

ALICE unveils strong interaction among stable and unstable hadrons.

Laura Fabbietti, Technische Universität München

HADRON 2021: 19th International Conference on Hadron Spectroscopy and Structure

Outline

ALICE at the LHC

Femtoscopy

Hyperon-nucleon Hyperon-Hyperon Hyperon-NN...

Hyperon Stars

Hyperon appearance in neutron stars?

Dimensions R ~ 10 - 15 km M ~ 1.5 - 2.2 M_{\odot}

Outer Crust Ions, electron gas, Neutrons

Inner Core Neutrons? Protons? Hyperons? Kaon condensate? Quark Matter?

Neutron Stars: very dense, compact objects

- What is the EoS?
 - What are the constituents to consider?
 - How do they interact?

Hyperon appearance in neutron stars?

J. Schaffner-Bielich, Nucl. Phys. A 835 (2010) 279

Neutron Stars: very dense, compact objects

- At finite densities hyperon production becomes energetically favorable ⇒ softening of EoS
 - Appearance as a a function of p depends on the Y interaction with medium and Y interactions among themselves
 - Naïve introduction of A incompatible with astrophysical observations

Hyperon appearance in neutron stars?

J. Schaffner-Bielich, Nucl. Phys. A 835 (2010) 279

Neutron Stars: very dense, compact objects

- At finite densities hyperon production becomes energetically favorable ⇒ softening of EoS
 - Appearance as a a function of p depends on the Y interaction with medium and Y interactions among themselves
 - Naïve introduction of A incompatible with astrophysical observations

The building blocks for the EoS of hyperon stars: two- and three-body interactions

ТΠ

Femtoscopy with small sources

- Small particle-emitting source created in pp and p-Pb collisions at the LHC
 - Essential ingredient for detailed studies of the strong interaction
 - D. Mihaylov et al., Eur. Phys. J. C78 (2018) 394
 - Small interparticle distance \rightarrow doorway to studying large densities

ТШП

Small Sources: Collective Effects and Strong Resonances

- Modeling of the emitting source in pp collisions with a common core + halo of strongly decaying resonances for each pair
- Core constrained with femtoscopic studies for p-p pairs in pp HM 13 TeV
- Resonance contributions evaluated from statistical models and kinematics from transport models

• Determination of the source for each pair at the corresponding $\langle m_T \rangle \Longrightarrow$ direct access to the interaction signal of the correlation function

Harvest of LHC Run 1 & 2

Harvest of LHC Run 1 & 2 – What we will see today

|S|=1: pA Interaction and role of the ΣN coupling

NPA 915

J.Haidenbauer,

- $p\Lambda$ interaction:
 - low-statistics scattering data and hypernuclei, not available at low momenta (plab> 100 MeV/c)
 - 2-body coupling to ΣN is experimentally not (yet) measured
- ΣN coupling strength deeply affects the behaviour of Λ at finite density

- Relevance for EoS in NS ("hyperon puzzle") and for connection to role of **ANN** three-body interaction
- Updated NLO19 with weaker coupling strength in NA-N Σ leading to different A properties in nuclear matter

|S|=1: Ap Interaction and access to the ΣN coupling

ALICE Coll. arXiv:2104.04427 submitted to PRL

- Extension of the kinematic range
- Factor 20 improved precision of the measurement
- First experimental evidence ΣN opening in 2 body channel
- Sensitivity to different strength of ΣN coupling (NLO13 vs NLO19)
- Sensitivity to residual $p\Sigma^0$ contribution \Rightarrow shallow interaction
- NLO19 favoured \Rightarrow very attractive $U_{\Lambda} \Rightarrow$ too soft EoS....

|S|=1: Ap Interaction and access to the ΣN coupling

$p-\Sigma^0 (ightarrow)$	χ EFT	Flat	
p−Λ (↓)			
LO13-600	4.7 (5.7)	7.7 (10.8)	
NLO13-500	5.3 (7.4)	3.3 (3.7)	
NLO13-550	3.7 (4.5)	2.5 (2.5)	
NLO13-600	4.4 (4.5)	2.9 (3.3)	
NLO13-650	4.1 (4.0)	3.1 (3.8)	
NLO19-500	4.0 (4.8)	2.8 (2.8)	
NLO19-550	3.4 (3.5)	2.3 (2.7)	
NLO19-600	3.2 (3.1)	2.3 (2.9)	
NLO19-650	3.2 (3.2)	2.6 (3.4)	

ΛN

- Factor 20 improved precision of the measurement
- First experimental evidence ΣN opening in 2 body channel

•

- Sensitivity to different strength of ΣN coupling (NLO13 vs NLO19)
- Sensitivity to residual $p\Sigma^0$ contribution \Rightarrow shallow interaction
- NLO19 favoured \Rightarrow very attractive U_{Λ} \Rightarrow too soft EoS....

|S|=1: First measurement of the p Σ^0 interaction

- Experimental data on hypernuclei too scarce for a final conclusion: attractive or repulsive interaction?
- Very challenging measurement via the difficult electromagnetic decay $\Sigma^0 \to \Lambda \; \gamma$
- Correlation function is above the background \Rightarrow pointing to a very shallow attractive interaction

Model	$p-(\Lambda \gamma)$ baseline	fss2	χEFT	NSC97f	ESC16
$n_{\sigma}~(k^* < 150~{ m MeV}/c)$	0.2-0.8	0.2-0.9	0.3-1.0	0.2-0.6	0.1-0.5

