Impact Study of Future Data on the Tensor Charge from a QCD Global Analysis

Daniel Pitonyak Lebanon Valley College, Annville, PA, USA

19th International Conference on Hadron Spectroscopy and Structure (HADRON 2021) July 28, 2021

Background

D. Pitonyak

Naïve timereversal odd (T-odd)

$$F_{TU}^{\sin\phi} = \mathcal{C} \left[-\frac{\hat{h} \cdot \vec{k}_{aT}}{M_a} \boldsymbol{f_{1T}} \, \bar{f_1} \right]$$

D. Pitonyak

Survive integration over k_T

D. Pitonyak

Chiral odd

Survive integration over k_T

~1

D. Pitonyak

$$\delta q \equiv \int_0^1 dx \left[h_1^q(x) - h_1^{\bar{q}}(x) \right] \qquad g_T \equiv \delta u - \delta d$$

The tensor charge of the nucleon is one of its fundamental charges and is important for BSM studies in, e.g., beta decays (Gonzalez-Alonso, et al. (2018),...)

Processes sensitive to TMDs can play an important role in these efforts (Courtoy, et al. (2015); Yamanaka, et al. (2017), Liu, et al. (2018),...)

Lattice QCD has also calculated the tensor charges with great precision (Gupta, et al. (2018); Hasan, et al. (2019), Alexandrou, et. (2019),...)

لي Lebanon Valley College

$$\Delta \sigma(S_T) \sim H_{QS} \otimes f_1 \otimes \mathbf{F_{FT}} \otimes D_1$$

Qiu-Sterman term
 $+ H_F \otimes f_1 \otimes \mathbf{h_1} \otimes \left(\mathbf{H_1^{\perp(1)}}, \tilde{\mathbf{H}} \right)$

Fragmentation term

(Metz, DP (2012); Kanazawa, et al. (2014); Gamberg, et al. (2017); Cammarota, et al. (2020))

 A_N is a *collinear* (twist-3) observable

Simultaneous QCD Global Analysis of SSAs

D. Pitonyak

Cammarota, Gamberg, Kang, Miller, DP, Prokudin, Rogers, Sato, PRD 102 (2020)

D. Pitonyak

We have performed the first global analysis of SSAs in SIDIS, Drell-Yan, e⁺e⁻ annihilation, and proton-proton collisions and extracted a universal set of non-perturbative functions

$$h_1(x), F_{FT}(x,x), H_1^{\perp(1)}(z), H_2$$
 noise in the fit – need $A_{UT}^{\sin\phi_S}$

along with the relevant transverse momentum widths for the Sivers, transversity, and Collins functions: $\langle k_T^2 \rangle_{f_{1T}^{\perp}}, \langle k_T^2 \rangle_{h_1}, \langle p_{\perp}^2 \rangle_{H_1^{\perp}}^{fav}, \langle p_{\perp}^2 \rangle_{H_1^{\perp}}^{unf}$

➤ We use a Gaussian ansatz: $F(x, k_T^2) \sim F(x)e^{-k_T^2/\langle k_T^2 \rangle}$ where

$$F^{q}(x) = \frac{N_{q} x^{a_{q}} (1-x)^{b_{q}} (1+\gamma_{q} x^{\alpha_{q}} (1-x)^{\beta_{q}})}{\mathbf{B}[a_{q}+2, b_{q}+1] + \gamma_{q} \mathbf{B}[a_{q}+\alpha_{q}+2, b_{q}+\beta_{q}+1]}$$

NB: $\{\gamma, \alpha, \beta\}$ only used for Collins function

DGLAP-type evolution for the collinear functions analogous to Duke & Owens (1984): double-log Q²-dependent term explicitly added to the parameters

D. Pitonyak

Observable	Reactions	Non-Perturbative Function(s)	$\chi^2/N_{ m pts.}$
$A_{ m SIDIS}^{ m Siv}$	$e + (p,d)^{\uparrow} \to e + (\pi^+, \pi^-, \pi^0) + X$	$f_{1T}^{\perp}(x,k_T^2)$	150.0/126 = 1.19
$A_{ m SIDIS}^{ m Col}$	$e + (p, d)^{\uparrow} \to e + (\pi^+, \pi^-, \pi^0) + X$	$h_1(x,k_T^2), H_1^{\perp}(z,z^2p_{\perp}^2)$	111.3/126 = 0.88
$A_{ m SIA}^{ m Col}$	$e^+ + e^- \rightarrow \pi^+ \pi^- (UC, UL) + X$	$H_1^\perp(z,z^2p_\perp^2)$	154.5/176 = 0.88
$A_{ m DY}^{ m Siv}$	$\pi^- + p^\uparrow \to \mu^+ \mu^- + X$	$f_{1T}^{\perp}(x,k_T^2)$	5.96/12 = 0.50
$A_{ m DY}^{ m Siv}$	$p^{\uparrow} + p \rightarrow (W^+, W^-, Z) + X$	$f_{1T}^{\perp}(x,k_T^2)$	31.8/17 = 1.87
A_N^h	$p^{\uparrow} + p \to (\pi^+, \pi^-, \pi^0) + X$	$h_1(x), F_{FT}(x,x) = \frac{1}{\pi} f_{1T}^{\perp(1)}(x), H_1^{\perp(1)}(z)$	66.5/60 = 1.11

18 observables and 6 non-perturbative functions (Sivers up/down; transversity up/down; Collins favored/unfavored)

Test of universality!

- Broad kinematical coverage:
 - SIDIS: $x \lesssim 0.3$ $0.2 \lesssim z \lesssim 0.6$ $2 \lesssim Q^2 \lesssim 40 \,\mathrm{GeV^2}$

SIA: $0.2 \lesssim z \lesssim 0.8$ $Q^2 \approx 13 \,\mathrm{GeV^2} \text{ or } 110 \,\mathrm{GeV^2}$

DY: $0.1 \lesssim x \lesssim 0.35$ $Q^2 \approx 30 \,\mathrm{GeV^2}$ or $(80 \,\mathrm{GeV})^2$

 A_N^h : $0.2 \lesssim (x_{min}, z_{min}) \lesssim 0.7$ $1 \lesssim Q^2 \lesssim 13 \,\mathrm{GeV}^2$

لي Lebanon Valley College

D. Pitonyak

Observable	Reactions	Non-Perturbative Function(s)	$\chi^2/N_{ m pts.}$
$A_{ m SIDIS}^{ m Siv}$	$e + (p,d)^{\uparrow} \to e + (\pi^+,\pi^-,\pi^0) + X$	$f_{1T}^{\perp}(x,k_T^2)$	150.0/126 = 1.19
$A_{ m SIDIS}^{ m Col}$	$e + (p, d)^{\uparrow} \to e + (\pi^+, \pi^-, \pi^0) + X$	$h_1(x,k_T^2), H_1^\perp(z,z^2p_\perp^2)$	111.3/126 = 0.88
$A_{ m SIA}^{ m Col}$	$e^+ + e^- \rightarrow \pi^+ \pi^- (UC, UL) + X$	$H_1^\perp(z,z^2p_\perp^2)$	154.5/176 = 0.88
$A_{ m DY}^{ m Siv}$	$\pi^- + p^\uparrow \to \mu^+ \mu^- + X$	$f_{1T}^{\perp}(x,k_T^2)$	5.96/12 = 0.50
$A_{ m DY}^{ m Siv}$	$p^{\uparrow} + p \rightarrow (W^+, W^-, Z) + X$	$f_{1T}^{\perp}(x,k_T^2)$	31.8/17 = 1.87
A_N^h	$p^{\uparrow} + p \to (\pi^+, \pi^-, \pi^0) + X$	$h_1(x), F_{FT}(x,x) = \frac{1}{\pi} f_{1T}^{\perp(1)}(x), H_1^{\perp(1)}(z)$	66.5/60 = 1.11

> *Predictions* of A_N using a fit of only TMD observables

D. Pitonyak

JAM3D

Cammarota, Gamberg, Kang, Miller, DP, Prokudin, Rogers, Sato, PRD 102 (2020)

D. Pitonyak

Cammarota, Gamberg, Kang, Miller, DP, Prokudin, Rogers, Sato, PRD 102 (2020)

Only after a *simultaneous* QCD global analysis of SSAs does the phenomenological extraction of the tensor charges agree with lattice, *but still with large uncertainties*.

