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 Hadron-hadron correlation 

: Source functionS(r)

φ(−)(q, r) : Relative wave function

• Koonin-Pratt formula : 

C(q) ≃ ∫ d3r S(r) |φ(−)(q, r) |2

q = (m2k1 − m1k2)/(m1 + m2)

S.E. Koonin, PLB 70 (1977)  
S. Pratt et. al. PRC 42 (1990) 



4

1

2

A1

Final State 
Interaction 

(FSI)

A2

t

Hadronization

High energy nuclear collision and FSI

k1

k2

: Source functionS(r)

φ(−)(q, r) : Relative wave function

r

Hadron correlation in high energy nuclear collision

 Hadron-hadron correlation 
• Koonin-Pratt formula : 

C(q) ≃ ∫ d3r S(r) |φ(−)(q, r) |2

• Depends on …

Collision detail (Ai, energy, centrality)

• Including information of…

size of hadron source,  
momentum dependence, weight…

q = (m2k1 − m1k2)/(m1 + m2)

S.E. Koonin, PLB 70 (1977)  
S. Pratt et. al. PRC 42 (1990) 
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• Depends on …

Interaction (strong and Coulomb)

quantum statistics (Fermion, boson)

Hadron correlation in high energy nuclear collision

 Hadron-hadron correlation 
• Koonin-Pratt formula : 

C(q) ≃ ∫ d3r S(r) |φ(−)(q, r) |2

q = (m2k1 − m1k2)/(m1 + m2)
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 Analytic model for ideal cases

R. Lednicky, et al. Sov. J. Nucl. Phys. 35(1982).

Hadron correlation in high energy nuclear collision

: Source functionS(r)
φ(−)(q, r) : Relative wave function

• Gaussian source with radius  
• Approximate  by asymptotic wave func. 

•   with scat. length 

R
φ

ℱ(q) = [−1/a0 − iq]−1 a0
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FIG. 1. The correlation function C(LL)(q) with re↵ = 0 as a function
of R/a0 for different qR (upper panel) and as a function of qR for
different R/a0 value (lower panel). In the present sign convention,
a0 > 0 corresponds to the existence of a bound state.

where [dr⇤] = dr⇤S(r) with S(r) being properly normal-
ized as

R
[dr⇤] = 1. One immediately finds that the deviation

of the wave function from the non-interacting one is directly
translated into the correlation function and that the relative
source function acts as a weight factor at relative distance r.

Furthermore, when the source size is not too small com-
pared to the interaction range, the integral is dominated by the
contribution outside the interaction range such that the wave
function can be approximated by its asymptotic form  q(r) ⇠
e
�i� sin(qr+�)/(qr) with � being the S-wave scattering phase

shift. Employing a Gaussian source S(r) / exp(�r
2
/4R2)

and the effective range formula for small q,

q cot � ' � 1

a0
+

1

2
reffq

2
, (12)

one can express the correlation function in terms of the scat-
tering length a0 and the effective range reff, which is known
as the Lednický-Lyuboshits (LL) formula [29],

C
(LL)(q) = 1 +

|f(q)|2

2R2
F3

⇣
reff

R

⌘
+

2Ref(q)p
⇡R

F1(2qR)

� Imf(q)

R
F2(2qR). (13)

Here f(q) = (q cot � � iq)�1 is the scattering amplitude,
F1(x) =

R x
0 dte

t2�x2

, F2(x) = (1 � e
�x2

)/x, and F3(x) =
1 � x/(2

p
⇡). Since the scattering length dominates the be-

havior of the phase shift at small q, this correlation function
is mainly determined by the scattering length and the source
size: For reff = 0, C(LL)(q) is a function of two dimensionless
variables, qR and R/a0 [17].

Figure 1 represents characteristics of the correlation func-
tion C

(LL)(q) with re↵ = 0. For a fixed qR (upper panel), the
correlation function exhibits non-monotonic changes against
the ratio of the system size to the scattering length. It shows a
strong peak around R/a0 ⇠ 0 for small qR due to the strong
enhancement of the wave function. We call the region where
C(q) is enhanced as the “unitary region” throughout this pa-
per. The peak is smeared as qR is increased. As the attraction
becomes weaker (a0 < 0), the correlation is also weakened
to exhibit monotonic decrease with decreasing R/a0 and in-
creasing qR. On the other hand, if the attraction is strong
enough to accommodate a bound state (a0 > 0), C(q) rapidly
decreases with R/a0 then takes values less than unity imply-
ing the depletion of correlated pairs at small qR. The deple-
tion can be understood by so-called the structural core; the
scattering wave function needs to be orthogonal to the bound
state wave function, then it has a node in the interaction range
as if there is a repulsive core. Thus the squared wave function
is suppressed on average.

The above properties of C(q) are essential in order to ex-
tract the pairwise interaction from the measured correlation
functions. In particular, the behavior of C(q) for different
system size provides detailed information on the scattering
parameters as shown in the lower panel of Fig. 1. Consider
the case where C(q) � 1 at small qR. It indicates that the
system is in the unitary region where |R/a0| is small, while
the sign of a0 is unknown. However, by increasing R with
a0 and qR fixed, C(q) eventually becomes smaller than 1 for
positive a0, while C(q) is always larger than 1 for negative
a0.

In reality, the correlation at small q originates not only from
the single-channel FSI but also from the quantum statistics in
the case of identical pairs (HBT effect), from the Coulomb
interaction, and from the coupled channel effect [30]. Fur-
thermore, the correlation from the HBT effect is affected by
the collective flow through the modification of the source ge-
ometry. As a result, even for non-identical pairs, the absolute
magnitude of C(q) with respect to unity is not always a useful

Bound state 
or repulsive  
 ( )a0 > 0

Attractive  

No bound state ( )a0 < 0

Morita, et al., PRC101 (2020)

C(q) ≃ ∫ d3r S(r)|φ(−)(q, r) |2

C(q) = 1 + [ |ℱ(q) |2

2R2
F3 ( reff

R ) +
2Re ℱ(q)

πR
F1(x) −

Im ℱ(q)
R

F2(x)]

C = C(qR, / )R a0

Sgn(a0) Interaction

- Attraction w/o bound state 

+
Attraction w/  bound state 

or 
 Repulsion 

•  is sensitive to  at C(q) R /a0 qR ≲ 1

• Clear relation between  and  

• Sensitive to (non)existence of bound state

C(q) ℱ(q)
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 Source size dependence of C(q)

Hadron correlation in high energy nuclear collision

: Source functionS(r)
φ(−)(q, r) : Relative wave function
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FIG. 1. The correlation function C(LL)(q) with re↵ = 0 as a function
of R/a0 for different qR (upper panel) and as a function of qR for
different R/a0 value (lower panel). In the present sign convention,
a0 > 0 corresponds to the existence of a bound state.

where [dr⇤] = dr⇤S(r) with S(r) being properly normal-
ized as

R
[dr⇤] = 1. One immediately finds that the deviation

of the wave function from the non-interacting one is directly
translated into the correlation function and that the relative
source function acts as a weight factor at relative distance r.

Furthermore, when the source size is not too small com-
pared to the interaction range, the integral is dominated by the
contribution outside the interaction range such that the wave
function can be approximated by its asymptotic form  q(r) ⇠
e
�i� sin(qr+�)/(qr) with � being the S-wave scattering phase

shift. Employing a Gaussian source S(r) / exp(�r
2
/4R2)

and the effective range formula for small q,

q cot � ' � 1
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+
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reffq

2
, (12)

one can express the correlation function in terms of the scat-
tering length a0 and the effective range reff, which is known
as the Lednický-Lyuboshits (LL) formula [29],

C
(LL)(q) = 1 +

|f(q)|2
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Here f(q) = (q cot � � iq)�1 is the scattering amplitude,
F1(x) =

R x
0 dte

t2�x2

, F2(x) = (1 � e
�x2

)/x, and F3(x) =
1 � x/(2

p
⇡). Since the scattering length dominates the be-

havior of the phase shift at small q, this correlation function
is mainly determined by the scattering length and the source
size: For reff = 0, C(LL)(q) is a function of two dimensionless
variables, qR and R/a0 [17].

Figure 1 represents characteristics of the correlation func-
tion C

(LL)(q) with re↵ = 0. For a fixed qR (upper panel), the
correlation function exhibits non-monotonic changes against
the ratio of the system size to the scattering length. It shows a
strong peak around R/a0 ⇠ 0 for small qR due to the strong
enhancement of the wave function. We call the region where
C(q) is enhanced as the “unitary region” throughout this pa-
per. The peak is smeared as qR is increased. As the attraction
becomes weaker (a0 < 0), the correlation is also weakened
to exhibit monotonic decrease with decreasing R/a0 and in-
creasing qR. On the other hand, if the attraction is strong
enough to accommodate a bound state (a0 > 0), C(q) rapidly
decreases with R/a0 then takes values less than unity imply-
ing the depletion of correlated pairs at small qR. The deple-
tion can be understood by so-called the structural core; the
scattering wave function needs to be orthogonal to the bound
state wave function, then it has a node in the interaction range
as if there is a repulsive core. Thus the squared wave function
is suppressed on average.

The above properties of C(q) are essential in order to ex-
tract the pairwise interaction from the measured correlation
functions. In particular, the behavior of C(q) for different
system size provides detailed information on the scattering
parameters as shown in the lower panel of Fig. 1. Consider
the case where C(q) � 1 at small qR. It indicates that the
system is in the unitary region where |R/a0| is small, while
the sign of a0 is unknown. However, by increasing R with
a0 and qR fixed, C(q) eventually becomes smaller than 1 for
positive a0, while C(q) is always larger than 1 for negative
a0.

In reality, the correlation at small q originates not only from
the single-channel FSI but also from the quantum statistics in
the case of identical pairs (HBT effect), from the Coulomb
interaction, and from the coupled channel effect [30]. Fur-
thermore, the correlation from the HBT effect is affected by
the collective flow through the modification of the source ge-
ometry. As a result, even for non-identical pairs, the absolute
magnitude of C(q) with respect to unity is not always a useful
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 ( )a0 > 0

Morita, et al., PRC101 (2020)
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C(q) ≃ ∫ d3r S(r)|φ(−)(q, r) |2

C(q) = 1 + [ |ℱ(q) |2

2R2
F3 ( reff

R ) +
2Re ℱ(q)

πR
F1(x) −

Im ℱ(q)
R

F2(x)]

C = C(qR, / )R a0
• For the specific channel (or ) 
  we can get the different ratio   
  from the different collision experiments

a0

R /a0

R ∼ { 1 fm (for pp collisions)
2-5 fm (for AA collisions)

|a0 | = 3 fm

R = 3.0 fm

0.9 fm

0.9 fm
3.0 fm

Correlation function in different collisions 

are very important for the detailed study. 

• Bound ( ) casea0 = 3 fm

• Unbound ( ) casea0 = − 3 fm
small source   → Enhancement 
Large source  → Enhancement

small source   → Enhancement 
Large source  → Suppression 
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-  interaction and -dibaryon stateΛΛ NΞ H

-  interaction ( ) and -dibaryonΛΛ NΞ S = − 2 H

• Flavor-singlet dihyperon “H”R. L. Jaffe, PRL 38 (1977), 195. 