- Relevant for dense neutron matter is the interaction with neutrons and the interaction of $\Sigma^{+,\text{-}}!$
 - Disentangle the different isospin contributions
- Larger statistics in Run3 and Run4 will definitely increase the precision and constraints on the Σ-N interaction

|S|=2 sector: $p\Xi^{-}$ interaction and first test of LQCD

- Lattice QCD potentials from HAL QCD collaboration available \Rightarrow femtoscopy unique tool to study this system $\underbrace{\underbrace{\ast}}_{O}$
- Observation of the strong interaction beyond Coulomb
- Agreement with LQCD calculations confirmed in pp and p-Pb colliding systems (Phys. Rev. Lett 123, (2019) 112002)
- At finite density HAL QCD potentials predict in PNM a slightly repulsive $U_{\Xi} \sim +6$ MeV (HAL QCD Coll., PoS INPC2016 (2016) 277)
 - pushing production of Ξ to higher densities ⇒ stiffer EoS

Single particle potentials from lattice QCD

Courtesy J. Schaffner-Bielich 2020

30 20 $\Sigma^0, \Sigma^+, \Sigma^-$ 10 U(k) [MeV] Ξ^{0},Ξ^{-} -10 -20 -30 **SNM** $\rho = 0.17 \, [\text{fm}^{-3}], x = 0.5$ -40 0 2 3 $k \, [\mathrm{fm}^{-1}]$

Attractive $p\Xi^-$ interaction lead to slightly attractive single particle potential in symmetric nuclear matter (SNM) and slight repulsion in neutron rich matter. Ξ^- appears at larger densities in NS

Inoue, T. Strange nuclear physics from QCD on lattice. AIP Conference Proceedings 2130, 020002 (2019)

Equation of state for neutron stars

Courtesy J. Schaffner-Bielich 2020 2.5 Mass (M₃) $M_{max} = 2.13 M_{\odot}$ n M=1.4M_o 2 Particle number per baryon J0740+6620 0.1 J0348+0432 1.5 J1614-2230 :U₁= -28MeV :U₅=+15MeV 0.0° U_= -4MeV 0.5 m^{*}/m = 0.65 0.001^L 10.5 11 11.5 12 12.5 13 13.5 14.5 15 14 2 8 10 Radius (km) Energy density $\varepsilon/\varepsilon_0$

The resulting equation of state for neutron star is stiffer and the observation of 2 solar masses is matched.

This is not the end of the story...

LF, V. Mantovani Sarti, O. Vazquez Doce arXiv:2012.09806

ТЛ

Proton- ϕ Interaction

ALI-PUB-486981

$$d_0 = 7.85 \pm 1.54(stat.) \pm 0.26(syst.) \text{fm}$$
$$Re(f_o) = 0.85 \pm 0.34(stat.) \pm 0.14(syst) \text{fm}$$
$$Im(f_o) = 0.16 \pm 0.10(stat.) \pm 0.09(syst.)$$

Extracted genuine correlation function After the subtraction of combinatorics, mini-jets and unfolding according to the genuine $p-\phi$ contribution.

1) Lednicky-Lyuboshits Model

$$C(k^*) = \sum_{S} \rho_S \left[\frac{1}{2} \left| \frac{f(k^*)}{r_0} \right|^2 \left(1 - \frac{d_0}{2\sqrt{\pi}r_0} \right) + \frac{2\Re f(k^*)}{\sqrt{\pi}r_0} F_1(2k^*r_0) - \frac{\Im f(k^*)}{r_0} F_2(2k^*r_0) \right]$$

Large range Dominant elastic interaction!

ALI-PUB-486981

Extracted genuine correlation function After the subtraction of combinatorics, mini-jets and unfolding according to the genuine $p-\phi$ contribution.

2) Yukawa-type potential with real parameters

$$V(r) = -A\frac{e^{\alpha r}}{r}$$

Correlation obtained with CATS Fit Results:

$$A = 0.021 \pm 0.009(stat.) \pm 0.006(syst.)$$

$$\alpha = 65.9 \pm 38.0(stat.) \pm 17.5(syst)$$

Extraction of the N- ϕ coupling constant as \sqrt{A}

 $0.14 \pm 0.03(stat.) \pm 0.02(syst.)$

Effect of the 3-body Forces

D. Lonardoni, A. Lovato, S. Gandolfi, F. Pederiva Phys. Rev. Lett. 114, 092301 (2015) Repulsive 3-body forces can contribute to stiffen the hyperon stars equation of state

Prediction from Quantum Montecarlo adjust repulsive 3-body forces to hypernuclei binding energies

Current χ EFT calculations predict an overall attractive 3-body contribution and a repulsive 2-body core

(S. Petschauer et al Theory. Front. Phys. 8 (2020) 12) (D.Logoteta et al Eur. Phys. J. A (2019) 55: 207)

Need a direct measurement! Talk by Dr. Raffaele Del Grande Tue 19:00

ТЛ

... towards the solution of the puzzle

Summary

- Femtoscopy as a tool to provide unprecedented constraints on hadronhadron interactions
- Most precise data on several YN interactions providing constraints for hadron-hadron potentials
- First measurement of the proton- ϕ interaction
- More precision studies within reach with the large data samples collected in Run 3 & 4
 - Direct measurements of three-body interactions for the first time
 - Eventually solve the hyperon puzzle...
 - Probing QCD bound states

Thank you!

23