Recent results on charmed baryon spectroscopy from Belle

Jin Li

Hadron 2021 - Li, Jin

- Belle Detector and charmed baryon production.
- Spin and parity of Ξ_c(2970). PRD 103, L11101 (2021)
- Radiative decays of Ξ_c(2790/2815). PRD 102, 071103(R) (2020)
 - Precise mass and width measurements of $\Sigma_c(2455)^+$. arXiv:2107.05615 submitted to PRD

Belle Detector and charmed baryon production.

$\Xi_{c}(2970)^{+}$ in baryon family

Angular Distribution of $\Xi_c(2970)^+ \rightarrow \Xi_c(2645)^0\pi^+$

 ρ_{mm} : Initial spin density of $\Xi_c(2970)^*$

Formula of angular distribution (θ_{h} and θ_{c})

$$W_{\frac{1}{2}} = constant$$

$$W_{\frac{1}{2}} = \rho_{33} \left\{ 1 + T \left(\frac{3}{2} \cos^2 \theta_h - \frac{1}{2} \right) \right\} + \rho_{11} \left\{ 1 + T \left(-\frac{3}{2} \cos^2 \theta_h + \frac{1}{2} \right) \right\}$$

$$W_{\frac{5}{2}} = \frac{3}{32} \left[\rho_{55} 5 \left\{ (-\cos^4 \theta_h - 2\cos^2 \theta_h + 3) + T (-5\cos^4 \theta_h + 6\cos^2 \theta_h - 1) \right\}$$

$$+ \rho_{33} \left\{ (15\cos^4 \theta_h - 10\cos^2 \theta_h + 11) + T (75\cos^4 \theta_h - 66\cos^2 \theta_h + 7)) \right\}$$

$$+ \rho_{11} 2 \left\{ (-5\cos^4 \theta_h + 10\cos^2 \theta_h + 3) + T (-25\cos^4 \theta_h + 18\cos^2 \theta_h - 1) \right\} \right]$$

 θ_h for $J \rightarrow 3/2(\Xi_c(2645)) + 0$

Relative fraction of 3/2 polarization in $\Xi c(2645)$

	$IP_{-f} = (2070) \pm$	Dential West	E-marted American Distribution
$(1/2^{+})$ + $\pi(0^{-})$	J^{2} of $\Xi_{c}(2970)^{+}$	Partial wave	Expected Angular Distribution
	$1/2^{+}$	Р	$1 + 3\cos\theta_c^2$
	$1/2^{-}$	D	$1 + 3\cos\theta_c^2$
	$3/2^+$	Р	$1 + 6\sin\theta_c^2$
	$3/2^{-}$	\mathbf{S}	1
	$5/2^{+}$	Р	$1 + (1/3)\cos\theta_c^2$
	$5/2^{-}$	D	$1 + (15/4)\sin\theta_c^2$

 $\theta_c \operatorname{in} \Xi_c(2645)(3/2^-) \rightarrow \Xi_c(1/2^+) + \pi(0^-)$

J determination of $\Xi_c(2970)^+$

Parity of $\Xi_c(2970)^+$

- HQS doublet with brown-muck (light component) spin j=1: J=3/2 (Ξ_c (2645)) and 1/2(Ξ_c ')
- The decay rate ratio

$$R = \frac{\Gamma\left(\Xi_c(2970)^* \to \Xi_c(2645)^0 \pi^*\right)}{\Gamma\left(\Xi_c(2970)^* \to \Xi_c'^0 \pi^*\right)} \text{ is calculable:}$$

PRD 75 (2007) 014006

Results of BR

Hadron 2021 - Li, Jin

Electromagnetic (EM) transitions of charm baryons

- EM transitions of charmed baryons are observed only for strong decay forbidden states: $\Xi'_c \rightarrow \Xi_c \gamma$ and $\Omega_c(2770) \rightarrow \Omega_c \gamma$.
- Theoretical predictions of observable partial width (~300 keV) for decays from $\Xi_c(2790)$ and $\Xi_c(2815)$ to $\Xi_c \gamma$ (3-10 % level of BR).
- Input of EM decay measurements is crucial for interpretation of λ-ρ modes and theoretical modeling.