Impact Study on the Tensor Charge

Gamberg, Kang, DP, Prokudin, Sato, Seidl, PLB 816 (2021)

EIC Pseudo-data							
Observable	Reactions	CM Energy (\sqrt{S})	N _{pts.}				
	$e + p^{\uparrow} \rightarrow e + \pi^{\pm} + X$	141 GeV	756 (π ⁺) 744 (π ⁻)				
		63 GeV	$\begin{array}{c} 634 \ (\pi^+) \\ 619 \ (\pi^-) \end{array}$				
		45 GeV	537 (π ⁺) 556 (π ⁻)				
Collins (SIDIS)		29 GeV	$\begin{array}{c} 464 \ (\pi^+) \\ 453 \ (\pi^-) \end{array}$				
	$e + {}^{3}He^{\uparrow} \rightarrow e + \pi^{\pm} + X$	85 GeV	$\begin{array}{c} 647 \ (\pi^+) \\ 650 \ (\pi^-) \end{array}$				
		63 GeV	$\begin{array}{c} 622 \ (\pi^+) \\ 621 \ (\pi^-) \end{array}$				
		29 GeV	$\begin{array}{c} 461 \ (\pi^+) \\ 459 \ (\pi^-) \end{array}$				
		Total EIC N _{pts.}	8223				

Assumed accumulated luminosities of 10 fb⁻¹, 70% polarization, conservatively accounted for detector smearing and acceptance effects

D. Pitonyak

Gamberg, Kang, DP, Prokudin, Sato, Seidl, PLB 816 (2021)

EIC data on the Collins effect will significantly reduce the uncertainties in extractions of the transversity PDF (as well as the Collins FF)

Gamberg, Kang, DP, Prokudin, Sato, Seidl, PLB 816 (2021)

EIC data will allow phenomenological extractions of the tensor charge to become as precise as current lattice calculations. ³He data is especially important to decorrelate the extraction of δu and δd .

D. Pitonyak

Gamberg, Kang, DP, Prokudin, Sato, Seidl, PLB 816 (2021)

Most impact on JAM20 will be at moderate to higher x, across multiple decades in Q^2 , and we again see the importance of the ³He program

D. Pitonyak

Gamberg, Kang, DP, Prokudin, Sato, Seidl, PLB 816 (2021)

SoLID at JLab covers a complimentary region at higher *x* and lower Q^2 with much greater luminosity – important to explore the effect of multiple measurements in different kinematic regions

D. Pitonyak

Gamberg, Kang, DP, Prokudin, Sato, Seidl, PLB 816 (2021)

SoLID reduces the relative uncertainty in the down quark h_1 at higher x more than the EIC, and overall the relative uncertainties improve the most when data sets from both facilities are included

Gamberg, Kang, DP, Prokudin, Sato, Seidl, PLB 816 (2021)

SoLID at JLab will also provide important constraints on the tensor charges. The combined analysis with EIC data gives the most precise phenomenological determination of them.

Gamberg, Kang, DP, Prokudin, Sato, Seidl, PLB 816 (2021)

N.B.: accuracy vs. precision – a precise measurement cannot always guarantee a very accurate extraction of the distributions, and multiple experiments, such as EIC and SoLID, should be performed in a wide kinematical region in order to minimize bias and expose any potential tensions between data sets (also one reason to have IR2@EIC)

Conclusions

- ➤ We have performed the first global analysis of SSAs in SIDIS, DY, e⁺e⁻ annihilation, and proton-proton collisions and extracted a universal set of non-perturbative functions, showing a common origin of SSAs.
- First agreement with lattice QCD on the tensor charges of the nucleon was obtained, but still with large uncertainties.
- EIC data on the Collins effect will allow for phenomenological extractions of the tensor charge to be as precise as current lattice calculations. SoLID at JLab will also provide important constraints.
- In order to reduce bias and obtain the most accurate extraction of the tensor charge, one must have data from multiple future facilities (e.g., EIC and SoLID) that give the most kinematic coverage possible in x and Q².