• Binding energy of double  hypernucleusΛ
Takahashi et al., PRL87 (2001) 212502

pΞ−ΛΛ nΞ0

Re s

226022542231

8 ⊗ 8 = 1 ⊕ 8A ⊕ 8S ⊕ 10 ⊕ 1̄0 ⊕ 27
• : Unique sector in flavor Octet-Octet baryon int.J = 0

• Pauli arrowed  
• Attractive color-magnetic int. 

Predicted as “single hadron” below ΛΛ

 does NOT form (deep) bound stateΛΛ
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-  interaction and -dibaryon stateΛΛ NΞ H

-  interaction ( ) and -dibaryonΛΛ NΞ S = − 2 H

• Flavor-singlet dihyperon “H”R. L. Jaffe, PRL 38 (1977), 195. 

• Binding energy of double  hypernucleusΛ

 does NOT form (deep) bound stateΛΛ
Takahashi et al., PRL87 (2001) 212502

pΞ−ΛΛ nΞ0

Re s

226022542231

Ξ− + 14N → 10
Λ Be + 5

ΛHe

•  binding energy in twin-hyper nucleiΞ-14N

interaction was inferred.
In line with single ⇤ hypernuclei, the study of ⌅ hyper-

nuclei can provides meaningful information on the ⌅N
interaction. First (K�,K+) missing-mass spectroscopy
studies were performed by the KEK E224 and BNL E885
collaborations. In both experiments, insu�cient energy
resolution prevented the observation of a peak in the
bound state region [5, 6]. Assuming a Woods-Saxon
type potential, the BNL E885 experiment estimated the
potential depth of the ⌅� to be about 14 MeV which
suggests a binding energy around 4.5 MeV. While an ini-
tial J-PARC experiment [7] measured the missing mass
spectrum of the 12C(K�,K+) reaction, a new experi-
ment with a much improved energy resolution of better
than 2 MeV FWHM is now planned at J-PARC [8].

Several emulsion experiments reported the possibil-
ity of an attractive ⌅-nucleus interaction. A remarkable
event named “KISO” was found by the KEK E373 ex-
periment [9]. The decay mode of that event was uniquely
identified to be ⌅� + 14N ! 10

⇤ Be + 5
⇤He. For the

binding energy of the ⌅� hyperon, B⌅� , a value of
3.87 ± 0.21MeV or 1.03 ± 0.18MeV was deduced, de-
pending whether the 10

⇤ Be daughter nucleus is produced
in the ground state or the excited state, respectively [10].
In either scenario, the bound state of the ⌅�–14N system
is expected to be deeper than the atomic 3D orbit.

The ⌅N interaction can also be extracted by mea-
suring the energy shift and width of x rays from ⌅
atoms. Two experiments involving ⌅-atomic x ray mea-
surements using Ge detectors have been proposed at
J-PARC [11, 12], E07 being the one described in this
paper.

A theoretical calculation of the binding energy of the
⌅�–14N system was presented by Yamaguchi et al. using
the ⌅N one-boson-exchange potential called the Ehime
potential [13]. In this model, the coupling constants
were adjusted to reproduce the experimental result of
the ⌅�–12C bound states with B⌅� ⇠ 0.6 MeV observed
in the KEK E176 experiment [10, 14]. The calculation
also predicted for the ⌅�–11B system a ground state
binding energy, which is in agreement with the exci-
tation energy spectrum in the BNL E885 experiment.
More recently, T. T. Sun et al. performed a theoretical
calculation with the relativistic-mean-field and Skyrme-
Hartree-Fock models [15]. The preferred interpretation
of the KISO event was an observation of an excited state
of the 10

⇤ Be. When the ⌅N interaction was adjusted to
reproduce the binding energy for the KISO event assum-
ing the 1p state for an excited 10

⇤ Be, the predicted ⌅�

removal energy of 15
⌅ C in the 1s state was 7.2–9.4 MeV.

Very recent Lattice QCD calculations with almost phys-
ical quark masses (m⇡ = 146 MeV), provided the ⌅N
interaction potentials for various S = �2 channels [16].
These lattice results indicated that the coupling between
⇤⇤ and ⌅N states is weak.

J-PARC E07 is an emulsion-counter hybrid experi-

ment aiming to identify the decay modes of about 10
events of S = �2 hypernuclei [12]. The experiment
was carried out using a 1.81 GeV/c K� beam at the
K1.8 beam line of the Hadron Experimental Facility at
J-PARC [17, 18]. The ⌅� hyperons produced in the
quasifree “p”(K�,K+)⌅� reaction in a diamond target
of 9.87 g/cm2 thickness were injected into an emulsion
module located downstream of the target. The emulsion
module consisted of two 380-µm-thick sheets and eleven
1-mm-thick sheets with 34.5 ⇥ 35.0 cm2 area. The in-
cident ⌅� hyperons were eventually slowed down and
captured at rest in the atomic orbit of a nucleus in
the emulsion material. ⌅ hypernuclei or double-⇤ hy-
pernuclei are generated at the capture point with some
probability [19], and the decay tracks of charged parti-
cles are recorded in the emulsion module. In total, 118
emulsion modules were exposed to 1.13⇥ 1011 K� par-
ticles. About 100 events of S = �2 hypernuclei were
expected to be produced as a result of the 104 ⌅� hy-
perons stopped in the emulsion. More details on the
experimental setup can be found in Ref. [20]. The ⌅-
atomic x rays were also measured by using germanium
detectors. Details are presented in Ref. [21].
A remarkable event forming a twin-⇤ hypernuclear

topology was found in the tenth sheet of module #047.
Figure 1 shows a superimposed image and a schematic
drawing of the event. We named the event “IBUKI”
[22]. The ⌅� traced in sequence from upstream was

#1

#2

#4
#5 #6

Ξ-

#3

#7

#8

#9

A

B

C

10 µm

FIG. 1. Superimposed image and schematic drawing of the
IBUKI event.

found to have stopped and decayed at vertex A, from
which the two charged particles of tracks #1 and #2
were emitted. Track #1 decayed into four charged par-
ticles, tracks #3–6 at vertex B. Track #2 showed a
decay into three charged particles, tracks #7–9 at ver-
tex C. All nine tracks were manually followed and their
stopping points were found inside of the emulsion mod-
ule. No charged daughter particles were found at the
ends of tracks #5, #6, and #9. Track #8 accompa-
nied by particle emission at the stopping point indicates

2

K. Nakazawa et al., PTEP 2015 (2015), 033D02 
S. H. Hayakawa et al. [J-PARC E07], PRL 126 (2021) 062501

Can dibaryon state emerge as  quasibound?NΞ

Ibuki event 

• Consistent with attractive  int.NΞ

8 ⊗ 8 = 1 ⊕ 8A ⊕ 8S ⊕ 10 ⊕ 1̄0 ⊕ 27
• : Unique sector in flavor Octet-Octet baryon int.J = 0

• Pauli arrowed  
• Attractive color-magnetic int. 

Predicted as “single hadron” below ΛΛ
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 correlation functionΛΛ

 correlation from STAR ΛΛ

results for Λ and Λ̄ in order to increase the statistical
significance.
The combined ΛΛ and Λ̄ Λ̄ correlation function for

0–80% centrality is shown in Fig. 3. The systematic errors
were estimated by varying the following requirements
for the selection of Λ: DCA, DL, and mass range, which
affect the signal-to-background ratio. Systematics from cuts
on the angular correlation of pairs were also studied that
may affect correlations at small relative momentum. The
systematic uncertainties from different sources were then
added in quadrature. The combined systematic error is
shown separately as a shaded band in Fig. 3. If there were
only antisymmetrization from quantum statistics, a ΛΛ
correlation function of 0.5 would be expected at Q ¼ 0.
The observed pair excess near CðQ ¼ 0Þ compared to 0.5
suggests that the ΛΛ interaction is attractive; however, as
mentioned earlier, the data are not corrected for residual
correlations and those effects can give rise to this excess. In
Fig. 3, the dotted line corresponds to quantum statistics.
The Lednický and Lyuboshitz analytical model [23]

relates the correlation function to source size and also takes
into account the effect of the strong final-state interactions
(FSI). The following correlation function is used to fit the
experimental data

CðQÞ¼N
!
1þλ

"
−1

2
expð−r20Q2Þþ1

4

jfðkÞj2

r20

"
1− 1

2
ffiffiffi
π

p d0
r0

$

þRefðkÞffiffiffi
π

p
r0

F1ðQr0Þ−
ImfðkÞ
2r0

F2ðQr0Þ
$

þares expð−r2resQ2Þ
%
; ð4Þ

where k ¼ Q=2, F1ðzÞ ¼
R
1
0 ex

2−z2=zdx and F2ðzÞ ¼
ð1 − e−z

2Þ=z in Eq. (4). The scattering amplitude is
given by

fðkÞ ¼
"
1

f0
þ 1

2
d0k2 − ik

$−1
; ð5Þ

where f0 ¼ a0 is the scattering length and d0 ¼ reff is the
effective range. Note that a universal sign convention is used
rather than the traditional sign convention for the s-wave
scattering length a0 ¼ −f0 for baryon-baryon systems.
More details about the model can be found in Ref. [23].
The free parameters of the LL model are normalization
(N), a suppression parameter (λ), an emission radius (r0),
scattering length (a0), and effective radius (reff ). In the
absence of FSI, λ equals unity for a fully chaotic Gaussian
source. The impurity in the sample used and finite momen-
tum resolution can suppress the value of λ parameter. In
addition to this, the non-Gaussian form of the correlation
function and the FSI between particles can affect (suppress
or enhance) its value. The last term in Eq. (4) is introduced to
take into account the long tail observed in themeasured data,
where ares is the residual amplitude and rres is the width of
the Gaussian.
When the amplitude ares in Eq. (4) is made to vanish, a fit

performed on data causes a larger χ2=NDF (dashed line in
Fig. 3) and also the obtained r0 is much smaller than
the expected r0 from previous measurements [22,24,25],
which suggests that the measured correlation is wider than
what the fit indicates in this scenario. This effect can be
explained by the presence of a negative residual correlation
in the data, which is expected to be wider than the
correlation from the parent particles. Therefore, to include
the effect of a residual correlation, a Gaussian term
ares expð−Q2r2resÞ is incorporated in the correlation function
(solid line in Fig. 3). A negative residual correlation
contribution is required with ares ¼ −0.044% 0.004þ0.048

−0.009
and rres ¼ 0.43% 0.04þ0.43

−0.03 fm, where the first error is
statistical and the second is systematic. Such a wide
correlation could possibly arise from residual correlations
caused by decaying parents such as Σ0 and Ξ, and coupling
of NΞ to the ΛΛ channel. The fit parameters obtained with
the residual correlation term are N ¼ 1.006% 0.001,
λ ¼ 0.18% 0.05þ0.12

−0.06 , a0 ¼ −1.10% 0.37þ0.68
−0.08 fm, reff ¼

8.52% 2.56þ2.09
−0.74 fm, and r0 ¼ 2.96% 0.38þ0.96

−0.02 fm with
χ2=NDF ¼ 0.56. All the systematic errors on the param-
eters are uncorrelated errors. The Gaussian term is empiri-
cal and its origin is not fully understood. However,
the addition of this term improves fit results and the
obtained r0 is compatible with expectations. The LL
analytical model fit to data suggests that a repulsive
interaction exists between ΛΛ pairs, whereas the fit to
the same data from Morita et al. showed that the ΛΛ
interaction potential is weakly attractive [26]. The

FIG. 3 (color online). The combined ΛΛ and Λ̄ Λ̄ correla-
tion function for 0–80% centrality Auþ Au collisions atffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. Curves correspond to fits using the
Lednický-Lyuboshitz (LL) analytical model with and without
a residual correlation term [23]. The dotted line corresponds to
quantum statistics with a source size of 3.13 fm. The shaded band
corresponds to the systematic error.

