Accessing π GPDs through the Sullivan process: is it feasible?

J. M. Morgado¹, F. De Soto², M. Defurne³, C. Mezrag³, H. Moutarde³, J. Rodríguez-Quintero¹, J. Segovia²

28th July 2021

Email: josemanuel.morgado@dci.uhu.es

¹Dpt. Ciencias Integradas, Universidad de Huelva, Huelva, Spain

 $^{^2\}mathrm{Dpt.}$ Sistemas Fiscos, Químicos y Naturales, Universidad Pablo de Olavide, Sevilla, Spain

 $^{^3\}mathrm{DPhN/IRFU/CEA} ext{-Saclay},$ Gif-sur-Yvette, France

Introduction

Introduction: GPDs and hadron's strcture

Question: How can we gain insights into hadron's streture?

Generalised parton distributions (GPDs)

Probabilistic interpretation:

probability amplitude of finding a parton at a given position in transverse plane carrying a momentum fraction "x" of the hadron's averaged light-cone momentum.

[M.Burkardt-PRD:071503(62)2020]

Properties:

- 1. Parametrize DVCS amplitudes through CFFs.
 - [X.Ji-PRL:610(78)1997]

- 2. PDFs as forward limit.
- 3. Electromagnetic and gravitational FFs as Mellin moments.

Introduction

- 1. Generalised parton distributions:
 - "3D picture" of hadrons.
 - EMT gravitational form factors.
- **2.** Pions: DCSB Nambu-Goldstone bosons:
 - Clear window onto emergence of hadronic mass.

Two main questions guide this talk:

- Can we build "theoretically-complete" pion GPD models?
- Can we probe them in experiment?

 Pion GPDs through Sullivan process.

 [D.Amrath et al.-EPJC:179(58)2008]

GPD modelling

Can we build "theoretically-complete" pion GPD

models?

GPD modelling: definition and properties

Kinematics:

[M.Diehl-Phys.Rept:41(388)2003]

- **DGLAP** $(|x| > |\xi|)$: Emits/takes a quark (x > 0)or antiquark (x < 0).
- ERBL: $(|x| < |\xi|)$: Emits pair quark-antiquark.

- x: Momentum fraction of p.
- ξ : Fraction of momentum longitudinally transfered.
- t: Momentum transfer.

GPD modelling: definition and properties

• Support:

[M.Diehl et al.-PLB:359(428)1998]

$$(x,\xi) \in [-1,1] \otimes [-1,1]$$

• Polynomiality: Order-m Mellin moments are degree-(m+1) polynomials in ξ .

[X.Ji-JPG:1181(24)1998, A.Radyushkin-PLB:81(449)1999]

$$\int_{-1}^{1} dx x^{m} H(x, \xi, t) = \sum_{\substack{k=0\\k \text{ even}}}^{m+1} c_{k}^{(m)}(t) \xi^{k}$$

Lorentz invariance

• Positivity:

[P.V.Pobylitsa-PRD:114015(65)2002, B.Pire et al.-EPJC:103(8)1999]

$$|H^q(x,\xi,t=0)| \le \sqrt{q\left(\frac{x+\xi}{1+\xi}\right)q\left(\frac{x-\xi}{1-\xi}\right)} \quad , \quad |x| \ge \xi$$

Positivity of Hilbert space norm

• Low energy soft-pion theorem
[M.V.Polyakov-NPB:231(555)1999, C.Mezrag et al.-PLB:190(741)2015]

PCAC/Axial-Vector WTI

GPD modelling: covariant extension

Covariant extension: given a DGLAP-GPD, the covariant extension allows for computing the corresponding ERBL-GPD such that polynomiality is satisfied. [N.Chouika et al.-EPJC:906(77)2017]

$$H\left(x,\xi,t\right)=\mathcal{R}\left[h\left(\beta,\alpha,t\right)\right]+\frac{1}{\left|\xi\right|}D^{+}\left(\frac{x}{\xi},t\right)+sign\left(\xi\right)D^{-}\left(\frac{x}{\xi},t\right)$$

- 1. Build positive DGLAP GPD ⇒ How?
- 2. Covariant extension: ERBL GPD
- **3.** Soft pion theorem: fix $D^{\pm}(\alpha,0)$

GPD properties			
Support	/	Positivity	/
[Diehl-PLB(1998)]	V	[PobyPRD(2002), Pire-EPJC(1999)]	V
Polynomiality	,	Soft-pion	,
[Ji-JPG(1998), RadyuPLB(1999)]	√	[PolyNPB(1999), MezrPLB(2015)]	✓

GPD modelling: from separable LFWFs to postive DGLAP GPDs

Question: How can we build a positive DGLAP GPD?

1. Overlap representation [M.Diehl-NPB:33(569)2001]

$$H^{q}\left(x,\xi,t\right)|_{\left|x\right|\geq\xi}=\int\frac{d^{2}k_{\perp}}{16\pi^{3}}\Psi^{q*}\left(x_{-},k_{\perp,-}^{2}\right)\Psi^{q}\left(x_{+},k_{\perp,+}^{2}\right)$$

2. Assume factorisation of the LFWF [J.-L.Zhang et al.-PLB:136158(815)2021]

$$\begin{split} \Psi^{q}\left(x,k_{\perp}^{2}\right) &\propto \varphi\left(x\right)\phi\left(k_{\perp}^{2}\right) \\ & \qquad \qquad \psi^{\text{(Overalp rep.)}} \\ H^{q}\left(x,\xi,t\right)|_{|x| \geq \xi} &= \sqrt{q\left(\frac{x-\xi}{1-\xi}\right)q\left(\frac{x+\xi}{1+\xi}\right)}\Phi\left(x,\xi,t\right) \\ & \qquad \qquad \psi^{(t=0)} \\ H^{q}\left(x,\xi,0\right)|_{|x| \geq \xi} &= \sqrt{q\left(\frac{x-\xi}{1-\xi}\right)q\left(\frac{x+\xi}{1+\xi}\right)} \end{split}$$

Positivity saturated

Pion GPDs

Pion GPDs: Positive DGLAP GPDs

1. Under certain PTIR, chiral symmetry allows to factorize LFWF: [J.-L.Zhang et al.-PLB:136158(815)2021]

$$\Psi_{\pi}^{\lambda_1 \lambda_2} \left(x, k_{\perp}^2 \right) = \sqrt{q_{\pi} \left(x \right)} \frac{i^{\lambda_1 \lambda_2} M^2}{\left(k_{\perp}^2 + M^2 \right)^2}$$

2. Pion GPD saturating positivity

$$H_{\pi}^{q}(x,\xi,t)|_{\text{DGLAP}} = \frac{\sqrt{q_{\pi}(x_{-})q_{\pi}(x_{+})}}{(1+z^{2})^{2}} \left[3 + \frac{1-2z}{1+z} \frac{\operatorname{arctanh}\left(\sqrt{\frac{z}{1+z}}\right)}{\sqrt{\frac{z}{1+z}}} \right]$$

$$\frac{1}{1+z} \left[3 + \frac{1-2z}{1+z} \frac{\operatorname{arctanh}\left(\sqrt{\frac{z}{1+z}}\right)}{\sqrt{\frac{z}{1+z}}} \right]$$

$$z = -t (1-x)^2 / 4M^2 (1-\xi^2)$$

Two models:

- Algebraic model $q_{\pi}(x) = 30x^2(1-x)^2$
- Realistic model (DSE)

$$q_{\pi}(x) = \mathcal{N}_q x^2 (1 - x)^2$$
$$\times \left[1 + \gamma x (1 - x) + \rho \sqrt{x (1 - x)} \right]$$

7/18

Pion GPDs: Positive DGLAP GPDs

Pion GPDs: Positive DGLAP GPDs

Pion GPDs: covariant extension

Covariant extension:

$$H^{q}\left(x,\xi,t\right) = \mathcal{R}\left[h\left(\beta,\alpha,t\right)\right] + \frac{1}{|\xi|}D^{+}\left(\frac{x}{\xi},t\right) + sgn\left(\xi\right)D^{-}\left(\frac{x}{\xi},t\right)$$

Fix D-terms with soft pion theorem:

[M.V.Polyakov-NPB:231(555)1999, C.Mezrag at al.-PLB:190(741)2015]

$$H_{\pi^{+}}^{I=0}(x,\xi,t)\big|_{\xi=1,t=0} = H_{\pi^{+}}(x,\xi,t) - H_{\pi^{+}}(-x,\xi,t)\big|_{\xi=1,t=0} = 0$$

$$H_{\pi^{+}}^{I=1}(x,\xi,t)\big|_{\xi=1,t=0} = H_{\pi^{+}}(x,\xi,t) + H_{\pi^{+}}(-x,\xi,t)\big|_{\xi=1,t=0} = \varphi\left(\frac{1+x}{2}\right)$$

Phenomenology of pion GPDs

Can we probe them in experiment?

Phenomenology of pion GPDs: Sullivan process

We have stablished a way of bulding pion GPD models fulfilling all of the QCD theoretical constraints, so...

Question: Can we probe those pion GPDs through experiment?

DVCS amplitudes are parametrized by hadron GPDs. [X.Ji-PRD:7114(55)1997]

Sullivan process [J.D.Sullivan-PRD:1732(5)1972]

One pion exchange approximation: [D.Amrath et al.-EPJC:179(58)2008]

 $\begin{array}{l} \bullet \ -t < 0,6\,{\rm GeV}^2 \\ \bullet \ \sigma_L >> \sigma_\bot \end{array} \right\} \ {\rm Met \ at \ EIC}_{\ {\rm [EICYR:phys.ins-det/2103.05419]}}$

Employed for EFFs.

[G.M.Huber at al.-PRC:045203(78)20081

Can we probe pion GPDs?

