

Recent results on charmed baryon weak decays from Belle

Yang Li (Fudan University) On behalf of Belle Collaboration

The 19th International Conference on Hadron Spectroscopy and Structure in memoriam Simon Eidelman July 26~31, 2021

Belle experiment and data samples

- ≻ KEKB is an asymmetric-energy e^+e^- collider operating near Y(4S) mass peak (~10.58GeV/ c^2 , > $B\overline{B}$ threshold);
- > Belle detector has good performances on momentum/vertex resolution; particle identification, etc;
- > Accumulated data set of $\sim 1 ab^{-1}$: not only including a large $B\overline{B}$ sample as a *B*-factory, but also providing us a large charm sample to study charm physics.

Outline

- ✓ Measurements of branching fractions of $\Lambda_c^+ \rightarrow p(\eta, \pi^0), \pi^+\eta(\Lambda, \Sigma^0), \pi^+\Lambda(1670), \text{ and } \eta\Sigma(1385)^+;$ [PRD103, 072004 (2021), PRD103, 052005 (2021)]
- ✓ Measurements of the resonant and non-resonant branching ratios in $\Xi_c^0 \rightarrow \Xi^0 K^+ K^-$; [PRD 103 112002 (2021)]
- ✓ Measurements of branching fractions and asymmetry parameters of $\Xi_c^0 \rightarrow \Lambda \overline{K}^{*0} / \Sigma^0 \overline{K}^{*0} / \Sigma^+ K^{*-}$; [JHEP 06(2021) 160]
- ✓ Evidence for $\Omega_c^0 \to \pi^+ \Omega(2012)^- \to \pi^+ (\overline{K}\Xi)^-$;

[arXiv:2106.00892, accepted by PRD]

✓ Summary

Measurements of branching fractions of $\Lambda_c^+ \rightarrow p(\eta, \pi^0)$

Motivation:

- ≻ In theory, the singly Cabibbo-suppressed (SCS) decays $\Lambda_c^+ \rightarrow p\eta$ and $\Lambda_c^+ \rightarrow p\pi^0$ proceed predominantly through internal W-emission and W-exchange;
- ➤ The theoretical calculations predict Br(Λ⁺_c → pη) is at least an order of magnitude greater than that of Br(Λ⁺_c → pπ⁰):
 [PRD 97, 074028 (2018)]

 $Br(\Lambda_{c}^{+} \rightarrow p\eta) = 1.28 \times 10^{-3}, \ Br(\Lambda_{c}^{+} \rightarrow p\pi^{0}) = 7.5 \times 10^{-5};$

➤ In experiment, the branching fractions of SCS decays of Λ⁺_c → pη and Λ⁺_c → pπ⁰ are firstly measured by BESIII Collaboration.
[PRD 95, 11102 (2017)]

 $Br(\Lambda_{c}^{+} \rightarrow p\eta) = (1.24 \pm 0.30) \times 10^{-3} (4.2\sigma), Br(\Lambda_{c}^{+} \rightarrow p\pi^{0}) < 2.7 \times 10^{-4} \text{ at } 90\% \text{ C.L.}$

≻ To improve the measurement precision, we measure the branching fractions of $\Lambda_c^+ \rightarrow p\eta$ and $\Lambda_c^+ \rightarrow p\pi^0$ using all Belle data sets.

Measurement of normalization mode

→ A method of branching ratio with respect to Cabibbo favored (CF) decay $\Lambda_c^+ \rightarrow pK^-\pi^+$ (normalization mode) is applied to measure the branching fractions of two SCS decays.

$$\frac{Br(SCS)}{Br(CF)} = \frac{N^{obs}(SCS)}{\epsilon (SCS) \times Br(\eta/\pi^0 \to \gamma\gamma)} \times \frac{\epsilon(CF)}{N^{obs}(CF)}$$

Signal efficiency estimation: Dalitz method.

-5-

Measurement of $\Lambda_c^+ \rightarrow p\eta (\rightarrow \gamma \gamma)$ decay

[PRD103, 072004 (2021)]

-6-

> The efficiency estimated from signal MC sample is $(8.279 \pm 0.030)\%$.

Gaussian + CB for signal, Second-order polynomial for background.

Signal yield: 7734 \pm 263	
$\chi^2/\mathrm{ndf} = 1.23$	

- ✓ A significant Λ_c^+ signal is observed in data;
- ✓ Measured $Br(\Lambda_c^+ \to p\eta) = (1.42 \pm 0.05(\text{stat.}) \pm 0.11(\text{syst.})) \times 10^{-3};$
- ✓ Consistent with BESIII result $(1.24 \pm 0.30) \times 10^{-3}$ with much improved precision;

✓ Consistent with theoretical prediction 1.28 × 10⁻³.
 [PRD 95, 111102 (2017); PRD 97, 074028 (2018)]

Measurement of $\Lambda_c^+ \rightarrow p\pi^0 (\rightarrow \gamma \gamma)$ decay

[PRD103, 072004 (2021)]

> The efficiency estimated from signal MC sample is $(8.891 \pm 0.030)\%$.

✓ Measured $Br(\Lambda_c^+ \rightarrow p\pi^0) < 8.0 \times 10^{-5}$;

✓ reducing the value to more than three times of the BESIII result 2.7×10^{-4} ;

✓ Consistent with theoretical prediction 7.5×10^{-5} . [PRD 95, 111102 (2017); PRD 97, 074028 (2018)] -7-

Measurements of $\Lambda_c^+ \rightarrow \eta \Lambda \pi^+ / \eta \Sigma^0 \pi^+$

[PRD103, 052005 (2021)]

> A method to measure the branching fractions of above two decays is:

Measurements of $\Lambda_c^+ \rightarrow \Lambda(1670)\pi^+/\eta\Sigma(1385^+)$

- $\succ \Lambda_c^+ \rightarrow \Lambda(1670)\pi^+$ and $\Lambda_c^+ \rightarrow \eta \Sigma(1385)^+$ are visible in Dalitz plot.
- Fit to the M($\eta\Lambda\pi^+$) distributions in every 2 MeV/ c^2 bin of the M($\eta\Lambda$) and M($\Lambda\pi^+$) distributions to extract the signal yields.
- \succ Clear $\Lambda(1670)$ and $\Sigma(1385)^+$ signals show up.

Decay mode	Yield	$y(imes 10^5)$	Branching fraction
$\Lambda_c^+ \to \Lambda(1675)\pi^+$	9760 ± 519(stat.)	$(1.40 \pm 0.07(\text{stat.}))$	$(3.48 \pm 0.19(\text{stat.}) \pm 0.46(\text{sys.})) \times 10^{-3} *$
$\Lambda_c^+ \to \eta \Sigma(1385)^+$	29372 ± 875(stat.)	$(4.23 \pm 0.13(\text{stat.}))$	$(1.21 \pm 0.04(\text{stat.}) \pm 0.16(\text{sys.}))\%$

 $*Br(\Lambda_c^+ \to \Lambda(1670)\pi^+) \times Br(\Lambda(1670 \to \eta\Lambda))$

[PRD103, 052005 (2021)]

Measurements of the (non-)resonant Brs in $\Xi_c^0 \rightarrow \Xi^0 K^+ K^-$

▷ Spin-Polarized $\Xi_c^0 \to \Xi^0 \phi (\to K^+ K^-)$ substructure:

Cabbibo-allowed, W-Exchange $s\bar{s}$ -popping decay of $\Xi_{s}^{0} \rightarrow \Xi^{0}K^{+}K^{-}$

 \succ Background motivation in excited Ω search:

[PRD 103 112002 (2021)]

A resonant $\phi(\rightarrow K^+K^-)$ in the decay channel $\Xi_c^0 \rightarrow \Xi^0 \phi(\rightarrow K^+K^-)$ is known to be polarized due to the spin helicities of the parent baryon decay $(\frac{1}{2} \rightarrow \frac{1}{2} + 1)$.

From quark model predictions, it can be expected that Ω(2012) could have a partner near 1.95 GeV/c² [PRD 101, 016002 (2020)], and lowstatistics indications of an excess in M(Ξ⁰K⁻) has been noticed.

Dalitz Plot

[PRD 103 112002 (2021)]

 $\Xi_c^0 \rightarrow \Xi^0 \text{ K}^+ \text{ K}^-, \Xi^0 \phi \text{ [Belle]}$

- Across the entire $M(\Xi^0 K^+ K^-)$ phase-space only a signal resonance ($\phi \rightarrow K^+ K^-$) at $M^2(K^+ K^-) = 1.04 \text{ GeV}^2/c^4$ is observed;
- ➤ This non-uniform substructure is specifically observed near $M^2(\Xi^0 K^-) \approx 3.85 \text{ GeV}^2$ and 3.425 GeV^2 a long the ϕ band.
- ➤ The non-uniform contributions to the resonant substructure in the Ξ⁰_c → Ξ⁰φ decay are modelled using an amplitude analysis over the decay phase space. [AmpTools (v.10.2)]

Amplitude Model to Analyze the Dalitz Plot:

Figure: Dalitz plot distribution of the $\Xi_c^0 \rightarrow \Xi^0 K^+ K^-$ decays in the sideband-subtracted Ξ_c^0 signal region.

$$<\Xi_{c}^{0}|\mathbf{H}|\Xi^{0}K^{+}K^{-}> = <\Xi_{c}^{0}|\mathbf{H}|\Xi^{0}K^{+}K^{-}> + <\Xi_{c}^{0}|\mathbf{H}|\Xi^{0}\phi_{-}>$$

Direct process, phase space decays are modelled with a constant, phase space amplitude (A_{phsp})

Polarized resonances are modelled with a Breit-Wigner and Spin-Polarization amplitude

Amplitude fit over the Belle data sample

[PRD 103 112002 (2021)]

➤ The measurements of these Ξ⁰_c decay modes, which can only proceed via W-exchange together with ss̄ production, add to our knowledge of the weak decay of charmed baryons.
 ➤ It is suggest that only minor cusping peaks occur in the combinatorial background of Ω^{*-} → Ξ⁰K⁻ due to these Ξ⁰_c decays.

Measurements of branching fractions and asymmetry parameters of $\Xi_c^0 \to \Lambda \overline{K}^{*0} / \Sigma^0 \overline{K}^{*0} / \Sigma^+ K^{*-}$

- There are some difficulties for the theoretical study in the non-leptonic decays of charmed baryons due to the failure of the factorization approach.
- > Branching fraction measurements help to distinguish different theoretical models.
- > The asymmetry parameters of Ξ_c^0 are still not well measured, which is important to test parity violation in charmed-baryon sectors.

Tables: Decay branching fractions (%) and asymmetry parameters of the Cabibbo favored $B_c \rightarrow B_n + V$ decay in QCD and $SU(3)_F$ approaches.

Branching fractions	KK[ZPC 55, 659(1992)]	Zen[PRD 50,5787(1994)]	HYZ[PLB 792, 35(2019)]	GLT[PRD 101,053003(2020)]
$\Xi_c^0\to\Lambda\overline{K}^{*0}$	1.55	1.15	0.46 <u>±</u> 0.21	1.37 <u>±</u> 0.26
$\Xi_c^0 \to \Sigma^0 \overline{K}{}^{*0}$	0.85	0.77	0.27±0.22	0.42±0.23
$\Xi_c^0 \to \Sigma^+ K^{*-}$	0.54	0.37	0.93 <u>+</u> 0.29	0.24 <u>±</u> 0.17

Asymmetry parameters	KK[ZPC 55, 659(1992)]	Zen[PRD 50,5787(1994)]	GLT[PRD 101,053003(2020)]
$\Xi_c^0 \to \Lambda \overline{K}^{*0}$	0.58	0.49	-0.67 ± 0.24
$\Xi_c^0 \to \Sigma^0 \overline{K}^{*0}$	-0.87	0.25	-0.42 ± 0.62
$\Xi_c^0 \to \Sigma^+ K^{*-}$	-0.60	0.51	-0.76 ^{+0.64} _{-0.24} -1

Measurements of Branching fractions

2.46

 $M(\Sigma^{+}K^{*})$ (GeV/c²)

0.9

 $M(K_{c}^{0}\pi^{-})$ (GeV/c²)

0.8

2.48

2.5

2.44

MeV/c²

Events/1

150

200

150

0.7

MeV/c²

Events/5

1.05 1.1

efficiency correction:

✓ By using $Br(\Xi_c^0 \to \Xi^- \pi^+)$, we have absolute BFs below for the first time:

 $\checkmark \mathcal{B}(\Xi_c^0 \to \Sigma^0 \overline{K}^{*0}) > \mathcal{B}(\Xi_c^0 \to \Lambda \overline{K}^{*0})$, which contradicts all the predictions based on $SU(3)_F$ flavor symmetry and dynamical models.

5000

3000

980 fb⁻

2.47 2.48

 $M(\Sigma^0 \overline{K}^{*0})$ (GeV/c²)

2.49

2.5

2.46

0.7 0.75 0.8 0.85 0.9 0.95

 $M(K^{-}\pi^{+})$ (GeV/c²)

Events/ 1000

2.44

4000

3000 E

~ట 3500Ē

₩ 2500

2000 1500 1000

1.05 1.1

1000

500

2.45

MeV/c

10000

/1 MeV/c² 0009

Events/ 2000

9000

8000

7000

0.7

MeV/c²

- Total Fit

2.46 2.47

0.75 0.8 0.85 0.9 0.95

 $M(K^{-}\pi^{+})$ (GeV/c²)

 $M(\Lambda^0 \overline{K}^{*0})$ (GeV/c²)

2.48

2.49

2.45

 $Br(\Xi_c^+ \to \Lambda \overline{K}^{*0}) = (3.3 \pm 0.3 \pm 0.2 \pm 1.0(\text{ref.})) \times 10^{-3}$ $Br(\Xi_c^+ \to \Sigma^0 \overline{K}^{*0}) = (12.4 \pm 0.5 \pm 0.5 \pm 3.6(\text{ref.})) \times 10^{-3}$ $Br(\Xi_c^+ \to \Sigma^+ K^-) = (6.1 \pm 1.0 \pm 0.4 \pm 1.8 (\text{ref.})) \times 10^{-3}$ -14-

Asymmetry parameters extractions

For $\Xi_c^0 \to \Lambda \overline{K}^{*0}$, $\Xi_c^0 \to \Sigma^0 \overline{K}^{*0}$ and $\Xi_c^0 \to \Sigma^+ K^{*-}$, the differential decay rates [PRD 101, 053002 (2020)] are given by: [JHEP 06(2021) 160]

$$\frac{dN}{d\cos\theta_{\Lambda}} \propto 1 + \alpha(\Xi_{c}^{0} \to \Lambda \overline{K}^{*0})\alpha(\Lambda \to p\pi^{-})\cos\theta_{\Lambda},$$

$$\frac{dN}{d\cos\theta_{\Sigma^{0}}} \propto 1 + \alpha(\Xi_{c}^{0} \to \Sigma^{0}\overline{K}^{*0})\alpha(\Sigma^{0} \to \Lambda\gamma)\cos\theta_{\Sigma^{0}},$$

$$\frac{dN}{d\cos\theta_{\Sigma^{+}}} \propto 1 + \alpha(\Xi_{c}^{0} \to \Sigma^{+}K^{*-})\alpha(\Sigma^{+} \to p\pi^{0})\cos\theta_{\Sigma^{+}},$$

Definitions of θ_{Λ} , θ_{Σ^0} , and θ_{Σ^+} :

➤ The asymmetry parameter α(Σ⁰ → Λγ) is expected to be zero due to the case of parity conservation for an electromagnetic decay of Σ⁰ → Λγ. Thus, the distribution of $\cos \theta_{\Sigma^0}$ is expected to be flat.

Asymmetry parameters

[JHEP 06(2021) 160]

5000 15000 5000 $\Xi_c^0 \to \Lambda \overline{K}^{*0}$ $\Xi_c^0 \to \Sigma^0 \overline{K}^{*0}$ $\Xi_c^0 \to \Sigma^+ K^{*-}$ 4000 4000 Events/0.25 0000 0000 Events/0.25 0002 Events/0.4 0000 0000 1000 1000 0 0 -0.5 0.5 -0.5 0.5 -0.5 0.5 0 0 0 $\cos\theta_{r_0}$ $\cos\theta_{r^*}$ $\cos\theta_{A}$ $\alpha(\Xi_c^0 \to \Lambda \bar{K}^{*0}) \alpha(\Lambda \to p\pi^-)$ 0.115 ± 0.164 (stat.) ± 0.038 (syst.) $\alpha(\Xi_c^0 \to \Sigma^0 \bar{K}^{*0}) \alpha(\Sigma^0 \to \gamma \Lambda)$ 0.008 ± 0.072 (stat.) ± 0.008 (syst.) $\alpha(\Xi_c^0 \to \Sigma^+ K^{*-}) \alpha(\Sigma^+ \to p\pi^0)$ 0.514 ± 0.295 (stat.) ± 0.012 (syst.) $\alpha(\Xi_c^0 \to \Lambda \bar{K}^{*0})$ 0.15 ± 0.22 (stat.) ± 0.05 (syst.) $\alpha(\Xi_c^0 \to \Sigma^+ K^{*-})$ -0.52 ± 0.30 (stat.) ± 0.02 (syst.)

