Three flavor Excluded-volume model for Quarkyonic matter

Saúl Fernando Hernández Ortiz

Hadrons in hot and nuclear environment including hypernuclei-3

Outline

- Motivation
- Quarkyonic Matter
 - Excluded Volume Model
- Final Remarks

QCD under extreme conditions (temperature and finite density) plays an important role in understanding the transitions that took place in the early universe.

Observation and analysis of GW170817: Important clues to understand cold and dense matter.

 The structure of a neutron star (NS) is determined by the Tolman-Oppenheimer-Volkoff Equation (TOV).

Description of Equation of State (EoS) of dense QCD matter:

- Around saturation density: Nuclear experiments.
- Very high density limit: Asymptotic freedom allows perturbative calculation.

TOV and EoS can give some insight about the transition quark-nucleon matter.

EoS should be hard enough to support $2M_{\odot}$ and soft enough to satisfy $R_{14} \leq 13.5$ km.

This is also reflected in sound velocity, that should increase rapidly and can be greater then its conformal value $c_s^2 \ge 1/3$.

Any suggestions?

F. J. Fattoyev et. al, PRL 120, 172702 (2018)

Phase of dense matter, argued from large Nc approximation and model computations.

Gluon loop $\rightarrow g^2 N_c T^2 \sim T^{2}$ →Dynamics not affected by quarks;

→Debye screening at large distances.

Quark loop

→~ $\mu_0^2 g^2$ ⇒ Supressed by $1/N_c$ at large N_c . +High density limit: $\mu_0 \gg \Lambda_{\text{OCD}}$, so quarks are important when $\mu_O \sim N_c^{1/2} \Lambda_{\text{OCD.}}$ •Debye screen mass $m_D \simeq g \mu_O$

• For $k_F^B < \Lambda_{\rm QCD}$: Quarks confined in nucleons.

Nuclear \longrightarrow Quarkyonic (at few times ρ_0) Nucleons Quarks

- For $k_F^B < \Lambda_{\rm QCD}$: Quarks confined in nucleons.
 - For $\Lambda_{\rm QCD} \leq k_F^B \leq N_c \Lambda_{\rm QCD}$: Quarks starts to take low phase space, and a shell-like structure is formed.

Nuclear > Quarkyonic

(at few times ρ_0)

Quarks

• For $k_F^B < \Lambda_{\rm QCD}$: Quarks confined in nucleons.

• For $\Lambda_{\rm QCD} \leq k_F^B \leq N_c \Lambda_{\rm QCD}$: Quarks starts to take low phase space, and a shell-like structure is formed.

• For $k_F^B \simeq N_c^{3/2} \Lambda_{\rm QCD}$: Confinement disappears.

Total baryon density has smooth behavior and chemical potential for confined states enhance suddenly, then pressure suddenly increases. *This is not an usual phase transition!*

Nucleons with hard-core volume $v_0 = \frac{4}{3}\pi r_0^3$, where r_0 is the hard-core radius. Hard-core density: $n_0 = 1/v_0$

In a system with baryon density n_N and volume V, the excluded volume (not occupied by baryon cores) is: $V_{ex} = V\left(1 - \frac{n_N}{n_0}\right)$

$$n_{ex} = \frac{n_N}{1 - n_N/n_0} = 2N_f \int^{k_F} \frac{d^3k}{(2\pi)^3} \qquad \qquad \mu_N = \frac{\partial\varepsilon}{\partial n_F}$$

$$\varepsilon = 2N_f \left(1 - \frac{n_N}{n_0}\right) \int^{k_F} \frac{d^3k}{(2\pi)^3} \sqrt{k^2 + M^2} \qquad \qquad P = -\varepsilon + \mu_F$$

$$n_{ex} = \frac{n_N}{1 - n_N/n_0} = \frac{N_f}{\pi^2} \int_{k_F}^{k_F + \Delta} dk \ k^2$$

$$\varepsilon = \frac{N_f}{\pi^2} \left(1 - \frac{n_N}{n_0} \right) \int_{k_F}^{k_F + \Delta} dk \ k^2 \sqrt{k^2 + M^2} + \varepsilon_Q$$
Free gas of
quarks
$$\begin{cases} n_Q = \frac{N_f}{\pi^2} \int_0^{k_Q} dk \ k^2 = \frac{N_f}{3\pi^2} k_Q^3 \\ \varepsilon_Q = \frac{N_c N_f}{2} \int_0^{k_Q} dk \ k^2 \sqrt{k^2 + m^2} \end{cases}$$