PRL 114, 022301 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

16 JANUARY 2015

022301-5

312 S. Cho et al. / Progress in Particle and Nuclear Physics 95 (2017) 279–322

Fig. 5.2. ⇤⇤ correlation function with the fss2 ⇤⇤ interaction [293,294], obtained by using the KP and LL formulae in comparison with data [22]. Left
panel shows the results without the feed-down correction and the residual correlations. Right panel shows the results with the feed-down and residual
source effects. The results in the fixed � case (� = (0.67)2) and the free � case are compared. Also shown in both panels are the results from the cylindrical
source including flow effects in the KP formula [36]. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

approach to the primary vertex. The long-lived resonance contribution from ⌃0 and a part of ⌅ is still supposed to reduce
the correlation strength via Eq. (5.31).

In Ref. [22], the datawere analyzedwithin the LLmodel Eq. (5.28)with an intercept parameter�. Furthermore, a Gaussian
term with two parameters taking account of the residual correlation at large q is included, although its origin has not been
understood. Therefore, a six-parameter fit to the data is made with

C(q) = N


1 + �

✓
�

1
2
e�4q2R2

+ �CLL(q)
◆

+ arese�4r2resq
2
�

(5.34)

where �CLL(q) is given by Eq. (5.28). Optimized parameters given in Ref. [22] are summarized in Table 5.1.
Although the quality of the fit is quite well (�2/Ndof ' 0.56), the obtained scattering length,1 a0 = 1.10 ± 0.37+0.68

�0.08 fm,
seems to conflict with the results from the observed double hypernucleus. Indeed, the ⇤⇤ bond energy in 6

⇤⇤He is found
to be �B⇤⇤ = B⇤⇤( 6

⇤⇤He) � 2B⇤(5⇤He) ' 1.01 MeV [38]. From �B⇤⇤( 6
⇤⇤He), the scattering length and the effective range

in the ⇤⇤1S0 channel are suggested as (a0, reff) = (�0.77 fm, 6.59 fm) [289] or (a0, reff) = (�0.575 fm, 6.45 fm) [290].
Recent update of the bond energy due to the update of the ⌅� mass [291] gives �B⇤⇤( 6

⇤⇤He) = 0.67 ± 0.17 MeV [79],
which suggests (a0, reff) = (�0.44 fm, 10.1 fm) [292].

A detailed investigation of the ⇤⇤ correlation function by making use of the KP formula Eq. (5.7) with various ⇤⇤ inter-
action potentials and source functions including collective expansion in both longitudinal and transverse directions has been
carried out in Ref. [36], It was found that after taking into account the correction of electromagnetic decays from ⌃0, the
scattering length is found to be consistentwith the double hypernuclei. The detailed comparison of themethods is discussed
in Ref. [35], which concludes that it is crucial to determine the value of �. Here we briefly outline the above points.

First, we clarify the difference between the C(q) obtained from the LL formula Eq. (5.28) and the KP formula Eq. (5.7).
In the left panel of Fig. 5.2, C(q) with the fss2 ⇤⇤ interaction is displayed. The corresponding values a0 = �0.81 fm and
reff = 3.99 fm are used as inputs for the LL formula. The difference between the two is small, thus confirming previous
studies [276] that indicate insensitivity of the correlation to the detailed shape of the wave function within the interaction
range. The difference of C(q) between the static spherical source (thin red, circles) and the expanding source (thin green,
triangles) indicates the effect of the collective expansion. The existence of the fast boost-invariant longitudinal expansion
deforms the source function such that the correlation function takes a different shape in the best fit to the data [36]. Note
that such a difference does not take place in the case of non-identical pairs; as seen in Eqs. (5.16) and (5.18), the quantum
statistics effect makes C(q) more sensitive to the source shape through the Fourier transformation.

Second, we estimate the contribution to N⇤
tot with the help of the statistical model and experimental data, to correct the

data for the long-lived resonance decay via Eqs. (5.30) and (5.31). Here⌃0 and⌅ are treated as long-lived resonances, since
other decay parents have much shorter lifetime thus only change the effective source size or have a negligible contribution.
Adopting data from p + Be collisions at plab = 28.5 GeV [295], we take N⌃0/N⇤ = 0.278, which is also consistent with
thermal model calculations. Taking into account the fact that the ⌅ yield in Au+Au collisions at

p
sNN = 200 GeV has been

shown to be 15% of total ⇤ [296] and the STAR candidate selection with the distance of closest approach less than 0.4 cm
may exclude a part of ⌅ decay contributions to ⇤, we estimate � = (0.67)2. If we take account of the ⌅ contribution into

1 The opposite sign convention of the scattering length is adopted in Ref. [22].

ΛΛ
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Fig. 1. Correlation function for !! evaluated for the NLO (600) interaction [32] based on the Koonin–Pratt formula 
and using physical masses. The source radius is put to R = 1.2 fm. The dash-dotted line shows results when only the 
!! wave function is taken into account while the solid line is the full calculation. The dotted line is based on the 
Lednicky–Lyuboshitz [2,5] model formula, Eq. (6). Data are from the STAR [15] (squares) and ALICE [14] (circles) 
Collaborations.

Table 1
Scattering lengths and effective ranges (in fm) for the employed baryon–baryon interaction [32] for the various channels.

channel 1S0
3S1

I = 0 I = 1 I = 2 I = 0 I = 1

a r a r a r a r a r

"N −10.89− i 14.91 0.34 −7.07 −0.62 1.00 0.02 1797
!! −0.66 5.05
## −1.83 6.05

calculation presented here does not involve any parameters, once the source radius R is fixed. 
For it we use R = 1.2 fm throughout this work, a value which is close or even identical to the 
one found in the analyses published in Refs. [9,14]. Anyway, it should not be concealed here that 
the actual results for the correlation functions are quite sensitive to the value of R [9,10].

In Fig. 1 the prediction based on the !! wave function alone is indicated by the dash-dotted 
line while the solid line is the full results that includes also the wave function for the !! −
"N transitions. The calculation is performed with physical masses and one can clearly see the 
opening of the "0n as well as of the "−p channel in the correlation function. The inclusion 
of the "N components clearly enhances the signal around the corresponding thresholds. It will 
be interesting to see whether future experiments with better resolution will be able to resolve 
the details here. The ALICE data [14] included in Fig. 1 and also earlier measurements of this 
collaboration [16] suggest that there could be indeed an anomaly at the "N threshold.

An important observation with regard to the analysis of pertinent measurements is that those 
"N components do not modify the !! results for small momenta. This is not surprising because 
for energies below the "N threshold the corresponding wave functions drop exponentially so that 
their contributions should be suppressed. The same behavior emerges for the contribution of the 
## component because in this case the corresponding threshold is much further away. In view 
of that, and in line with the arguments given in the work of Lednicky et al. [5], we omit the ##

wave function in the results shown in Fig. 1.

• Consistent with weekly attractive  interaction  
   

ΛΛ

J. Haidenbauer, Nucl. Phys. A 981 (2019)
No  dibaryon state below H ΛΛ

Au Au 200 GeV

!! INTERACTION FROM . . . PHYSICAL REVIEW C 91, 024916 (2015)

TABLE I. !! potentials. The scattering length (a0) and effective range (reff ) are fitted using a two-range Gaussian potential, V!!(r) =
V1 exp(−r2/µ2

1) + V2 exp(−r2/µ2
2).

Model a0 (fm) reff (fm) µ1 (fm) V1 (MeV) µ2 (fm) V2 (MeV) Ref.

ND46 4.621 1.300 1.0 −144.89 0.45 127.87 [18] rc = 0.46 fm
ND48 14.394 1.633 1.0 −150.83 0.45 355.09 [18] rc = 0.48 fm
ND50 −10.629 2.042 1.0 −151.54 0.45 587.21 [18] rc = 0.50 fm
ND52 −3.483 2.592 1.0 −150.29 0.45 840.55 [18] rc = 0.52 fm
ND54 −1.893 3.389 1.0 −147.65 0.45 1114.72 [18] rc = 0.54 fm
ND56 −1.179 4.656 1.0 −144.26 0.45 1413.75 [18] rc = 0.56 fm
ND58 −0.764 6.863 1.0 −137.74 0.45 1666.78 [18] rc = 0.58 fm
NF42 3.659 0.975 0.6 −878.97 0.45 1048.58 [19] rc = 0.42 fm
NF44 23.956 1.258 0.6 −1066.98 0.45 1646.65 [19] rc = 0.44 fm
NF46 −3.960 1.721 0.6 −1327.26 0.45 2561.56 [19] rc = 0.46 fm
NF48 −1.511 2.549 0.6 −1647.40 0.45 3888.96 [19] rc = 0.48 fm
NF50 −0.772 4.271 0.6 −2007.35 0.45 5678.97 [19] rc = 0.50 fm
NF52 −0.406 8.828 0.6 −2276.73 0.45 7415.56 [19] rc = 0.52 fm
NSC89-1020 −0.250 7.200 1.0 −22.89 0.45 67.45 [20] mcut = 1020 MeV
NSC89-920 −2.100 1.900 0.6 −1080.35 0.45 2039.54 [20] mcut = 920 MeV
NSC89-820 −1.110 3.200 0.6 −1904.41 0.45 4996.93 [20] mcut = 820 MeV
NSC97a −0.329 12.370 1.0 −69.45 0.45 653.86 [21]
NSC97b −0.397 10.360 1.0 −78.42 0.45 741.76 [21]
NSC97c −0.476 9.130 1.0 −91.80 0.45 914.67 [21]
NSC97d −0.401 1.150 0.4 −445.77 0.30 373.64 [21]
NSC97e −0.501 9.840 1.0 −110.45 0.45 1309.55 [21]
NSC97f −0.350 16.330 1.0 −106.53 0.45 1469.33 [21]
Ehime −4.21 2.41 1.0 −146.6 0.45 720.9 [23]
fss2 −0.81 3.99 0.92 −103.9 0.41 658.2 [25]
ESC08 −0.97 3.86 0.80 −293.66 0.45 1429.27 [22]

interaction, we need to take account of the meson exchange
between quarks or baryons. There are several quark model
BB interactions which include the meson exchange effects.
We adopt here the fss2 model [25], as a typical quark model
interaction. This interaction is constructed for the octet-octet
BB interaction and describes the NN scattering data at a
comparable precision to meson exchange potential models.
For fss2, we use a phase-shift equivalent local potential in the
two range Gaussian form [25], derived by using the inversion
method based on supersymmetric quantum mechanics [26].

Low energy scattering parameters of the !! interactions
considered here are summarized in Table I. In Fig. 1, we
show the scattering parameters (1/a0 and reff) of the !!
interactions under consideration. These scattering parameters
characterize the low energy scattering phase shift in the
so-called shape independent form as

k cot δ = − 1
a0

+ 1
2
reffk

2 + O(k4). (1)

For negatively large 1/a0, the attraction is weak and the phase
shift rises slowly at low energy. When we go from left to
right in the figure, the interaction becomes more attractive
and a bound state appears when a0 becomes positive. We have
parametrized the boson exchange !! interactions, described
above in two-range Gaussian potentials,

V!!(r) = V1 exp
(
−r2/µ2

1

)
+ V2 exp

(
−r2/µ2

2

)
, (2)

then fit the low energy scattering parameters, a0 and reff .

In addition to the !! potentials listed in Table I, we also
examine the potentials used in Refs. [2] [by Filikhin and
Gal (FG)] and [3] [by Hiyama, Kamimura, Motoba, Yamada,
and Yamamoto (HKMYY)] with the three-range Gaussian fit
given in those references. The parameters are summarized in
Table II.

ΛΛ scattering parameters

0
2
4
6
8

10
12
14
16

-7 -6 -5 -4 -3 -2 -1 0 1 2

r e
ff
 (f

m
)

1/a0 (fm-1)

ΛΛ scattering parameters
ND
NF

NSC89
NSC97
Ehime

fss2
ESC08

FG
HKMYY

STAR

FIG. 1. (Color online) !! interactions and scattering parameters
in the (1/a0,reff ) plane. The !! interactions favored by the !!

correlation data without feed-down correction are marked with big
circles. The thin big and thick small shaded areas correspond to the
favored regions of scattering parameters with and without feed-down
correction, respectively, which show stable and small χ2 minimum
(see text). The results of the analysis by the STAR Collaboration
is shown by the filled circle [15], together with systematic error
represented by the surrounding shaded region.

024916-3

K. Morita, T. Furumoto, and A. Ohnishi, PRC91(2015)
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-  HAL QCD potentialΛΛ NΞ

  channelNΞ-ΛΛ J = 0

�50

0

50

100

0 0.5 1 1.5 2

⇤⇤(11S0)
V
⇤
⇤
(1

1
S
0
)

[M
eV

]

r [fm]

t = 11
12
13

�50

0

50

100

0 0.5 1 1.5 2

N⌅(11S0)

V
N
⌅
(1

1
S
0
)

[M
eV

]

r [fm]

t = 11
12
13

�50

0

50

100

0 0.5 1 1.5 2

N⌅-⇤⇤(11S0)

V
N
⌅

-⇤
⇤
(1

1
S
0
)

[M
eV

]

r [fm]

t = 11
12
13

�50

0

50

100

0 0.5 1 1.5 2

N⌅(31S0)

V
N
⌅
(3

1
S
0
)

[M
eV

]

r [fm]

t = 11
12
13

3

�50

0

50

100

0 0.5 1 1.5 2

N⌅(11S0)

V
N
⌅
(
1
1
S
0
)

[M
eV

]

r [fm]

t = 11
12
13

�50

0

50

100

0 0.5 1 1.5 2

⇤⇤(11S0)

V
⇤
⇤
(
1
1
S
0
)

[M
eV

]

r [fm]

t = 11
12
13

�50

0

50

100

0 0.5 1 1.5 2

N⌅-⇤⇤(11S0)

V
N
⌅

-⇤
⇤
(
1
1
S
0
)

[M
eV

]

r [fm]

t = 11
12
13

�50

0

50

100

0 0.5 1 1.5 2

N⌅(31S0)

V
N
⌅
(
3
1
S
0
)

[M
eV

]

r [fm]

t = 11
12
13

�50

0

50

100

0 0.5 1 1.5 2

N⌅(13S1)

V
N
⌅
(
1
3
S
1
)

[M
eV

]

r [fm]

t = 11
12
13

�50

0

50

100

0 0.5 1 1.5 2

N⌅(33S1)

V
N
⌅
(
3
3
S
1
)

[M
eV

]

r [fm]

t = 11
12
13

FIG. 1. s-wave coupled-channel HAL QCD potential. The colored shadow denotes the statistical error of each potential.

channel a0 [fm] re [fm]
J = 0 p⌅� �1.22± 0.13+0.08

�0.00 � i1.57± 0.35+0.18
�0.23 3.7± 0.3+0.1

�0.1 � i2.7± 0.2+0.1
�0.3

n⌅0 �2.07± 0.39+0.28
�0.35 � i0.14± 0.08+0.00

�0.01 1.5± 0.3+0.0
�0.0 � i0.2± 0.0+0.0

�0.1

⇤⇤ �0.78± 0.22+0.00
�0.13 5.4± 0.8+0.1

�0.5

J = 1 p⌅� �0.35± 0.06+0.09
�0.07 � i0.00 8.3± 1.0+2.8

�1.2 + i0.0± 0.1+0.1
�0.0

n⌅0 �0.35± 0.06+0.09
�0.07 �8.4± 1.0+2.7

�1.2

TABLE I. The scattering length of the ⇤⇤, n⌅0, and p⌅� channels at physical point with the physical basis. The Coulomb interaction is not
included. The values are listed as (central)± (stat. error)+�(syst. error).

III. COUPLED-CHANNEL CORRELATION FUNCTION

In high-multiplicity events of pp and pA collisions and
high-energy AA collisions, the hadron production yields are
well described by the statistical model, so hadrons are consid-
ered to be produced independently. Under such conditions the
momentum correlations between outgoing particles are gen-
erated by the quantum mechanical scattering by the final state
interaction. We consider two particles, a and b, with relative
momentum q = (mbpa�mapb)/(ma+mb) observed in the
final state. Let this two-particle state be fed by a set of cou-
pled channels, each denoted by j. In the pair rest frame of
the two measured particles, their correlation function C(q) is
given by [45]

C(q) =

Z
d
3
r

X

j

!jSj(r)| (�)

j
(q; r)|2 , (2)

where the wave function  (�)

j
in the j-th channel is writ-

ten as a function of the relative coordinate r in that chan-
nel, with outgoing boundary condition for the measured chan-
nel. Sj(r) and !j are the normalized source function and its

weight in the j-th channel:
R
d
3
rSj(r) = 1 and !1 = 1,

where we label the observed measured channel as channel 1.
The latter normalization of the source weight follows from
the fact that the correlation function must be unity for any
momentum q in the non-interacting limit of Vij ! 0 [45].
Thus the correlation function contains information of both
the hadron source and the hadron-hadron interactions. We
call Eq. (2) Koonin–Pratt–Lednicky–Lyuboshits–Lyuboshits
(KPLLL) formula after the series of works [41–45].

There are essentially three theoretical ingredients for the
full use of the KPLLL formula to compare with the exper-
imental data. (i) the coupled channel wave functions with
threshold difference, (ii) Coulomb interaction and (iii) mod-
ern hadron-hadron interaction. Such a complete calculation
has been recently carried out for the first time for the K

�
p

correlation function in high-energy nuclear collisions by the
K̄N -⇡⌃-⇡⇤ coupled-channel framework [52]. In the subsec-
tions below, we show the formalism for such complete calcu-
lation applicable to the N⌅-⇤⇤ system.

• Nearly physical mass calculation
mK = 525 MeVmπ = 146 MeV

K. Sasaki et al. [HAL QCD], NPA 998 (2020), 121737.

2I+1,2s+1LJ

 HAL QCD potentialNΞ-ΛΛ

• Strong attraction for NΞ (I = 0)

• Weak attraction for  channelΛΛ

• Weak  couplingΛΛ-NΞ
• Solving Schrödinger eq.with physical masses

Scat. length : a0 ≡ − ℱ(Eth)
Virtual pole : -3.9-i0.3 MeV  (from  thr.)nΞ0

 dibaryon state: merely unboundH

• HAL QCD method Ishii, Aoki, Hatsuda, PRL99 (2007) 022001  
N. Ishii et al Phys. Lett. B712(2012)437

⟨0 |B1B2(t, ⃗r ) ⃗I(0) |0⟩
= A0Ψ( ⃗r, E0)e−E0t + ⋯

V(r)

Y. Kamiya, et al. in preparation
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FIG. 1. s-wave coupled-channel HAL QCD potential. The colored shadow denotes the statistical error of each potential.

channel a0 [fm] re [fm]
J = 0 p⌅� �1.22± 0.13+0.08

�0.00 � i1.57± 0.35+0.18
�0.23 3.7± 0.3+0.1

�0.1 � i2.7± 0.2+0.1
�0.3

n⌅0 �2.07± 0.39+0.28
�0.35 � i0.14± 0.08+0.00
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�0.0 � i0.2± 0.0+0.0
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�0.07 � i0.00 8.3± 1.0+2.8

�1.2 + i0.0± 0.1+0.1
�0.0
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�0.07 �8.4± 1.0+2.7
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TABLE I. The scattering length of the ⇤⇤, n⌅0, and p⌅� channels at physical point with the physical basis. The Coulomb interaction is not
included. The values are listed as (central)± (stat. error)+�(syst. error).

III. COUPLED-CHANNEL CORRELATION FUNCTION

In high-multiplicity events of pp and pA collisions and
high-energy AA collisions, the hadron production yields are
well described by the statistical model, so hadrons are consid-
ered to be produced independently. Under such conditions the
momentum correlations between outgoing particles are gen-
erated by the quantum mechanical scattering by the final state
interaction. We consider two particles, a and b, with relative
momentum q = (mbpa�mapb)/(ma+mb) observed in the
final state. Let this two-particle state be fed by a set of cou-
pled channels, each denoted by j. In the pair rest frame of
the two measured particles, their correlation function C(q) is
given by [45]

C(q) =

Z
d
3
r

X

j

!jSj(r)| (�)

j
(q; r)|2 , (2)

where the wave function  (�)

j
in the j-th channel is writ-

ten as a function of the relative coordinate r in that chan-
nel, with outgoing boundary condition for the measured chan-
nel. Sj(r) and !j are the normalized source function and its

weight in the j-th channel:
R
d
3
rSj(r) = 1 and !1 = 1,

where we label the observed measured channel as channel 1.
The latter normalization of the source weight follows from
the fact that the correlation function must be unity for any
momentum q in the non-interacting limit of Vij ! 0 [45].
Thus the correlation function contains information of both
the hadron source and the hadron-hadron interactions. We
call Eq. (2) Koonin–Pratt–Lednicky–Lyuboshits–Lyuboshits
(KPLLL) formula after the series of works [41–45].

There are essentially three theoretical ingredients for the
full use of the KPLLL formula to compare with the exper-
imental data. (i) the coupled channel wave functions with
threshold difference, (ii) Coulomb interaction and (iii) mod-
ern hadron-hadron interaction. Such a complete calculation
has been recently carried out for the first time for the K

�
p

correlation function in high-energy nuclear collisions by the
K̄N -⇡⌃-⇡⇤ coupled-channel framework [52]. In the subsec-
tions below, we show the formalism for such complete calcu-
lation applicable to the N⌅-⇤⇤ system.
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FIG. 1. s-wave coupled-channel HAL QCD potential. The colored shadow denotes the statistical error of each potential.

channel a0 [fm] re [fm]
J = 0 p⌅� �1.22± 0.13+0.08

�0.00 � i1.57± 0.35+0.18
�0.23 3.7± 0.3+0.1

�0.1 � i2.7± 0.2+0.1
�0.3

n⌅0 �2.07± 0.39+0.28
�0.35 � i0.14± 0.08+0.00

�0.01 1.5± 0.3+0.0
�0.0 � i0.2± 0.0+0.0

�0.1

⇤⇤ �0.78± 0.22+0.00
�0.13 5.4± 0.8+0.1

�0.5

J = 1 p⌅� �0.35± 0.06+0.09
�0.07 � i0.00 8.3± 1.0+2.8

�1.2 + i0.0± 0.1+0.1
�0.0

n⌅0 �0.35± 0.06+0.09
�0.07 �8.4± 1.0+2.7

�1.2

TABLE I. The scattering length of the ⇤⇤, n⌅0, and p⌅� channels at physical point with the physical basis. The Coulomb interaction is not
included. The values are listed as (central)± (stat. error)+�(syst. error).

III. COUPLED-CHANNEL CORRELATION FUNCTION

In high-multiplicity events of pp and pA collisions and
high-energy AA collisions, the hadron production yields are
well described by the statistical model, so hadrons are consid-
ered to be produced independently. Under such conditions the
momentum correlations between outgoing particles are gen-
erated by the quantum mechanical scattering by the final state
interaction. We consider two particles, a and b, with relative
momentum q = (mbpa�mapb)/(ma+mb) observed in the
final state. Let this two-particle state be fed by a set of cou-
pled channels, each denoted by j. In the pair rest frame of
the two measured particles, their correlation function C(q) is
given by [45]

C(q) =

Z
d
3
r

X

j

!jSj(r)| (�)

j
(q; r)|2 , (2)

where the wave function  (�)

j
in the j-th channel is writ-

ten as a function of the relative coordinate r in that chan-
nel, with outgoing boundary condition for the measured chan-
nel. Sj(r) and !j are the normalized source function and its

weight in the j-th channel:
R
d
3
rSj(r) = 1 and !1 = 1,

where we label the observed measured channel as channel 1.
The latter normalization of the source weight follows from
the fact that the correlation function must be unity for any
momentum q in the non-interacting limit of Vij ! 0 [45].
Thus the correlation function contains information of both
the hadron source and the hadron-hadron interactions. We
call Eq. (2) Koonin–Pratt–Lednicky–Lyuboshits–Lyuboshits
(KPLLL) formula after the series of works [41–45].

There are essentially three theoretical ingredients for the
full use of the KPLLL formula to compare with the exper-
imental data. (i) the coupled channel wave functions with
threshold difference, (ii) Coulomb interaction and (iii) mod-
ern hadron-hadron interaction. Such a complete calculation
has been recently carried out for the first time for the K

�
p

correlation function in high-energy nuclear collisions by the
K̄N -⇡⌃-⇡⇤ coupled-channel framework [52]. In the subsec-
tions below, we show the formalism for such complete calcu-
lation applicable to the N⌅-⇤⇤ system.

-  HAL QCD potentialΛΛ NΞ

  channelNΞ J = 1 2I+1,2s+1LJ

• Weekly attractive

• Similar potential for both  componentsI
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Fig. 2. !–! correlations measured in pp collisions at √s = 13 TeV (left panel) and p–Pb collisions at √sNN = 5.02 TeV (right panel) together with the functions computed 
by the different models [20]. The tested potentials are converted to correlation functions using CATS and the baseline is refitted for each model. The effects of momentum 
resolution and residuals are included in the theory curves.

existing model predictions are summarized in [20] and the corre-
sponding potentials V (r) are parametrized in a local form using a 
double-Gaussian function. The correlation function depends on the 
nature of the underlying interaction and Fig. 2 shows the exper-
imental !–! correlations measured in pp collisions at 

√
s = 13

TeV (left panel) and p–Pb collisions at √
sNN = 5.02 TeV (right 

panel) together with the correlation functions obtained for differ-
ent meson-exchange interaction potentials employing CATS. Mod-
els with a strongly attractive interaction ( f −1

0 ! 1 and positive), 
like the Ehime [17] potential, result in a large enhancement of the 
correlation function at low momenta which overshoots the data 
significantly both in pp and p–Pb collisions. The same is valid for 
potentials corresponding to a shallow bound state ( f −1

0 → 0 and 
negative), e.g. NF44 [19].

The other tested potentials correspond either to a bound state 
or a shallow attractive ( f −1

0 " 1) non-binding interaction. However, 
those two very different scenarios result in similar correlations and 
are difficult to separate. This is evident from Fig. 2 as all of the 
ESC08 [48], HKMYY [22] and Nijmegen ND46 [18] models produce 
comparable results and are compatible with the experimental data, 
even though their scattering parameters are different. In particular, 
ND46 predicts a bound state, while the ESC08 and HKMYY models 
describe a shallow attractive potential and the latter is consistent 
with hypernuclei data [7,8].

The Lednický model can be used to compute C(k∗) for any f −1
0

and d0. Thus a scan over the scattering parameters can be pre-
formed and the agreement to the experimental data can be quan-
tified. The Lednický model breaks down for source sizes smaller 
than the effective range, especially when dealing with repulsive 
interactions [25], as it produces unphysical negative correlation 
functions. As there are no realistic models predicting such an in-
teraction, this study is not affected. Nevertheless, all models de-
scribed in [20] are explicitly tested by comparing the correlation 
functions obtained using the exact solution provided by CATS with 
the approximate solution evaluated using the Lednický model. The 
deviations are on the percent level and are neglected.

Another assumption, which the Lednický model is based on, is 
a Gaussian profile of the source. The EPOS [34] transport model 
predicts a non-Gaussian emission profile [35], and the effects of 
short lived resonances are included. This source was adopted in 
CATS, by tuning its width such as to describe the p–p correlation 
function, and the predicted C(k∗) for all of the ND and NF models, 
shown in Fig. 3, were compared to the !–! correlation function 
in pp collisions at 

√
s = 13 TeV. The deviations in χ2 compared to 

the case of a Gaussian source are within the uncertainty, justifying 
the use of a Gaussian source.

Fig. 3. Exclusion plot for the !–! scattering parameters obtained using the !–!

correlations from pp collisions at √s = 7 and 13 TeV as well as p–Pb collisions 
at √sNN = 5.02 TeV. The different colors represent the confidence level of exclud-
ing a set of parameters, given in nσ . The black hashed region is where the Lednický 
model produces an unphysical correlation. The two models denoted by colored stars 
are compatible with hypernuclei data, while the red cross corresponds to the pre-
liminary result of the lattice computation performed by the HAL QCD collaboration. 
For details regarding the region at slightly negative f −1

0 and d0 < 4, compatible 
with a bound state, refer to Fig. 4.

To quantify the uncertainties of f −1
0 and d0, and estimate the 

confidence level of each parameter set, a Monte Carlo method is 
used. In the current work the approach described in [49] is fol-
lowed, which is closely related to the Bootstrap method. The strat-
egy is to use the Lednický model to perform a scan over the pa-
rameter space spanned by f −1

0 ∈ [−2, 5] fm−1 and d0 ∈ [0, 18] fm 
and refit the !–! correlation using Eq. (5) when fixing the scat-
tering parameters to a specific value ( f −1

0 , d0)i . The corresponding 
χ2

i is evaluated by taking all data sets (pp at 
√

s = 7 and 13 TeV 
and p–Pb at √sNN = 5.02 TeV) into account. The different scatter-
ing parameters can be compared by finding the lowest (best) χ2

best
and evaluating $χ2

i = χ2
i − χ2

best for each parameter set. This ob-
servable, and the associated ( f −1

0 , d0)i , can be directly linked to 
the confidence level [49]. This can be achieved either by assum-
ing normally distributed uncertainties of ( f −1

0 , d0), or invoking a 
more sophisticated Monte Carlo study, like the Bootstrap method. 
The latter is used in the current analysis.

The resulting exclusion plot is presented in Fig. 3, where the 
color code corresponds to the confidence level nσ for a specific 
choice of scattering parameters. In the computation only the sta-
tistical uncertainties are taken into account, as the systematic un-
certainties are negligible according to the Barlow criterion [38]. 
The predicted scattering parameters of all discussed potentials are 

13
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the number of uncorrelated pairs with the same k*, obtained by com-
bining particles produced in different collisions (the so-called 
mixed-event technique). Figure 1d shows how an attractive or repulsive 
interaction is mapped into the correlation function. For an attractive 
interaction the magnitude of the correlation function will be above 
unity for small values of k*, whereas for a repulsive interaction it will 
be between zero and unity. In the former case, the presence of a bound 
state would create a depletion of the correlation function with a depth 
increasing with increasing binding energy.

Correlations can occur in nature from quantum mechanical inter-
ference, resonances, conservation laws or final-state interactions. 
Here, it is the final-state interactions that contribute predominantly 
at low relative momentum; in this work we focus on the strong and 
Coulomb interactions in pairs composed of a proton and either a Ξ− or 
a Ω− hyperon.

Protons do not decay and can hence be directly identified within the 
ALICE detector, but Ξ− and Ω− baryons are detected through their weak 
decays, Ξ− → Λ + π− and Ω− → Λ + Κ−. The identification and momentum 
measurement of protons, Ξ−, Ω− and their respective antiparticles are 
described in Methods. Figure 2 shows a sketch of the Ω− decay and the 
invariant mass distribution of the ΛΚ− and ΛK¯ + pairs. The clear peak 
corresponding to the rare Ω− and Ω̄+

 baryons demonstrates the excel-
lent identification capability, which is the key ingredient for this meas-
urement. The contamination from misidentification is ≤5%. For the 
Ξ− (Ξ̄+

) baryon the misidentification amounts to 8%11.
Once the p, Ω− and Ξ− candidates and charge conjugates are selected 

and their 3-momenta measured, the correlation functions can be built. 
Since we assume that the same interaction governs baryon–baryon 
and antibaryon–antibaryon pairs8, we consider in the following the 
direct sum (⊕) of particles and antiparticles (p Ξ p Ξ p Ξ– ⊕ ¯ – ¯ ≡ –− + −  
and p Ω p Ω p Ω– ⊕ ¯ – ¯ ≡ –− + −). The determination of the correction ξ(k*) 
and the evaluation of the systematic uncertainties are described in 
Methods.