	WYZZ [14]			
Mode	λ excitation	ρ excitation	ρ excitation	Actual total width [3]
$\overline{\Xi_c(2790)^+ \to \Xi_c^+ \gamma}$	4.65	1.39	0.79	$8900\pm600\pm800$
$\Xi_c(2790)^0 \rightarrow \Xi_c^0 \gamma$	263	5.57	3.00	$10000\pm700\pm800$
$\Xi_c(2815)^+ \rightarrow \Xi_c^+ \gamma$	2.8	1.88	2.81	$2430\pm200\pm170$
$\Xi_c(2815)^0 \to \Xi_c^0 \gamma$	292	7.50	11.2	$2540\pm180\pm170$

 $\Xi_{c}(2790) \& \Xi_{c}(2815)$

Typically interpreted as an HQS doublet with orbital L=1 (λ -mode), with expected J^P = 1/2⁻ and 3/2⁻.

Clearly seen in hadronic modes at Belle.

 $\Xi_{c}(2790) \& \Xi_{c}(2815)$ results

10 and 7 decay channels for Ξ_c^0 and Ξ_c^+ reconstruction.

Clear signal for neutral channel, but not charged.

 $\frac{\mathcal{B}(\Xi_{c}(2815)^{0} \rightarrow \Xi_{c}^{0} \gamma)}{\mathcal{B}(\Xi_{c}(2815)^{0} \rightarrow \Xi_{c}(2645)^{+} \pi^{-} \rightarrow \Xi_{c}^{0} \pi^{+} \pi^{-})} = 0.45 \pm 0.05 \pm 0.03$ $\frac{\mathcal{B}(\Xi_{c}(2790)^{0} \rightarrow \Xi_{c}^{0} \gamma)}{\mathcal{B}(\Xi_{c}(2790)^{0} \rightarrow \Xi_{c}^{'} \pi^{-} \rightarrow \Xi_{c}^{+} \gamma \pi^{-})} = 0.13 \pm 0.03 \pm 0.02$

$$\begin{split} &\Gamma(\Xi_c(2815)^0 \rightarrow \Xi_c^0 \gamma) = 320 \pm 45^{+45}_{-80} \text{ keV} \\ &\Gamma(\Xi_c(2790)^0 \rightarrow \Xi_c^0 \gamma) \sim 800 \text{ keV} \text{ (uncertainty ~40\%)} \\ &\Gamma(\Xi_c(2815)^+ \rightarrow \Xi_c^+ \gamma) < 80 \text{ keV} \\ &\Gamma(\Xi_c(2790)^+ \rightarrow \Xi_c^+ \gamma) < 350 \text{ keV} \end{split}$$

Consistent with orbital excitation interpretation. Phys.Rev. D 96, 116016 (2017)

Masses and Widths of $\Sigma_{c}^{+}(2455/2520)$

 $\Sigma_{c}(2455)$: isotriplet with I(J^P) = 1 (1/2 +) $\Sigma_{c}(2520)$: isotriplet with $I(J^{P}) = 1 (3/2 +)$

- Σ_{c}^{++} and Σ_{c}^{0} were measured well through $\Lambda_{\Lambda}\pi^{+/-}$ decay.
- Neutral π^0 in $\Sigma_c(2455/2520)^+$ decay limits experimental precision.
- Only width limits for $\Sigma_c(2455/2520)^+$ before.

Exp. error dominated by precision of $\Sigma_{\rm c}(2520)^+$ mass.

Hadron 2021 - Li, Jin

Calibration of gamma momentum

Precise gamma measurement is crucial to reduce systematic uncertainty.

07/29/2021

Results of M and Γ for Σ_c^+ (2455/2520)

arXiv:2107.05615, submitted to PRD

Critical for study of $\Lambda_c(2593)^+$, which is close to $\Sigma_c^+(2455)\pi^0$ threshold.

07/29/2021

Summary

- J^P of Ξ_c(2970)⁺
 - Angular distribution \Rightarrow J=1/2; Decay BRs \Rightarrow P=+, $s_i=0$
- Radiative decays of $\Xi_c(2790)$ and $\Xi_c(2815)$
 - Strong transition for neutral modes ⇒ L=1
- Mass and Width measurement of Σ_c^+ (2455/2520)

Branching fractions of $\Xi_{c}^{+(0)}$

• Checked with Σ_c in real data.

Transitions of charmed baryons

Only $\Xi_c' \rightarrow \Xi_c \gamma$ and $\Omega_c(2770) \rightarrow \Omega_c \gamma$ for electromagnetic decays.

Hadron 2021 - Li, Jin

HFLAV

$M(\Lambda_{c}^{+}\pi^{0})-M(\Lambda_{c}^{+})$

Hadron 2021 - Li, Jin