 $\varepsilon_Q = \frac{1+c^{2+j}}{\pi^2} \int_0^{\infty}$

$$k_Q = k_F / N_c \qquad m = M / N_c$$

13

Modification in the low density Fermi distribution in a way that does not affect its behavior for large Fermi momenta:

contribution

$$1 \to \frac{\sqrt{k_Q^2 + \Lambda^2}}{k_Q}$$

$$n_Q = \frac{N_f}{3\pi^2} \left[\left(k_Q^2 + \Lambda^2 \right)^{3/2} - \Lambda^3 \right]$$

$$\varepsilon_Q = \frac{N_c N_f}{\pi^2} \int_0^{k_Q} dk \ k \sqrt{k^2 + \Lambda^2} \sqrt{k^2 + m^2}$$

Good agreement with sound velocity obtained from an equation of state extracted from neutron stars properties.

- Hard core repulsion: Scale can be measured by the effective size of the baryon.
- Protons + Neutrons + Hyperons in an excluded volume for the shell

 $n_N = n_p + n_n + n_\Lambda;$ $n_{\tilde{N}} = n_p + n_n + (1 + \alpha)n_\Lambda$

 For neutron stars phenomenology: β-equilibrium and charge neutrality must be imposed.

$$\varepsilon_{\rm qy.} = 2\left(1 - \frac{\tilde{n}_b}{n_0}\right) \sum_{i}^{\{n,p,\Lambda\}} \int_{k_F^{b_i}}^{[k_F + \Delta]_{b_i}} \frac{d^3k}{(2\pi)^3} \sqrt{k^2 + m_{b_i}^2} \\ + \frac{N_c}{\pi^2} \sum_{j}^{\{u,d,s\}} \int_{0}^{k_F^{Q_j}} dk \mathcal{M}_j(k^2) \sqrt{k^2 + m_{Q_j}^2} + \frac{(3\pi^2)^{\frac{4}{3}}}{4\pi^2} n_e^{\frac{4}{3}}$$

Lower boundary of baryon shell:

$$k_F^n = k_{\text{conf}}^u + 2k_{\text{conf}}^d$$
$$k_F^p = 2k_{\text{conf}}^u + k_{\text{conf}}^d$$
$$k_F^\Lambda = k_{\text{conf}}^u + k_{\text{conf}}^d + k_{\text{conf}}^s$$

Quark Density.

$$n_{\tilde{Q}_i} \equiv \frac{1}{\pi^2} \int_0^{k_F^{Q_i}} dk \mathcal{M}_i(k^2) = \frac{1}{\pi^2} \int_0^{k_F^{Q_i}} dk (k^2 + \Lambda_{Q_i}^2)$$

For the minimum of energy density: $dn_B = dn_n + dn_Q = 0$ which results in $\mu_n = N_c \mu_{\tilde{d}} - \mu_e$

Electromagnetic charge neutrality

 $n_e = n_p + 2n_{\tilde{u}} - n_{\tilde{d}} - n_{\tilde{s}}$

Beta equilibrium conditions

 $\mu_{\tilde{d}} = \mu_{\tilde{u}} + 3\mu_e$ Existence of Λ hyperon $\mu_{\Lambda} = \mu_n$ Existence of s quark

п

 $\mu_{ ilde{s}} = \mu_{ ilde{d}}$

→ Correction of low density regime EoS: use of a rich neutron matter EoS in the range $n_B < n_M$.

$$E/A = \sqrt{(p_F^n)^2 + M_n^2} - M_n + \tilde{a} \left(\frac{n_n}{\rho_0}\right) + \tilde{b} \left(\frac{n_n}{\rho_0}\right)^2$$
$$\tilde{a} = -28.3 \text{ MeV} \quad \text{and} \quad \tilde{b} = 10.7 \text{ MeV}$$

D. Duarte, K.S. Jeong, S.HO arXiv:2007.08098

Final Remarks

- Analysis of GW data have been providing very important insights about the properties of dense QCD matter.
- We extend the excluded volume model of isospin symmetric two-flavor dense Quarkyonic matter including strange baryons and quarks and address its implications for neutron stars.
- The extension to finite temperature is also an interesting problem, since future experiments in the NICA/FAIR facilities may provide more insights about the QCD phase diagram in the regime of high density and intermediate temperatures.

THANKS FOR WATCHING: