On wide-angle photo- and electroproduction of pions to twist-3 accuracy

Kornelija Passek-Kumerički

Rudjer Bošković Institute, Croatia

HADRON2021, Mexico City - online, 26-31 July 2021.

Handbag factorization	WAMP at twist-3	Numerical results	Summary
00	0000000		O
Outline			

1 Handbag factorization

- WAMP at twist-3
- 3 Numerical results
 - Photoproduction
 - Electroproduction
 - Spin effects

Handbag factoriza	ation	WAMP at twist-3 0000000	Numerical results	Summary O
~		-		

Status and motivation

• DVCS, WACS: widely investigated, good description using handbag (NNLO, NLO...)

Handbag factorization	WAMP at twist-3	Numerical results	Summary
O•	0000000		O

Status and motivation

- DVCS, WACS: widely investigated, good description using handbag (NNLO, NLO...)
- DVπP:
 - leading twist-2 theoretical predictions ($\gamma_L^*)$ bellow the experimental data which indicate the importance of γ_T^*
 - ⇒ twist-3 calculations with transversity (chiral-odd) GPDs (H_T ...) [Goloskokov, Kroll '10] (2-body, i.e, WW approximation), [Goldstein, Hernandez, Liuti '13]

Handbag factorization	WAMP at twist-3	Numerical results	Summary
00	000000	00000	0

Status and motivation

- DVCS, WACS: widely investigated, good description using handbag (NNLO, NLO...)
- DVπP:
 - leading twist-2 theoretical predictions ($\gamma_L^*)$ bellow the experimental data which indicate the importance of γ_T^*
 - ⇒ twist-3 calculations with transversity (chiral-odd) GPDs (H_T ...) [Goloskokov, Kroll '10] (2-body, i.e, WW approximation), [Goldstein, Hernandez, Liuti '13]
- WAπP:
 - twist-2 results [Huang, Kroll '00] well bellow the experimental data for photoproduction ($Q^2=0)$
 - twist-3 2-body contribution to pion photoproduction in WW approximation vanishes [Huang, Jakob, Kroll, P-K '03]
 - twist-3 (2- and 3-body) prediction to π_0 photoproduction calculated [Kroll, P-K '18] and fitted to CLAS data [CLAS '17]
 - [Kroll, P-K. '21, arXiv:2107.04544]: twist-3 prediction for $P = \pi^{\pm}, \pi^{0}$ photo- and electroproduction analyzed $(Q^{2} < -t)$; extension to other PS mesons and well as DVMP is straightforward

Handbag	factorization
00	

WAMP at twist-3

Numerical results

Summary 0

Helicity amplitudes ${\mathcal M}$ for WAMP

$$\mathcal{M}_{0+,\mu+}^{P} = \frac{e_{0}}{2} \sum_{\lambda} \left[\mathcal{H}_{0\lambda,\mu\lambda}^{P} \left(R_{V}^{P}(t) + 2\lambda R_{A}^{P}(t) \right) -2\lambda \frac{\sqrt{-t}}{2m} \mathcal{H}_{0-\lambda,\mu\lambda}^{P} \bar{S}_{T}^{P}(t) \right]$$
$$\mathcal{M}_{0-,\mu+}^{P} = \frac{e_{0}}{2} \sum_{\lambda} \left[\frac{\sqrt{-t}}{2m} \mathcal{H}_{0\lambda,\mu\lambda}^{P} R_{T}^{P}(t) -2\lambda \frac{t}{2m^{2}} \mathcal{H}_{0-\lambda,\mu\lambda}^{P} S_{S}^{P}(t) \right] + e_{0} \mathcal{H}_{0-,\mu+}^{P} S_{T}^{P}(t)$$

 μ photon helicity, $\lambda \dots$ quark helicities, $P = (\pi^{\pm}, \pi^0)$,

form factors:
$$R_V^a(t) = \int \frac{dx}{x} H^a(x, \xi = 0, t)$$

 $R_V^{\pi^{\pm}} = R_V^u - R_V^d, R_V^{\pi^0} = \frac{1}{\sqrt{2}} \left(e_u R_V^u - e_d R_V^d \right)$
 $\mathcal{H}_{0\lambda,\mu\lambda}^P \dots$ non-flip subprocess amplitudes (twist-2)
 $R_V \to H, R_A \to \tilde{H}, R_T \to \tilde{E}$
 $\mathcal{H}_{0-\lambda,\mu\lambda}^P \dots$ flip subprocess amplitudes (twist-3)
 $S_T \to H_T, \bar{S}_T \to \bar{E}_T, S_S \to \tilde{H}_T$ (transversity GPDs)

Handbag factorization	WAMP at twist-3 000000	Numerical results	Summary O

Helicity amplitudes \mathcal{M} for WAMP

 μ photon helicity, $\lambda \dots$ quark helicities, $P=(\pi^\pm,\pi^0),$

Transverse photon polarization ($\mu=\pm 1$)

$$\begin{split} \mathcal{M}_{0+,\mu+}^{P} &= \frac{e_{0}}{2} \sum_{\lambda} \left[\mathcal{H}_{0\lambda,\mu\lambda}^{P} \left(R_{V}^{P}(t) + 2\lambda R_{A}^{P}(t) \right) \quad \rightarrow \text{twist-2} \\ &- 2\lambda \frac{\sqrt{-t}}{2m} \mathcal{H}_{0-\lambda,\mu\lambda}^{P} \bar{S}_{T}^{P}(t) \right] \quad \rightarrow \text{twist-3} \\ \mathcal{M}_{0-,\mu+}^{P} &= \frac{e_{0}}{2} \sum_{\lambda} \left[\frac{\sqrt{-t}}{2m} \mathcal{H}_{0\lambda,\mu\lambda}^{P} R_{T}^{P}(t) \quad \rightarrow \text{twist-2} \\ &- 2\lambda \frac{t}{2m^{2}} \mathcal{H}_{0-\lambda,\mu\lambda}^{P} S_{S}^{P}(t) \right] + e_{0} \mathcal{H}_{0-,\mu+}^{P} S_{T}^{P}(t) \quad \rightarrow \text{twist-3} \end{split}$$

Longitudinal photon polarization

$$\begin{aligned} \mathcal{M}^{P}_{0^{+},0^{+}} &= e_{0}\mathcal{H}^{P}_{0^{+},0^{+}}R^{P}_{A}(t) &\rightarrow \text{twist-2} \\ \mathcal{M}^{P}_{0^{-},0^{+}} &= e_{0}\mathcal{H}^{P}_{0^{-},0^{+}}S^{P}_{T}(t) &\rightarrow \text{twist-3} \end{aligned}$$

Handbag factorization	WAMP at t	wist-3	Numerical results 00000	Summary O
Subprocess	amplitudes ${\cal H}$!		
a) ¹ 2222 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	$q\bar{q}$ -	$\Rightarrow \pi \text{ projector (a)} \qquad (\tau q')$ $\sim f_{\pi} \left\{ \gamma_{5} q' \phi_{\pi} (\tau) + \mu_{\pi} (\mu_{F}) \right[\gamma_{5} - \frac{i}{6} \gamma_{5} \sigma_{\mu\nu} \frac{q'}{q'} + \frac{i}{6} \gamma_{5} \sigma_{\mu\nu} q'^{\mu} + \frac{i}{6} \gamma_{5} \sigma_{\mu\nu} q'^{\mu} \right\}$	[Beneke, Feldmann '00] $(\dot{\tau} + k_{\perp}) + (\bar{\tau}q' - k_{\perp}) = q'$ (τ, μ_F) $\phi_{\pi p}(\tau, \mu_F)$ $\frac{\mu_n \nu}{\dot{\tau} \cdot n} \phi'_{\pi \sigma}(\tau, \mu_F)$ $\frac{\partial}{\partial k_{\perp \nu}}$ $\left. \right\}_{k_{\perp} \to 0}$	D

Handbag factorization	WA 00	MP at twist-3 0000	Numerical 00000	results	Summa O
Subprocess	amplitude	s ${\cal H}$			
a) ¹ 222 C) ¹ 222 ¹	b)	$q\bar{q} \rightarrow \pi$ project $\mathcal{P}_{2}^{P} \sim f_{\pi} \left\{ \begin{array}{c} +\mu_{\pi} \\ -rac{i}{6} \\ +rac{i}{6} \\ +rac{i}{6} \\ q\bar{q}g \rightarrow \pi$ proje $\mathcal{P}_{3}^{P} \sim f_{3\pi}(\mu_{F})$	tor (a) [$(\tau q' + k_{\perp})$ $\gamma_5 q' \phi_{\pi}(\tau, \mu_F)$ $(\mu_F) \Big[\gamma_5 \phi_{\pi p}(\tau, \mu_F)$ $\gamma_5 \sigma_{\mu\nu} \frac{q'^{\mu} n^{\nu}}{q' \cdot n} \phi'_{\pi q}$ $\gamma_5 \sigma_{\mu\nu} q'^{\mu} \phi_{\pi \sigma}(\tau, \mu_F)$ ctor (b, c) $\tau_a q'$ $\frac{i}{g} \gamma_5 \sigma_{\mu\nu} q'^{\mu} g_{\perp}^{\nu \rho}$	Beneke, Feldmann '00] + $(\bar{\tau}q' - k_{\perp}) = q'$ μ_F) $\sigma(\tau, \mu_F)$ μ_F) $\frac{\partial}{\partial k_{\perp\nu}}$] $_{k_{\perp} \rightarrow 0}$ [Kroll, P-K '18] + $\tau_b q' + \tau_g q' = q'$ $\frac{\phi_{3\pi}(\tau_a, \tau_b, \tau_g, \mu_F)}{\tau_g}$)

Handbag factorization	WAI 00	MP at twist-3	Numerical 00000	results	Summa O
Subprocess	amplitude	s ${\cal H}$			
a) ¹ 222 C) ¹ 222 ¹	b) ¹ 222 March and d) ¹ 2222 March and March	$q\bar{q} \rightarrow \pi \text{ project}$ $\mathcal{P}_{2}^{P} \sim f_{\pi} \left\{ \gamma + \mu \pi (0) - \frac{i}{6} \gamma + \frac{i}{6} \gamma \right\}$ $q\bar{q}g \rightarrow \pi \text{ projec}$ $\mathcal{P}_{3}^{P} \sim f_{3\pi}(\mu_{F}) \left\{ q \right\}$	or (a) $(\tau q' + k_{\perp})^{\mu}$ $(\tau q' + k_{\perp})^{\nu}$ $(\tau q' + k_{\perp})^{\nu} \int \gamma_{5} \phi_{\pi p}(\tau, \mu_{F})$ $\mu_{F}) \left[\gamma_{5} \phi_{\pi p}(\tau, \mu_{F}) - \frac{q'^{\mu} n^{\nu}}{q' \cdot n} \phi'_{\pi q}\right]$ (τ, τ) (τ, τ) (τ, τ) (τ, τ) (τ) (τ) (τ) (τ) (τ) (τ) (τ) $($	Beneke, Feldmann '00] + $(\bar{\tau}q' - k_{\perp}) = q'$ μ_F) $\sigma(\tau, \mu_F)$ $\mu_F) \frac{\partial}{\partial k_{\perp \nu}} \Big] \Big\}_{k_{\perp} \rightarrow 0}$ [Kroll, P-K '18] + $\tau_b q' + \tau_g q' = q'$ $\frac{\phi_{3\pi}(\tau_a, \tau_b, \tau_g, \mu_F)}{\tau_g}$)

 $\begin{array}{l} \mu_{\pi}=m_{\pi}^{2}/(m_{u}+m_{d})\cong 2 \,\, {\rm GeV} \\ {\rm distribution \ amplitudes \ (DAs):} \\ {\rm twist-2:} \,\, \phi_{\pi} \\ {\rm 2-body \ twist-3 \ } \phi_{\pi p}, \, \phi_{\pi \sigma} \quad {\rm 3-body \ twist-3 \ } \phi_{3\pi} \\ {\rm \rightarrow \ connected \ by \ equations \ of \ motion \ (EOMs)} \end{array}$

Handbag factorization

WAMP at twist-3

Numerical results

Summary O

DAs and EOMs

$$\begin{aligned} \tau \phi_{\pi p}(\tau) + \frac{\tau}{6} \phi_{\pi \sigma}'(\tau) - \frac{1}{3} \phi_{\pi \sigma}(\tau) &= \phi_{\pi 2}^{EOM}(\bar{\tau}) \\ \bar{\tau} \phi_{\pi p}(\tau) - \frac{\bar{\tau}}{6} \phi_{\pi \sigma}'(\tau) - \frac{1}{3} \phi_{\pi \sigma}(\tau) &= \phi_{\pi 2}^{EOM}(\tau) \\ \phi_{\pi 2}^{EOM}(\tau) &= 2 \frac{f_{3\pi}}{f_{\pi} \mu_{\pi}} \int_{0}^{\bar{\tau}} \frac{d\tau_{g}}{\tau_{g}} \phi_{3\pi}(\tau, \bar{\tau} - \tau_{g}, \tau_{g}) \end{aligned}$$

- EOMs and symmetry properties φ_{π*}(τ̄) = φ_{π*}(τ) φ_{3π}(τ_a, τ_b, τ_g) = φ_π(τ_b, τ_a, τ_g) ⇒ the subprocess amplitudes in terms of two twist-3 DAs, 2- and 3-body contributions combined
- combined EOMs \rightarrow first order differential equation \Rightarrow from known form of $\phi_{3\pi}$ [Braun, Filyanov '90] one determines $\phi_{\pi p}$ (and $\phi_{\pi \sigma}$)

Note: $q\bar{q}g$ projector and EOMs were derived using light-cone gauge for constituent gluon

Handbag factorization	WAMP at twist-3	Numerical results	Summary O

Transverse photon polarization ($\mu = \pm 1$) T

$$\begin{aligned} \mathcal{H}^{P,tw2}_{0\lambda,\,\mu\lambda} &\sim & f_{\pi} \, C_{F} \, \alpha_{s}(\mu_{R}) \, \frac{\sqrt{-\hat{t}}}{\hat{s}+Q^{2}} \, \int_{0}^{1} \, d\tau \, \phi_{\pi}(\tau) \left[(2\lambda\mu+1) \left(\frac{(\hat{s}\tau+Q^{2})(\hat{s}+Q^{2})-\hat{u}Q^{2}\bar{\tau}}{\hat{s}\bar{\tau}(Q^{2}\bar{\tau}-\hat{t}\tau)} \, e_{a} \right. \\ & \left. + \frac{(\hat{s}\tau-Q^{2})(\hat{s}+Q^{2})-\hat{u}Q^{2}\bar{\tau}}{\hat{u}\tau(Q^{2}\tau-\hat{t}\bar{\tau})} \, e_{b} \right) + (2\lambda\mu-1) \left(\frac{\hat{u} \, e_{a}}{(Q^{2}\bar{\tau}-\hat{t}\tau)} + \frac{\hat{s}\bar{\tau} \, e_{b}}{\tau(Q^{2}\tau-\hat{t}\bar{\tau})} \right) \right] \end{aligned}$$

Longitudinal photon polarization L

$$\mathcal{H}^{P,tw2}_{0\lambda,\,0\lambda} \quad \sim \quad f_{\pi} \, C_F \, \alpha_s(\mu_R) \, \lambda \, \frac{Q \sqrt{-\hat{u}\hat{s}}}{\hat{s}+Q^2} \, \int_0^1 \, d\tau \, \phi_{\pi}(\tau) \left(\frac{\hat{u} \, e_a}{\hat{s}(Q^2 \bar{\tau} - \hat{t}\tau)} - \frac{(\hat{t} + \tau \hat{u}) \, e_b}{\tau \hat{u}(Q^2 \tau - \hat{t}\bar{\tau})} \right)$$

Handbag factorization	WAMP at twist-3	Numerical results	Summary
00	000000	00000	0

Transverse photon polarization ($\mu = \pm 1$) T

$$\begin{aligned} \mathcal{H}_{0\lambda,\,\mu\lambda}^{P,tw2} &\sim \quad f_{\pi} \, C_{F} \, \alpha_{s}(\mu_{R}) \, \frac{\sqrt{-\hat{t}}}{\hat{s}+Q^{2}} \, \int_{0}^{1} \, d\tau \, \phi_{\pi}(\tau) \left[(2\lambda\mu+1) \left(\frac{(\hat{s}\tau+Q^{2})(\hat{s}+Q^{2})-\hat{u}Q^{2}\bar{\tau}}{\hat{s}\bar{\tau}(Q^{2}\bar{\tau}-\hat{t}\tau)} \, e_{a} \right. \\ &\left. + \frac{(\hat{s}\tau-Q^{2})(\hat{s}+Q^{2})-\hat{u}Q^{2}\bar{\tau}}{\hat{u}\tau(Q^{2}\tau-\hat{t}\bar{\tau})} \, e_{b} \right) + (2\lambda\mu-1) \left(\frac{\hat{u} \, e_{a}}{(Q^{2}\bar{\tau}-\hat{t}\tau)} + \frac{\hat{s}\bar{\tau} \, e_{b}}{\tau(Q^{2}\tau-\hat{t}\bar{\tau})} \right) \right] \end{aligned}$$

Longitudinal photon polarization L

$$\mathcal{H}^{P,tw2}_{0\lambda,\,0\lambda} \quad \sim \quad f_{\pi} \, C_F \, \alpha_s(\mu_R) \, \lambda \, \frac{Q\sqrt{-\hat{u}\hat{s}}}{\hat{s}+Q^2} \, \int_0^1 \, d\tau \, \phi_{\pi}(\tau) \left(\frac{\hat{u} \, e_a}{\hat{s}(Q^2\bar{\tau}-\hat{t}\tau)} - \frac{(\hat{t}+\tau\hat{u}) \, e_b}{\tau\hat{u}(Q^2\tau-\hat{t}\bar{\tau})}\right)$$

$$\rightarrow$$
 photoproduction (Q \rightarrow 0): $\mathcal{H}_{L}^{P,tw2}\Big|_{Q \rightarrow 0} = 0$

$$\mathcal{H}_{T}^{P,tw2}\Big|_{Q\to 0} \sim f_{\pi} C_{F} \alpha_{s}(\mu_{R}) \frac{1}{\sqrt{-\hat{t}}} \int_{0}^{1} \frac{d\tau}{\tau} \phi_{\pi}(\tau) \left((1+2\lambda\mu) \,\hat{s} - (1-2\lambda\mu) \,\hat{u} \right) \left(\frac{e_{a}}{\hat{s}} + \frac{e_{b}}{\hat{u}} \right) d\tau$$

Handbag factorization	WAMP at twist-3	Numerical results	Summary
00	000000	00000	0

Transverse photon polarization ($\mu = \pm 1$) T

$$\begin{aligned} \mathcal{H}^{P,tw2}_{0\lambda,\,\mu\lambda} &\sim & f_{\pi} \, C_{F} \, \alpha_{s}(\mu_{R}) \, \frac{\sqrt{-\hat{t}}}{\hat{s}+Q^{2}} \, \int_{0}^{1} \, d\tau \, \phi_{\pi}(\tau) \left[(2\lambda\mu+1) \left(\frac{(\hat{s}\tau+Q^{2})(\hat{s}+Q^{2})-\hat{u}Q^{2}\bar{\tau}}{\hat{s}\bar{\tau}(Q^{2}\bar{\tau}-\hat{t}\tau)} \, e_{a} \right. \\ & \left. + \frac{(\hat{s}\tau-Q^{2})(\hat{s}+Q^{2})-\hat{u}Q^{2}\bar{\tau}}{\hat{u}\tau(Q^{2}\tau-\hat{t}\bar{\tau})} \, e_{b} \right) + (2\lambda\mu-1) \left(\frac{\hat{u} \, e_{a}}{(Q^{2}\bar{\tau}-\hat{t}\tau)} + \frac{\hat{s}\bar{\tau} \, e_{b}}{\tau(Q^{2}\tau-\hat{t}\bar{\tau})} \right) \right] \end{aligned}$$

Longitudinal photon polarization L

$$\mathcal{H}^{P,tw2}_{0\lambda,\,0\lambda} \quad \sim \quad f_{\pi} \, C_F \, \alpha_s(\mu_R) \, \lambda \, \frac{Q\sqrt{-\hat{u}\hat{s}}}{\hat{s}+Q^2} \, \int_0^1 \, d\tau \, \phi_{\pi}(\tau) \left(\frac{\hat{u} \, e_a}{\hat{s}(Q^2\bar{\tau}-\hat{t}\tau)} - \frac{(\hat{t}+\tau\hat{u}) \, e_b}{\tau\hat{u}(Q^2\tau-\hat{t}\bar{\tau})}\right)$$

$$ightarrow$$
 photoproduction ($Q
ightarrow 0$): $\left. \left. \mathcal{H}_{L}^{P,tw2} \right|_{Q
ightarrow 0} = 0$

$$\begin{split} \mathcal{H}_{T}^{P,tw2}\Big|_{Q\to 0} &\sim \quad f_{\pi} \, C_{F} \, \alpha_{s}(\mu_{R}) \, \frac{1}{\sqrt{-\hat{t}}} \, \int_{0}^{1} \, \frac{d\tau}{\tau} \, \phi_{\pi}(\tau) \left(\left(1+2\lambda\mu\right) \hat{s} - \left(1-2\lambda\mu\right) \hat{u} \right) \left(\frac{e_{a}}{\hat{s}} + \frac{e_{b}}{\hat{u}} \right) \\ &\rightarrow \mathsf{DVMP} \, \left(\hat{t} \to 0\right): \quad \left. \mathcal{H}_{T}^{P,tw2} \right|_{\hat{t}\to 0} = 0 \end{split}$$

$$\mathcal{H}_{L}^{P,tw2}\Big|_{\hat{t}\to 0}: \qquad \hat{s} = -\frac{\xi - x}{2\xi} \, Q^2 \,, \, \hat{u} = -\frac{\xi + x}{2\xi} \, Q^2 \quad \Rightarrow \text{well known LO result for DVMP}$$

Handbag factorization	WAMP at twist-3	Numerical results	Summary O

General structure:

$$\mathcal{H}^{P,tw3} = \mathcal{H}^{P,tw3,q\bar{q}} + \mathcal{H}^{P,tw3,q\bar{q}g}$$

$$= (\mathcal{H}^{P,\phi_{\pi_P}} + \underbrace{\mathcal{H}^{P,\phi_{\pi_2}^{EOM}}}_{}) + (\mathcal{H}^{P,q\bar{q}g,C_F} + \mathcal{H}^{P,q\bar{q}g,C_G})$$

$$= \mathcal{H}^{P,\phi_{\pi_P}} + \mathcal{H}^{P,\phi_{3\pi},C_F} + \mathcal{H}^{P,\phi_{3\pi},C_G}$$

- 2-body twist-3 $\sim C_F$; 3-body C_F and C_G proportional parts
- C_G part is separately gauge invariant
- the sum of 2- and 3-body C_F parts is gauge invariant (QED and QCD)
- no end-point singularities for finite \hat{t}

Handbag factorization	WAMP at twist-3	Numerical results	Summary
00		00000	O
Subprocess ampli	tudes: twist-3 at ($Q<<$ or $\hat{t}<<$	

General structure:

$$\mathcal{H}^{P,tw3} = \mathcal{H}^{P,tw3,q\bar{q}} + \mathcal{H}^{P,tw3,q\bar{q}g}$$

$$= (\mathcal{H}^{P,\phi_{\pi p}} + \mathcal{H}^{P,\phi_{\pi 2}^{EOM}}) + (\mathcal{H}^{P,q\bar{q}g,C_F} + \mathcal{H}^{P,q\bar{q}g,C_G})$$

$$= \mathcal{H}^{P,\phi_{\pi p}} + \mathcal{H}^{P,\phi_{3\pi},C_F} + \mathcal{H}^{P,\phi_{3\pi},C_G}$$

• $\mathcal{H}_L^{P,tw3} \sim Q\sqrt{-t}$ vanishes both for $Q \to 0$ and $\hat{t} \to 0$

- photoproduction $(Q \to 0)$: $\mathcal{H}^{P,\phi_{\pi p}} = 0$ [Kroll, P-K '18], $\mathcal{H}_T^{P,tw3}$ proportional to $(2\lambda \mu)$
- DVMP $(\hat{t} \to 0)$: $\mathcal{H}^{P,\phi_{\pi 2}^{EOM}} = 0$, end-point singularities in $\mathcal{H}^{P,\phi_{\pi p}}$ [Goloskokov, Kroll '10], $\mathcal{H}_{T}^{P,tw3}$ proportional to $(2\lambda + \mu)$

Handbag factorization	WAMP at twist-3	Numerical results	Summary
00	000000	0 000	0

Pion distribution amplitudes

Twist-2 DA:
$$\phi_{\pi}(\tau, \mu_F) = 6\tau \bar{\tau} \left[1 + a_2(\mu_F) C_2^{3/2}(2\tau - 1) \right]$$

Twist-3 DAs:

$$\begin{split} \phi_{3\pi}(\tau_a, \tau_b, \tau_g, \mu_F) &= 360\tau_a \tau_b \tau_g^2 \Big[1 + \omega_{1,0}(\mu_F) \frac{1}{2} (7\tau_g - 3) \\ &+ \omega_{2,0}(\mu_F) \left(2 - 4\tau_a \tau_b - 8\tau_g + 8\tau_g^2 \right) \\ &+ \omega_{1,1}(\mu_F) \left(3\tau_a \tau_b - 2\tau_g + 3\tau_g^2 \right) \Big] \text{[Braun, Filyanov '90]} \end{split}$$

using EOMs [Kroll, P-K '18]:

$$\phi_{\pi p}(\tau,\mu_F) = 1 + \frac{1}{7} \frac{f_{3\pi(\mu_F)}}{f_{\pi}\mu_{\pi}(\mu_F)} \Big(7\,\omega_{1,0}(\mu_F) - 2\,\omega_{2,0}(\mu_F) - \omega_{1,1}(\mu_F) \Big) \\ \times \Big(10\,C_2^{1/2}(2\tau-1) - 3\,C_4^{1/2}(2\tau-1) \Big) \,, \quad \phi_{\pi\sigma}(\tau) = \dots$$

Parameters:

- $a_2(\mu_0) = 0.1364 \pm 0.0213$ at $\mu_0 = 2$ GeV [Braun et al '15] (lattice)
- $\omega_{10}(\mu_0) = -2.55$, $\omega_{10}(\mu_0) = 0.0$ and $f_{3\pi}(\mu_0) = 0.004$ GeV². [Ball '99]

• $\omega_{20}(\mu_0) = 8.0$ [Kroll, P-K '18] fit to π^0 photoproduction data [CLAS '17] Evolution of the decay constants and DA parameters taken into account. Choice of scales: $\mu_B{}^2 = \mu_F{}^2 = \hat{t}\hat{u}/\hat{s}$

Handbag factorization	WAMP at twist-3	Numerical results	Summary
00	0000000	00000	0
Form factors a	nd CDDc		

orm factors and GFDS

 $R_i \ldots 1/x$ moment of $\xi = 0$ GPD (K_i)

- $R_V(\leftarrow H),\ R_T(\leftarrow E)$ from nucleon form factor analysis [Diehl, Kroll '13]
- $R_A(\leftarrow \tilde{H})$ form factor analysis and WACS KLL asymmetry [Kroll '17]
- $S_T(\leftarrow H_T)$, $\bar{S}_T(\leftarrow \bar{E}_T)$ low -t from DVMP analysis [Goloskokov, Kroll '11]

•
$$S_S(\leftarrow \tilde{H}_T) \cong \bar{S}_T/2 \ (\bar{E}_T = 2\tilde{H}_T + E_T)$$

Handbag factorization	WAMP at twist-3	Numerical results	Summary
00	0000000		O
Form factors and G	PDs		

 $R_i \dots 1/x$ moment of $\xi = 0$ GPD (K_i)

- $R_V(\leftarrow H)$, $R_T(\leftarrow E)$ from nucleon form factor analysis [Diehl, Kroll '13]
- $R_A(\leftarrow \tilde{H})$ form factor analysis and WACS KLL asymmetry [Kroll '17]
- $S_T(\leftarrow H_T)$, $\bar{S}_T(\leftarrow \bar{E}_T)$ low -t from DVMP analysis [Goloskokov, Kroll '11]

•
$$S_S(\leftarrow \tilde{H}_T) \cong \bar{S}_T/2 \ (\bar{E}_T = 2\tilde{H}_T + E_T)$$

GPD parameterization [Diehl, Feldmann, Jakob, Kroll '04, Diehl, Kroll '13]

 $K_i^a = k_i^a(x) \exp\left[t f_i^a(x)\right], \ f_i^a(x) = \left(B_i^a - \alpha_i'^a \ln x\right)(1-x)^3 + A_i^a x(1-x)^2$

- strong x t correlation
- power behaviour for large (-t)
- choice for transversity GPDs $A=0.5~{\rm GeV^{-2}}$

Handbag factorization

WAMP at twist-3 0000000 Numerical results

Summary O

Photoproduction

twist-2 prediction well beyond the data [Huang, Kroll '00]

• scaling: s^{-7} (s^{-8}) twist-2 (twist-3) \rightarrow effective $s^{-9} \rightarrow$ too strong

Handbag factorization	WAMP at twist-3	Numerical results	Summary
00	000000	00000	0

Electroproduction

Handbag factorization	WAMP at twist-3	Numerical results	Summary
00	000000	00000	0

Spin effects - photoproduction

 $A_{LL}(K_{LL})\ldots$ correlation of the helicities of the photon and incoming (outgoing) nucleon

 \rightarrow characteristic signature for dominance of twist-3 (like $\sigma_T\gg\sigma_L$ in DVMP)

 $A_{LL}(K_{LL})$ for π^0 photoproduction on neutron and η photoproduction

Handbag	factorization
00	

WAMP at twist-3

Numerical results

Conclusions, questions, outlook...

- $\bullet\,$ handbag factorization applied to wide-angle photo- and electroproduction of pions $\to\,$ WAMP
- in contrast to WACS, but like DVMP, the leading twist-2 analysis (helicity non-flip GPDs) for wide-angle photoproduction fails by order of magnitude
- twist-3 prediction for WAMP obtained, both 2 and 3-body contributions included
- π^0 photoproduction was fitted to the data
- interesting helicity correlations show that twist-3 dominates
- different combinations of form factors along with available data should allow to extract the form factors and to learn about large -t behaviour of transversity GPDs important for parton tomography
- extension to other pseudoscalar mesons straightforward

Handbag	factorization
00	

WAMP at twist-3

Numerical results

Conclusions, questions, outlook...

- $\bullet\,$ handbag factorization applied to wide-angle photo- and electroproduction of pions $\to\,$ WAMP
- in contrast to WACS, but like DVMP, the leading twist-2 analysis (helicity non-flip GPDs) for wide-angle photoproduction fails by order of magnitude
- twist-3 prediction for WAMP obtained, both 2 and 3-body contributions included
- π^0 photoproduction was fitted to the data
- interesting helicity correlations show that twist-3 dominates
- different combinations of form factors along with available data should allow to extract the form factors and to learn about large -t behaviour of transversity GPDs important for parton tomography
- extension to other pseudoscalar mesons straightforward

Subprocess amplitudes: twist-3 at $Q \rightarrow 0$, $t \rightarrow 0$

photoproduction

$$\begin{aligned} \mathcal{H}^{P,tw3}_{0-\lambda,\,\mu\lambda}|_{Q^2 \to 0} &\sim (2\lambda - \mu) \, f_{3\pi} \, \alpha_S(\mu_R) \, \sqrt{-\hat{u}\hat{s}} \int_0^1 \, d\tau \, \int_0^{\bar{\tau}} \, \frac{d\tau_g}{\tau_g} \, \phi_{3\pi}(\tau, \bar{\tau} - \tau_g, \tau_g) \\ &\times \left[C_F \, \left(\frac{1}{\bar{\tau}^2} - \frac{1}{\bar{\tau}(\bar{\tau} - \tau_g)} \right) \left(\frac{e_a}{\hat{s}^2} + \frac{e_b}{\hat{u}^2} \right) \, + \right. \\ &\left. - C_G \, \frac{2}{\tau\tau_g} \, \frac{\hat{t}}{\hat{s}\hat{u}} \left(\frac{e_a}{\hat{s}} + \frac{e_b}{\hat{u}} \right) \right] \end{aligned}$$

DVMP

$$\begin{aligned} \mathcal{H}_{0-\lambda,\mu\lambda}^{P,\phi_{\pi p}}|_{\hat{t}\to0} &\sim (2\lambda+\mu) f_{\pi}\mu_{\pi}C_{F}\alpha_{S}(\mu_{R})\sqrt{-\frac{\hat{u}}{\hat{s}}} \left[\frac{e_{a}}{\hat{s}} + \frac{\hat{s}}{\hat{u}}\frac{e_{b}}{\hat{u}}\right] \int_{0}^{1} \frac{d\tau}{\bar{\tau}}\phi_{\pi p}(\tau) \\ \mathcal{H}_{0-\lambda,\mu\lambda}^{P,C_{F},\phi_{3\pi}}|_{\hat{t}\to0} &\sim -(2\lambda+\mu) f_{3\pi}C_{F}\alpha_{S}(\mu_{R})\sqrt{-\frac{\hat{u}}{\hat{s}}} \left(\frac{e_{a}}{\hat{s}} + \frac{\hat{s}}{\hat{u}}\frac{e_{b}}{\hat{u}}\right) \\ &\times \int_{0}^{1} \frac{d\tau}{\bar{\tau}^{2}} \int_{0}^{\bar{\tau}} \frac{d\tau_{g}}{\tau_{g}(\bar{\tau}-\tau_{g})} \phi_{3\pi}(\tau,\bar{\tau}-\tau_{g},\tau_{g}) \\ \mathcal{H}_{0-\lambda,\mu\lambda}^{P,qqg,C_{G}}|_{\hat{t}\to0} &\sim (2\lambda+\mu) f_{3\pi}C_{G}\alpha_{S}(\mu_{R})\frac{Q^{2}}{\sqrt{-\hat{s}\hat{u}}} \left(\frac{e_{a}}{\hat{s}} + \frac{e_{b}}{\hat{u}}\right) \\ &\times \int_{0}^{1} \frac{d\tau}{\bar{\tau}} \int_{0}^{\bar{\tau}} \frac{d\tau_{g}}{\tau_{g}(\bar{\tau}-\tau_{g})} \phi_{3\pi}(\tau,\bar{\tau}-\tau_{g},\tau_{g}) \end{aligned}$$

App.

Spin effects - photoproduction

 $A_{LL}(K_{LL})\ldots$ correlation of the helicities of the photon and incoming (outgoing) nucleon

 \rightarrow characteristic signature for dominance of twist-3 (like $\sigma_T \gg \sigma_L$ in DVMP)

 $A_{LS}(K_{LS})\ldots$ correlation of the helicities of the photon and sideway polarization of the incoming (outgoing) nucleon

App.

Spin effects - electroproduction