Comparison of the p–Ξ− and p–Ω− interactions
The obtained correlation functions are shown in Fig. 3a, b for the p–Ξ− 
and p–Ω− pairs, respectively, along with the statistical and systematic 
uncertainties. The fact that both correlations are well above unity 
implies the presence of an attractive interaction for both systems. For 
opposite-charge pairs, as considered here, the Coulomb interaction 

is attractive and its effect on the correlation function is illustrated 
by the green curves in both panels of Fig. 3. These curves have been 
obtained by solving the Schrödinger equation for p–Ξ− and p–Ω− pairs 
using the Correlation Analysis Tool using the Schrödinger equation 
(CATS) equation solver39, considering only the Coulomb interaction and 
assuming that the shape of the source follows a Gaussian distribution 
with a width equal to 1.02 ± 0.05 fm for the p–Ξ− system and to 0.95 ± 
0.06 fm for the p–Ω− system, respectively. The source-size values have 
been determined via an independent analysis of p–p correlations15, 
where modifications of the source distribution due to strong decays 
of short-lived resonances are taken into account, and the source size 
is determined as a function of the transverse mass mT of the pair, as 
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s = 13 TeV . The experimental data are shown as black symbols. The black 
vertical bars and the grey boxes represent the statistical and systematic 
uncertainties. The square brackets show the bin width and the horizontal black 
lines represent the statistical uncertainty in the determination of the mean k* 
for each bin. The measurements are compared with theoretical predictions, 
shown as coloured bands, that assume either Coulomb or Coulomb + strong 
HAL QCD interactions. For the p–Ω− system the orange band represents the 
prediction considering only the elastic contributions and the blue band 
represents the prediction considering both elastic and inelastic contributions. 
The width of the curves including HAL QCD predictions represents the 
uncertainty associated with the calculation (see Methods section ‘Corrections 
of the correlation function’ for details) and the grey shaded band represents, in 
addition, the uncertainties associated with the determination of the source 
radius. The width of the Coulomb curves represents only the uncertainty 
associated with the source radius. The considered radius values are 1.02 ± 0.05 
fm for p–Ξ− and 0.95 ± 0.06 fm for p–Ω− pairs, respectively. The inset in b shows 
an expanded view of the p–Ω− correlation function for C(k*) close to unity. For 
more details see text.

Experimentally, the correlation function is computed
as Cðk"Þ ¼ N Aðk"Þ

Bðk"Þ, where k" ¼ 1
2 jp

"
1 − p"

2j is the reduced
relative momentum of two particles with momenta p"

1 and
p"
2 in the pair rest frame (p"

1 ¼ −p"
2), Aðk"Þ represents the

same event k" distribution, and Bðk"Þ is a corresponding
reference sample of uncorrelated pairs obtained by pairing
particles from different events [18]. The normalization
constant N between the two distributions is obtained in
the region k" ∈ ½240; 340& MeV=c, where final state
interaction effects are absent and the correlation func-
tion is flat. The theoretical correlation function Cðk"Þ ¼R
SðrÞjψk" ðrÞj2d3r in this Letter is computed with CATS

[22], where r is the relative distance between the two
particles, SðrÞ is the source function, and ψk"ðrÞ is the two-
particle wave function. A spherically symmetric emitting
source with a Gaussian density profile parametrized by a
radius parameter r0 is assumed and Coulomb and strong
potentials are considered to evaluate the relative wave
functions for p-p and p-Ξ− pairs.
The measured correlation functions for p-p and p-Ξ− are

shown in Fig. 1. The inset in the left panel shows an
enlargement of the p-p correlation function around
k" ¼ 100 MeV=c, where the effect of the repulsive inter-
action can be seen. A total number of 574 × 103 (412 × 103)
p-p (p̄-p̄) and 3.3 × 103 (2.6 × 103) p-Ξ− (p̄-Ξ̄þ) pairs
contribute to Aðk"Þ in the region k" < 200 MeV=c. The
systematic uncertainties for the p-p and p-Ξ− correlations
are obtained by varying all single-particle selection criteria
for protons and Ξ candidates with respect to their default
values such as to obtain a maximum variation of the single
particle yields of (15%. The resulting uncertainties on
the correlation functions are symmetrized and added in
quadrature.
In order not to be dominated by statistical fluctuations,

the systematic uncertainties are evaluated in intervals of

40 MeV=c width in k" for p-p and 200 MeV=c for p-Ξ−,
and fitted by a second order polynomial which serves to
interpolate the final point-by-point correlated uncertainties
in narrower intervals. The total systematic uncertainty
reaches a maximum value of 5% for p-p and 3.2% for
p-Ξ− at the lowest measured k" value.
The experimental data are fitted with the model corre-

lation function obtained from CATS, Cmodelðk"Þ. Together
with the genuine correlation function due to the two-
particle interaction, residual correlations are also consid-
ered. In the experiment the latter are introduced by
contamination of the selected samples due to particle
misidentification and feed-down from weak decays of
other particles. These are taken into account according to

Cmodelðk"Þ ¼ 1þ λgenuine½Cgenuineðk"Þ − 1&

þ
X

ij

λij½Cijðk"Þ − 1&; ð1Þ

where Cgenuineðk"Þ is the genuine correlation function for
the pairs of interest, i and j denote all possible impurity and
feed-down contributions, and Cijðk"Þ represent the corre-
sponding correlation functions. The parameters λij are the
relative weights of these contributions calculated from
purity and feed-down fractions [18] and are summarized
in Table I. Here X̃ denotes misidentified particles and XY
particles originating from the decay of Y. Both the p-p and
p-Ξ− correlation functions are dominated by the genuine
correlation of interest. The main contribution contaminat-
ing the p-p correlation function are protons from Λ or Σþ

weak decays. The genuine p-Ξ− signal is diluted with
contributions from secondary protons as mentioned above,
misidentified Ξs, or from decays of the Ξð1530Þ resonance.
For the feed-down contributions, the shape of the Cijðk"Þ
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Fig. 2. !–! correlations measured in pp collisions at √s = 13 TeV (left panel) and p–Pb collisions at √sNN = 5.02 TeV (right panel) together with the functions computed 
by the different models [20]. The tested potentials are converted to correlation functions using CATS and the baseline is refitted for each model. The effects of momentum 
resolution and residuals are included in the theory curves.

existing model predictions are summarized in [20] and the corre-
sponding potentials V (r) are parametrized in a local form using a 
double-Gaussian function. The correlation function depends on the 
nature of the underlying interaction and Fig. 2 shows the exper-
imental !–! correlations measured in pp collisions at 

√
s = 13

TeV (left panel) and p–Pb collisions at √
sNN = 5.02 TeV (right 

panel) together with the correlation functions obtained for differ-
ent meson-exchange interaction potentials employing CATS. Mod-
els with a strongly attractive interaction ( f −1

0 ! 1 and positive), 
like the Ehime [17] potential, result in a large enhancement of the 
correlation function at low momenta which overshoots the data 
significantly both in pp and p–Pb collisions. The same is valid for 
potentials corresponding to a shallow bound state ( f −1

0 → 0 and 
negative), e.g. NF44 [19].

The other tested potentials correspond either to a bound state 
or a shallow attractive ( f −1

0 " 1) non-binding interaction. However, 
those two very different scenarios result in similar correlations and 
are difficult to separate. This is evident from Fig. 2 as all of the 
ESC08 [48], HKMYY [22] and Nijmegen ND46 [18] models produce 
comparable results and are compatible with the experimental data, 
even though their scattering parameters are different. In particular, 
ND46 predicts a bound state, while the ESC08 and HKMYY models 
describe a shallow attractive potential and the latter is consistent 
with hypernuclei data [7,8].

The Lednický model can be used to compute C(k∗) for any f −1
0

and d0. Thus a scan over the scattering parameters can be pre-
formed and the agreement to the experimental data can be quan-
tified. The Lednický model breaks down for source sizes smaller 
than the effective range, especially when dealing with repulsive 
interactions [25], as it produces unphysical negative correlation 
functions. As there are no realistic models predicting such an in-
teraction, this study is not affected. Nevertheless, all models de-
scribed in [20] are explicitly tested by comparing the correlation 
functions obtained using the exact solution provided by CATS with 
the approximate solution evaluated using the Lednický model. The 
deviations are on the percent level and are neglected.

Another assumption, which the Lednický model is based on, is 
a Gaussian profile of the source. The EPOS [34] transport model 
predicts a non-Gaussian emission profile [35], and the effects of 
short lived resonances are included. This source was adopted in 
CATS, by tuning its width such as to describe the p–p correlation 
function, and the predicted C(k∗) for all of the ND and NF models, 
shown in Fig. 3, were compared to the !–! correlation function 
in pp collisions at 

√
s = 13 TeV. The deviations in χ2 compared to 

the case of a Gaussian source are within the uncertainty, justifying 
the use of a Gaussian source.

Fig. 3. Exclusion plot for the !–! scattering parameters obtained using the !–!

correlations from pp collisions at √s = 7 and 13 TeV as well as p–Pb collisions 
at √sNN = 5.02 TeV. The different colors represent the confidence level of exclud-
ing a set of parameters, given in nσ . The black hashed region is where the Lednický 
model produces an unphysical correlation. The two models denoted by colored stars 
are compatible with hypernuclei data, while the red cross corresponds to the pre-
liminary result of the lattice computation performed by the HAL QCD collaboration. 
For details regarding the region at slightly negative f −1

0 and d0 < 4, compatible 
with a bound state, refer to Fig. 4.

To quantify the uncertainties of f −1
0 and d0, and estimate the 

confidence level of each parameter set, a Monte Carlo method is 
used. In the current work the approach described in [49] is fol-
lowed, which is closely related to the Bootstrap method. The strat-
egy is to use the Lednický model to perform a scan over the pa-
rameter space spanned by f −1

0 ∈ [−2, 5] fm−1 and d0 ∈ [0, 18] fm 
and refit the !–! correlation using Eq. (5) when fixing the scat-
tering parameters to a specific value ( f −1

0 , d0)i . The corresponding 
χ2

i is evaluated by taking all data sets (pp at 
√

s = 7 and 13 TeV 
and p–Pb at √sNN = 5.02 TeV) into account. The different scatter-
ing parameters can be compared by finding the lowest (best) χ2

best
and evaluating $χ2

i = χ2
i − χ2

best for each parameter set. This ob-
servable, and the associated ( f −1

0 , d0)i , can be directly linked to 
the confidence level [49]. This can be achieved either by assum-
ing normally distributed uncertainties of ( f −1

0 , d0), or invoking a 
more sophisticated Monte Carlo study, like the Bootstrap method. 
The latter is used in the current analysis.

The resulting exclusion plot is presented in Fig. 3, where the 
color code corresponds to the confidence level nσ for a specific 
choice of scattering parameters. In the computation only the sta-
tistical uncertainties are taken into account, as the systematic un-
certainties are negligible according to the Barlow criterion [38]. 
The predicted scattering parameters of all discussed potentials are 

 
Pb 5.02 TeV

ΛΛ
p

  
 13 TeV
ΛΛ

pp



14

 and  correlation functionΛΛ pΞ−

 and  correlation from ALICE pΞ− ΛΛ

Our study: Systematic analysis with including  
    • Coulomb interaction 
    • Coupled-channel effect  
    • Threshold difference  
using latest HAL QCD coupled-channel potential 

Systematic comparison to  
   and  correlation from  and Pb collisions data from ALICEΛΛ pΞ− pp p
• Static spherical Gaussian with RNΞ ∼ RΛΛ
• Fitting for comparison Cfit(q) = Anon−femt(q) × [1 + λ(CTheor(q) − 1)]

a + bq
• Miss identification  
• feed-down < 1

234 | Nature | Vol 588 | 10 December 2020

Article

the number of uncorrelated pairs with the same k*, obtained by com-
bining particles produced in different collisions (the so-called 
mixed-event technique). Figure 1d shows how an attractive or repulsive 
interaction is mapped into the correlation function. For an attractive 
interaction the magnitude of the correlation function will be above 
unity for small values of k*, whereas for a repulsive interaction it will 
be between zero and unity. In the former case, the presence of a bound 
state would create a depletion of the correlation function with a depth 
increasing with increasing binding energy.

Correlations can occur in nature from quantum mechanical inter-
ference, resonances, conservation laws or final-state interactions. 
Here, it is the final-state interactions that contribute predominantly 
at low relative momentum; in this work we focus on the strong and 
Coulomb interactions in pairs composed of a proton and either a Ξ− or 
a Ω− hyperon.

Protons do not decay and can hence be directly identified within the 
ALICE detector, but Ξ− and Ω− baryons are detected through their weak 
decays, Ξ− → Λ + π− and Ω− → Λ + Κ−. The identification and momentum 
measurement of protons, Ξ−, Ω− and their respective antiparticles are 
described in Methods. Figure 2 shows a sketch of the Ω− decay and the 
invariant mass distribution of the ΛΚ− and ΛK¯ + pairs. The clear peak 
corresponding to the rare Ω− and Ω̄+

 baryons demonstrates the excel-
lent identification capability, which is the key ingredient for this meas-
urement. The contamination from misidentification is ≤5%. For the 
Ξ− (Ξ̄+

) baryon the misidentification amounts to 8%11.
Once the p, Ω− and Ξ− candidates and charge conjugates are selected 

and their 3-momenta measured, the correlation functions can be built. 
Since we assume that the same interaction governs baryon–baryon 
and antibaryon–antibaryon pairs8, we consider in the following the 
direct sum (⊕) of particles and antiparticles (p Ξ p Ξ p Ξ– ⊕ ¯ – ¯ ≡ –− + −  
and p Ω p Ω p Ω– ⊕ ¯ – ¯ ≡ –− + −). The determination of the correction ξ(k*) 
and the evaluation of the systematic uncertainties are described in 
Methods.

Comparison of the p–Ξ− and p–Ω− interactions
The obtained correlation functions are shown in Fig. 3a, b for the p–Ξ− 
and p–Ω− pairs, respectively, along with the statistical and systematic 
uncertainties. The fact that both correlations are well above unity 
implies the presence of an attractive interaction for both systems. For 
opposite-charge pairs, as considered here, the Coulomb interaction 

is attractive and its effect on the correlation function is illustrated 
by the green curves in both panels of Fig. 3. These curves have been 
obtained by solving the Schrödinger equation for p–Ξ− and p–Ω− pairs 
using the Correlation Analysis Tool using the Schrödinger equation 
(CATS) equation solver39, considering only the Coulomb interaction and 
assuming that the shape of the source follows a Gaussian distribution 
with a width equal to 1.02 ± 0.05 fm for the p–Ξ− system and to 0.95 ± 
0.06 fm for the p–Ω− system, respectively. The source-size values have 
been determined via an independent analysis of p–p correlations15, 
where modifications of the source distribution due to strong decays 
of short-lived resonances are taken into account, and the source size 
is determined as a function of the transverse mass mT of the pair, as 
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s = 13 TeV . The experimental data are shown as black symbols. The black 
vertical bars and the grey boxes represent the statistical and systematic 
uncertainties. The square brackets show the bin width and the horizontal black 
lines represent the statistical uncertainty in the determination of the mean k* 
for each bin. The measurements are compared with theoretical predictions, 
shown as coloured bands, that assume either Coulomb or Coulomb + strong 
HAL QCD interactions. For the p–Ω− system the orange band represents the 
prediction considering only the elastic contributions and the blue band 
represents the prediction considering both elastic and inelastic contributions. 
The width of the curves including HAL QCD predictions represents the 
uncertainty associated with the calculation (see Methods section ‘Corrections 
of the correlation function’ for details) and the grey shaded band represents, in 
addition, the uncertainties associated with the determination of the source 
radius. The width of the Coulomb curves represents only the uncertainty 
associated with the source radius. The considered radius values are 1.02 ± 0.05 
fm for p–Ξ− and 0.95 ± 0.06 fm for p–Ω− pairs, respectively. The inset in b shows 
an expanded view of the p–Ω− correlation function for C(k*) close to unity. For 
more details see text.

Experimentally, the correlation function is computed
as Cðk"Þ ¼ N Aðk"Þ

Bðk"Þ, where k" ¼ 1
2 jp

"
1 − p"

2j is the reduced
relative momentum of two particles with momenta p"

1 and
p"
2 in the pair rest frame (p"

1 ¼ −p"
2), Aðk"Þ represents the

same event k" distribution, and Bðk"Þ is a corresponding
reference sample of uncorrelated pairs obtained by pairing
particles from different events [18]. The normalization
constant N between the two distributions is obtained in
the region k" ∈ ½240; 340& MeV=c, where final state
interaction effects are absent and the correlation func-
tion is flat. The theoretical correlation function Cðk"Þ ¼R
SðrÞjψk" ðrÞj2d3r in this Letter is computed with CATS

[22], where r is the relative distance between the two
particles, SðrÞ is the source function, and ψk"ðrÞ is the two-
particle wave function. A spherically symmetric emitting
source with a Gaussian density profile parametrized by a
radius parameter r0 is assumed and Coulomb and strong
potentials are considered to evaluate the relative wave
functions for p-p and p-Ξ− pairs.
The measured correlation functions for p-p and p-Ξ− are

shown in Fig. 1. The inset in the left panel shows an
enlargement of the p-p correlation function around
k" ¼ 100 MeV=c, where the effect of the repulsive inter-
action can be seen. A total number of 574 × 103 (412 × 103)
p-p (p̄-p̄) and 3.3 × 103 (2.6 × 103) p-Ξ− (p̄-Ξ̄þ) pairs
contribute to Aðk"Þ in the region k" < 200 MeV=c. The
systematic uncertainties for the p-p and p-Ξ− correlations
are obtained by varying all single-particle selection criteria
for protons and Ξ candidates with respect to their default
values such as to obtain a maximum variation of the single
particle yields of (15%. The resulting uncertainties on
the correlation functions are symmetrized and added in
quadrature.
In order not to be dominated by statistical fluctuations,

the systematic uncertainties are evaluated in intervals of

40 MeV=c width in k" for p-p and 200 MeV=c for p-Ξ−,
and fitted by a second order polynomial which serves to
interpolate the final point-by-point correlated uncertainties
in narrower intervals. The total systematic uncertainty
reaches a maximum value of 5% for p-p and 3.2% for
p-Ξ− at the lowest measured k" value.
The experimental data are fitted with the model corre-

lation function obtained from CATS, Cmodelðk"Þ. Together
with the genuine correlation function due to the two-
particle interaction, residual correlations are also consid-
ered. In the experiment the latter are introduced by
contamination of the selected samples due to particle
misidentification and feed-down from weak decays of
other particles. These are taken into account according to

Cmodelðk"Þ ¼ 1þ λgenuine½Cgenuineðk"Þ − 1&

þ
X

ij

λij½Cijðk"Þ − 1&; ð1Þ

where Cgenuineðk"Þ is the genuine correlation function for
the pairs of interest, i and j denote all possible impurity and
feed-down contributions, and Cijðk"Þ represent the corre-
sponding correlation functions. The parameters λij are the
relative weights of these contributions calculated from
purity and feed-down fractions [18] and are summarized
in Table I. Here X̃ denotes misidentified particles and XY
particles originating from the decay of Y. Both the p-p and
p-Ξ− correlation functions are dominated by the genuine
correlation of interest. The main contribution contaminat-
ing the p-p correlation function are protons from Λ or Σþ

weak decays. The genuine p-Ξ− signal is diluted with
contributions from secondary protons as mentioned above,
misidentified Ξs, or from decays of the Ξð1530Þ resonance.
For the feed-down contributions, the shape of the Cijðk"Þ
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Koonin-Pratt formula for coupled-channel systems

Koonin-Pratt formula :  C(q) ≃ ∫ d3r S(r) |ψ (−)(q; r) |2

• For coupled-channel systems

S.E. Koonin, PLB 70 (1977)  
S. Pratt et. al. PRC 42 (1990) 

• Contribution from coupled-channel source (for )pΞ−

 R. Lednicky, et. al. Phys. At. Nucl. 61 (1998)
Haidenbauer NPA 981 (2018)

Ci(q) = ∫ d3r Si(r) |ψC,(−)
i (q; r) |2 + ∑

j≠i

ωj ∫ d3r Sj(r) |ψC,(−)
j (q; r) |2

Coupled-channel  
wave function

KP Formula for Coupled-channel systems

pΞ− outgoingΞ−

p

Source

SpΞ−(r)

SΛΛ(r)

KPLLL formula : 

ψΛΛ ψpΞ−

Wave fcn.

CpΞ−(q)
q

(Koonin-Pratt-Lednicky  
-Lyuboshits-Lyuboshits)
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FIG. 8. Correlation function in the Lednicky-Lyuboshits analytic
model as a function of qR and R/a0 at re↵ = 0.

is reasonable with larger source, because the coupled channel
wave function in the n⌅

0 channel decays as e
iqn⌅0r/qn⌅0r

outside of the interaction range and the n⌅
0 source effect is

suppressed at larger source size. The p⌅
� correlation func-

tion analysis from heavy-ion collisions is in progress [62], and
then the N⌅ from the HAL QCD will be examined further if
this behavior is found in the data from heavy-ion collisions.

There are two comments on the ⇤⇤ correlation function
in order. First, the The ⇤⇤ correlation function depends on
the source size significantly at small q, q < 100 MeV/c,
but the dependence is weak above the N⌅ threshold. Since
the quantum statistics is also important for ⇤⇤, we may need
to take account of the source shape and flow effects to seri-
ously discuss the ⇤⇤ correlation function from heavy-ion col-
lisions [7]. Second, in In the previous works [7, 37, 46], a
residual source having a small size, R ' 0.5 fm, was intro-
duced to explain the high-momentum tail of the ⇤⇤ correla-
tion function data from Au+Au collisions at RHIC [37]. In the
present coupled-channel results, by comparison, the slope of
the correlation function is discontinuous at the N⌅ thresholds,
and the high-momentum tail appearsexists as also found in
the STAR data [37]. While the N⌅ source does not contribute
much, it is important to solve the Schrödinger equation includ-
ing the coupled-channel effects in order to explain the cusp,
i.e. the jump of the slope of the correlation function at the N⌅

threshold2 and the high-momentum tail. In Ref. [63], it was
suggested that the coupled-channel effects may be the origin
of the high-momentum tail observed in the STAR data [37].
However, the tail appears only for small source (R < 1 fm)

2 One may find that the cusp structure on the fitted lines looks smaller than
those in Fig. 4. This is because the impurity factor � and source weight
factor !N⌅/!⇤⇤ weaken these cusps.
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as found in Fig. 9, and it will not appear in Au+Au collisions
where the source size is large. Hence we do not yet under-
stand the mechanism of producing the high momentum tail in
the ⇤⇤ correlation function data in [37].

For the pPb collisions, uncertainties in the calculated
results and data are so large that it would be premature to
draw some conclusions. (Compared to current cases, the R

for STAR AuAu collisions should be larger, so that the cc ef-
fect is smaller and the difference between purple and black
line should be smaller. Can we really state that the the high-
momentum tail in STAR data comes from the cc effect? YK
)
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as found in Fig. 9, and it will not appear in Au+Au collisions
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stand the mechanism of producing the high momentum tail in
the ⇤⇤ correlation function data in [37].

For the pPb collisions, uncertainties in the calculated
results and data are so large that it would be premature to
draw some conclusions. (Compared to current cases, the R

for STAR AuAu collisions should be larger, so that the cc ef-
fect is smaller and the difference between purple and black
line should be smaller. Can we really state that the the high-
momentum tail in STAR data comes from the cc effect? YK
)

• small enhancement for large  
   (R ~ 3 fm) case w/o any dip  

pΞ− ΛΛ
• To see source size dependence   
   at small  is mandatory to see the  
   week interaction 

q

pΞ− ΛΛ
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is reasonable with larger source, because the coupled channel
wave function in the n⌅

0 channel decays as e
iqn⌅0r/qn⌅0r

outside of the interaction range and the n⌅
0 source effect is

suppressed at larger source size. The p⌅
� correlation func-

tion analysis from heavy-ion collisions is in progress [62], and
then the N⌅ from the HAL QCD will be examined further if
this behavior is found in the data from heavy-ion collisions.

There are two comments on the ⇤⇤ correlation function
in order. First, the The ⇤⇤ correlation function depends on
the source size significantly at small q, q < 100 MeV/c,
but the dependence is weak above the N⌅ threshold. Since
the quantum statistics is also important for ⇤⇤, we may need
to take account of the source shape and flow effects to seri-
ously discuss the ⇤⇤ correlation function from heavy-ion col-
lisions [7]. Second, in In the previous works [7, 37, 46], a
residual source having a small size, R ' 0.5 fm, was intro-
duced to explain the high-momentum tail of the ⇤⇤ correla-
tion function data from Au+Au collisions at RHIC [37]. In the
present coupled-channel results, by comparison, the slope of
the correlation function is discontinuous at the N⌅ thresholds,
and the high-momentum tail appearsexists as also found in
the STAR data [37]. While the N⌅ source does not contribute
much, it is important to solve the Schrödinger equation includ-
ing the coupled-channel effects in order to explain the cusp,
i.e. the jump of the slope of the correlation function at the N⌅

threshold2 and the high-momentum tail. In Ref. [63], it was
suggested that the coupled-channel effects may be the origin
of the high-momentum tail observed in the STAR data [37].
However, the tail appears only for small source (R < 1 fm)

2 One may find that the cusp structure on the fitted lines looks smaller than
those in Fig. 4. This is because the impurity factor � and source weight
factor !N⌅/!⇤⇤ weaken these cusps.

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

0 50 100 150 200 250 300

t = 12

p⌅�C
p
⌅

�

q [MeV/c]

R = 0.9 fm
R = 1.2 fm
R = 1.5 fm
R = 3.0 fm

0.5

0.6

0.7

0.8

0.9

1

1.1

0 50 100 150 200 250 300

t = 12

⇤⇤

C
⇤
⇤

q [MeV/c]

R = 0.9 fm
R = 1.2 fm
R = 1.5 fm
R = 3.0 fm

FIG. 9. Source size dependence of the p⌅� and ⇤⇤ correlation func-
tions. The thick lines denote the results with full coupled-channel
calculation. For comparison, the calculations with the pure Coulomb
cases (pure quantum statics cases) are shown for p⌅� (⇤⇤) correla-
tion function by thin lines.

as found in Fig. 9, and it will not appear in Au+Au collisions
where the source size is large. Hence we do not yet under-
stand the mechanism of producing the high momentum tail in
the ⇤⇤ correlation function data in [37].

For the pPb collisions, uncertainties in the calculated
results and data are so large that it would be premature to
draw some conclusions. (Compared to current cases, the R

for STAR AuAu collisions should be larger, so that the cc ef-
fect is smaller and the difference between purple and black
line should be smaller. Can we really state that the the high-
momentum tail in STAR data comes from the cc effect? YK
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present coupled-channel results, by comparison, the slope of
the correlation function is discontinuous at the N⌅ thresholds,
and the high-momentum tail appearsexists as also found in
the STAR data [37]. While the N⌅ source does not contribute
much, it is important to solve the Schrödinger equation includ-
ing the coupled-channel effects in order to explain the cusp,
i.e. the jump of the slope of the correlation function at the N⌅

threshold2 and the high-momentum tail. In Ref. [63], it was
suggested that the coupled-channel effects may be the origin
of the high-momentum tail observed in the STAR data [37].
However, the tail appears only for small source (R < 1 fm)
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as found in Fig. 9, and it will not appear in Au+Au collisions
where the source size is large. Hence we do not yet under-
stand the mechanism of producing the high momentum tail in
the ⇤⇤ correlation function data in [37].

For the pPb collisions, uncertainties in the calculated
results and data are so large that it would be premature to
draw some conclusions. (Compared to current cases, the R

for STAR AuAu collisions should be larger, so that the cc ef-
fect is smaller and the difference between purple and black
line should be smaller. Can we really state that the the high-
momentum tail in STAR data comes from the cc effect? YK
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!-! correlation function

2021/05/19 SQM 2021 Moe Isshiki 14

Ø New result with high statistics data ~4 times larger than that in 
previous study.
- Not corrected for feed-down.

Ø Anti-correlation of Λ-Λ is observed in Au+Au at "## = 200 GeV.

- New result with better precision is consistent with previous 
result within systematic uncertainty.

- There is a long tail of residual correlation in high $%&'.

relative momentum  $%&' = )*+ + )-+ + ).+ − 01+

!-" correlation function

2021/05/19 SQM 2021 Moe Isshiki 11

Ø Feed-down is corrected using Theminator2 model, but residual correlation is not corrected yet.
Ø p-Ξ correlation shows enhancement above Coulomb interaction 

->Hints presence of strong interaction, and can not be described by sideband background.
Ø Sensitive to system size,  more attractive in peripheral collisions (smaller collision system).

First measurement of p-Ξ correlation in Au+Au collisions at RHIC 

$∗: half of relative 
momentum in pair rest 
frame
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 correlation function dΞ−

K. Ogata, T. Fukui, Y. Kamiya, and A. Ohnishi, arXiv:2103.00100

5

The CC equations (19) are integrated up to R = 10 fm. The
Coulomb interaction V C is taken to be

V C(R) =











−e2

2R0

(

3−
R2

R2
0

)

(R ≤ R0)

−e2

R
(R > R0)

, (38)

with R0 = 1.5 fm. The dependence of the numerical results
shown below on R0 is found to be negligibly small (less than
1%).

In the evaluation of the correlation function, the integration
overR is carried out up to Rmax = 10 fm and the maximumL
is taken to be a larger of K0Rmax and 5. The source function
S is assumed to have a Gaussian form

S(R) =
1

(4πb2)3/2
e−R2/(4b2). (39)

The source size b of the source function is taken to be 1.2 fm;
in Fig. 4, results with b = 1.6 and 3.0 fm are shown for com-
parison.

B. Correlation function
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FIG. 1: d-Ξ− correlation function as a function of the relative mo-
mentum q. The solid, dashed, dotted, and dash-dotted lines represent
the result of CDCC, that with the 13S1 breakup states only, the result
of the single-channel calculation (without breakup states), and the
result with switching the strong interactions off, respectively. The
inset is an enlarged result for 30 MeV/c ≤ q ≤ 120 MeV/c.

We show in Fig. 1 CdΞ− as a function of q ≡ !cK0. The
inset is an enlarged figure in the region of 30 MeV/c ≤ q ≤
120 MeV/c. The solid (red) line represents the result calcu-
lated with the present framework of CDCC. The dotted (blue)
line is the result of the single-channel calculation, that is, only
the ground state of deuteron is considered. If we take only the
13S1 channels in NN into account, the dashed (green) line is
obtained. The dash-dotted (purple) line is the result obtained

with all the strong interactions turned off. For a simple no-
tation, below we designate the 13S1 (31S0) channel as the pn
(nn) channel.

The solid line shows a clear enhancement relative to the
dash-dotted line for q ≤ 100 MeV/c, which indicates that the
correlation due to the strong interaction can be deduced from
CdΞ− . The difference of the solid line from the dotted line
represents an increase in CdΞ− by the deuteron breakup effect,
which is about 6–8 % for 30 MeV/c ≤ q ≤ 70 MeV/c. At
larger q, the enhancement due to deuteron breakup decreases
monotonically and becomes less than 1% for q > 100MeV/c.
We discuss the deuteron breakup effect in more detail in
Sec. III E. The small difference between the dashed and dotted
line indicates that the nn breakup states are more significant
than the pn breakup states. This can be understood by the be-
havior of the CC potentials as discussed in Sec. III D. With a
closer look, a shoulder structure is found in the solid line at
around 60 MeV/c. This corresponds to the strong coupling
to low-lying nn breakup states located just below the scatter-
ing threshold; the channel energy Ec is negative and close to
0. We will return to this point soon below and in Sec. III E.
Compared with the net effect of the strong interaction (differ-
ence between the solid and dash-dotted lines), the deuteron
breakup effect is found to be not very significant. In other
words, including only the deuteron ground state in the calcu-
lation of CdΞ− will be useful except that it will miss a further
increase in the correlation function by several percent below
about 70 MeV/c.
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FIG. 2: Convergence of the d-Ξ correlation function regarding the
maximum bin-momentum kmax. The horizontal axis is the d-Ξ−

relative momentum. The solid, dashed, dotted, and dash-dotted lines
correspond to kmax = 0.2, 0.5, 1.0, and 2.0 fm−1, respectively.

Figure 2 displays the convergence of CdΞ− regarding kmax.
In all the calculations, we take the size ∆c of the momen-
tum bin to be 0.2 fm−1 (0.005 fm−1) for the pn (nn) con-
tinuum. The solid (red), dashed (green), dotted (blue), and
dash-dotted (purple) lines correspond to kmax = 0.2, 0.5, 1.0,
and 2.0 fm−1, respectively. The dash-dotted line is the same
as the solid line in Fig. 1. The result with kmax = 2.5 fm−1

Theoretical model for CdΞ−

Three body system of  d(np)Ξ

K. Sasaki et al. [HAL QCD], NPA 998 (2020), 121737.

• Three body problem :    
   continuum-discretized 
   coupled-channels method (CDCC) 
 
   ==>  relative wave function d-Ξ

N. Austern, M. Yahiro, and M. Kawai, PRL 63 2649(1989) 
N. Austern, M. Kawai, and M. Yahiro, PRC 53 314 (1996)

• Coupling effect by -   
   is estimated to be 6–8 % 

npΞ− nnΞ0

• Strong enhancement compared to  
   pure Coulomb case Ξ−

n
p

q

• Coupling between -  includednpΞ− nnΞ0

•  interaction : HAL QCD potentialNΞ Ξ−

n p

Discretize

R = 1.2 fm

Ξ0

n n

Coupling
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Summary

With the latest HAL QCD potential, the  state does not exist as 
physical state but emerges as virtual pole in amplitude. 

H

Femtoscopic correlation function in high energy nuclear collisions is a 
powerful tool to investigate the hadron-hadron interaction.

Summary

Thank you for your attention!

Y. Kamiya, K. Sasaki, T. Fukui, T. Hyodo, K. Morita, K. Ogata, A. Ohnishi, T. Hatsuda in prep.

 and  correlation function is studied with including full coupled-
channel effect and Coulomb interaction in the consistent manner. 
The result shows good agreement with ALICE data (  and Pb 
collisions).

ΛΛ pΞ−

pp p

For the further determination of interactions, to extract the source size 
dependence is important using other collisions systems. 