Note that $\alpha(\Lambda \to p\pi^{-}) = 0.747 \pm 0.010$ and $\alpha(\Sigma^{+} \to p\pi^{0}) = -0.980 \pm 0.017$ from PDG. -16-

Evidence for $\Omega_c^0 \to \pi^+ \Omega(2012)^- \to \pi^+ (\overline{K}\Xi)^-$

Motivation:

- A theoretical study of the Ω(2012)[−] in the nonleptonic weak decays of Ω⁰_c → π⁺K̄ Ξ(1530)(ηΩ) → π⁺(K̄πΞ)[−] and π(K̄Ξ)[−] was reported; the authors predicted the clearly Ω(2012)[−]peak in the (K̄Ξ)[−] invariant mass spectrum of the Ω⁰_c → π⁺(K̄Ξ)[−].
- PRD 102, 076009 (2020)]
 ➤ Searching for new production model is very important to understand the nature of Ω(2012)⁻;

Figure: Diagram for the meson-baryon final-state interaction for the $\Omega_c^0 \to \pi^+ \Omega(2012)^- \to \pi^+(\overline{K}\Xi)^-$ decay (left); $\overline{K}\Xi$ invariant mass distributions of the $\Omega_c^0 \to \pi^+(\overline{K}\Xi)^-$ decay (right).

 $M(K^-\Xi^0/K_S^0\Xi^-)$ and $M(\pi^+\Omega(2012)^-)$ distributions

➤ To extract the Ω(2012)⁻ signal events from Ω⁰_c decay, a 2D maximum-likelihood fit is performed to $M(K^-Ξ^0)/M(K^0_SΞ^-)$ and $M(\pi^-Ω(2012))$.
[arXiv: 2106.00892 (2021)]

Combined M(($\overline{K}\Xi$)⁻) and M($\pi^+\Omega(2012)^-$)distributions

- ➤ Assuming $Br(\Omega(2012)^- \to K^- \Xi^0) = Br(\Omega(2012)^- \to \overline{K}^0 \Xi^-)$ based on isospin symmetry, the expected signal yields of $\Omega_c^0 \to \pi^+ \Omega(2012)^- \to \pi^+ K^- \Xi^0$ and $\Omega_c^0 \to \pi^+ \Omega(2012)^- \to \pi^+ K^0_S \Xi^-$ is 57.1%:42.9%;
- A 2D un-binned maximum-likelihood simultaneous fit is performed to $M((\overline{K}\Xi)^{-})$ and $M(\pi^{+}\Omega(2012)^{-})$ distributions. [arXiv: 2106.00892 (2021)]

Summary

- > Although Belle has stopped data taking for ~11 years ago, we are still producing exciting results;
- → We report measurements of the branching fractions of SCS decays $\Lambda_c^+ \rightarrow p\eta$ and $\Lambda_c^+ \rightarrow p\pi^0$ with much improved precision;
- We analyze the ηΛπ⁺ final state to study Λ⁺_c decay, the branching fractions Λ⁺_c → ηΛπ⁺ and Λ⁺_c → ηΣ(1385)⁺ are measured with much improved precision; the Λ⁺_c → ηΣ⁰π⁺ and Λ⁺_c → Λ(1670)π⁺ are observed for the first time;
- → The CF W–exchange, $s\bar{s}$ –popping decay of $\Xi_c^0 \rightarrow \Xi^0 K^+ K^-$ which can resonate through $\phi \rightarrow K^+ K^-$ has been observed;
- ➤ The branching fractions and asymmetry parameters of CF decays Ξ⁰_c → Λ $\overline{K}^{*0}/\Sigma^{0}\overline{K}^{*0}/\Sigma^{+}K^{*-}$ are measured for the first time;
- → We present evidence for the $\Omega(2012)^-$ in the resonant substructure of $\Omega_c^0 \rightarrow \pi^+(\overline{K}\Xi)^-$ decays.

Thanks for your attentions!