pi^+) \times \mathcal{B}(\Xi_c^+ \to p K^- \pi^+)}{\sigma(\Xi_{cc}^{++}) \times \mathcal{B}(\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+) \times \mathcal{B}(\Lambda_c^+ \to p K^- \pi^+)}$$

Summary

Charmed baryons

- Observation of excited Ω_c^0 baryons
- Observation of excited Ξ_c^0 baryons More states to be found...
- First branching fraction measurement of the $\Xi_c^0 \rightarrow \Lambda_c^+ \pi^-$
- Lifetime measurement of Ω_c^0 and Ξ_c^0 baryons More precise measurement to
 - be done...

- Double charmed baryons
 - Search for the doubly charmed baryon Ω_{cc}^+
 - Search for the doubly charmed baryon Ξ_{cc}^+

More events to be accumulate…

Future

LHC^b Timeline

2022

Run 3

Upgrade la

2023

2024

LS3

LS3

2025

2026

2027

2028

Run 4

Upgrade Ib

2029

2030

LS4

2031

...

Run 5

Upgrade II 🔿

2021

LHC

HL-LHC

LHCb

TH

20

Thanks!

Lifetime of Ω_c^0 and Ξ_c^0

New

PAPER-2021-021 (IN PREPARATION)

• The lifetimes of the Ω_c^0 and Ξ_c^0 baryons are determined from a binned χ^2 fit to the data collected in 2016–2018, which is constructed as:

$$\chi^{2}(\tau,\vec{C}) = \sum_{\text{year}} \sum_{i} \frac{\left(N_{i,\text{year}}^{\text{sig}} - C_{\text{year}} \times F_{i}(\tau) \times \frac{N_{i,\text{year}}^{\text{con}}}{M_{i,\text{year}}^{\text{con}}} \times M_{i,\text{year}}^{\text{sig}}\right)^{2}}{\sigma_{N_{i,\text{year}}^{\text{sig}}}^{2} + C_{\text{year}}^{2} \times F_{i}^{2}(\tau) \times \sigma_{\left(\frac{N_{i,\text{year}}^{\text{con}}}{M_{i,\text{year}}^{\text{con}}} \times M_{i,\text{year}}^{\text{sig}}\right)}^{2}},$$

$$F_i(\tau) = \frac{\int_i \exp(-t/\tau) dt}{\int_i \exp(-t/\tau_{\rm sim}) dt} / \frac{\int_i \exp(-t/\tau^{\rm con}) dt}{\int_i \exp(-t/\tau_{\rm sim}^{\rm con}) dt}$$

where $N_{i,year}^{sig}$ ($N_{i,year}^{con}$) is the signal yield in data for the signal (control) mode in decay-time bin *i* and for each year, *M* is the effective yield predicted from simulation. $F_i(\tau)$ aim to account for the difference in lifetime between the data and the simulated samples and *C* is a normalisation factor for this term. σ is the uncertainty of the relevant quantity.

$$\Xi_c^{**0} \to \Lambda_c^+ K^-$$

PHYS. REV. LETT. 124 (2020) 222001

• Alternative fit with one additional components which need to be explain.

• More data are required to understanding this structure.

Derivation of \mathcal{R}_1

$$\begin{aligned} \mathcal{B}(\Xi_c^0 \to \pi^- \Lambda_c^+) &= N(\Xi_c^0 \to \pi^- \Lambda_c^+) / N(\Xi_c^0) \\ N(\Xi_c^0) &= \frac{f_{\Xi_c^0}}{f_{\Lambda_c^+}} \cdot N(\Lambda_c^+). \\ \frac{f_{\Xi_c^0}}{f_{\Lambda_c^+}} &= \mathcal{C} \cdot \frac{f_{\Xi_b^-}}{f_{\Lambda_b^0}}, \end{aligned}$$

Derivation of \mathcal{R}_2