[D.Amrath at al.-EPJC:179(58)2008]

10/18

Phenomenology of pion GPDs: Sullivan process

In fact... this has been advocated in the recent EIC-Yellow report $_{\rm [EICYR:phys.ins-det/2103.05419]}$

Science Question	Key Measurement	Key Requirements
What are the quark and gluon energy contributions to the pion mass?	Pion structure function data over a range of x and Q^2 .	 Need to uniquely determine e + p → e' + X + n (low −t) CM energy range ~10-100 GeV Charged and neutral currents desirable
Is the pion full or empty of gluons as viewed at large Q ² ?	Pion structure function data at large Q^2 .	CM energy ~100 GeV Inclusive and open-charm detection
What are the quark and gluon energy contributions to the kaon mass?	Kaon structure function data over a range of x and Q^2 .	 Need to uniquely determine $e + p → e' + X + Λ/Σ0 (low −t) • CM energy range ~10-100 GeV$
Are there more or less gluons in kaons than in pions as viewed at large Q ² ?	Kaon structure function data at large Q^2 .	CM energy ~100 GeV Inclusive and open-charm detection
Can we get quantitative guidance on the emergent pion mass mechanism?	Pion form factor data for $Q^2 = 10.40 \text{ (GeV}/c)^2$.	 Need to uniquely determine exclusive process e + p → e' + π⁺ + n (low −t) e + p and e + D at similar energies CM energy ~10-75 GeV
What is the size and range of interference between emergent-mass and the Higgs-mass mechanism?	Kaon form factor data for $Q^2 = 10\text{-}20 \text{ (GeV}/c)^2$.	 Need to uniquely determine exclusive process e + p → e' + K + Λ (low −!) L/T separation at CM energy ~10-20 GeV Λ/Σ⁰ ratios at CM energy ~10-50 GeV
What is the difference between the impacts of emergent- and Higgs-mass mechanisms on light-quark behavior?	Behavior of (valence) up quarks in pion and kaon at large x .	CM energy ~20 GeV (lowest CM energy to access large-x region) Higher CM energy for range in Q ² desirable
What is the relationship between dynamically chiral symmetry breaking and confinement?	Transverse-momentum dependent Fragmentation Functions of quarks into pions and kaons.	 Collider kinematics desirable (as compared to fixed-target kinematics) CM energy range ~20-140 GeV
More speculative observables		
What is the trace anomaly contribution to the pion mass?	Elastic J/Ψ production at low W off the pion.	 Need to uniquely determine exclusive process e + p → e' + J/Ψ + π⁺ + n (low −t) High luminosity (≥ 10³⁴cm⁻² sec⁻¹) CM energy ~70 GeV
Can we obtain tomographic snapshots of the pion in the transverse plane? What is the pressure distribution in a pion?	Measurement of DVCS off pion target as defined with Sullivan process.	• Need to uniquely determine exclusive process $e + p \rightarrow e' + \gamma + \pi^{+} + n \text{ (low } -t)$ • High luminosity ($\geq 10^{34} \text{cm}^{-2} \text{ sec}^{-1}$) • CM energy $\sim 10^{-100} \text{ GeV}$
Are transverse momentum distributions universal in pions and protons?	Hadron multiplicities in SIDIS off a pion target as defined with Sullivan process.	 Need to uniquely determine SIDIS off pion c + p → c' + h + X + n (low − t) High luminosity (10³⁴ cm⁻² sec⁻¹) c + p and c + D at similar energies desirable CM energy ~10-100 GeV

Let us see if that would be feasible in a future electron-ion collider.

Phenomenology of pion GPDs:

Goal: Employ our GPD models to analyse DVCS contribution the Sullivan process in the one-pion exchange approximation.

Phenomenology of pion GPDs: QCD evolution

Phenomenology of pion GPDs: Compton Form Factors

Gluon dominance makes essential at least NLO accuracy in any phenomenlogical analysis of DVCS at an EIC.

Phenomenology of pion GPDs: DVCS and Sullivan process

Can we measure DVCS?

One pion exchange approximation: [D.Amrath at al.-EPJC:179(58)2008]

Changing lepton polarisation one can (formally) access interference between DVCS and BH amplitudes.

Is it experimentally feasible?

Phenomenology of pion GPDs: Asymmetry (EIC)

Legend:

L-beam: 18 GeV H-beam: 275 GeV

Blue: LO Green: NLO

Non-zero
asymmetry:
optimism about
measuring DVCS
on pions at future

EIC.

Summary and perspectives

Summary and perspectives

Summary

- 1. Pion GPD models fulfilling every theoretical constraint
 - Polynomiality: Covariant extension.
 - Positivity
 - PCAC/AV-WTI: Soft pion theorem.
 - Agreement with experimental data for EFFs and GFFs.
- 2. PARTONS implements complete computing chain
 - From GPDs to DVCS CFFs
 - From DVCS CFFs to observables
- 3. DVCS on virtual pions influenced by gluon content
 - $\bullet\,$ Higher order analysis needed for phenomenology.
- 4. Pion structure to be tested at future electron-ion colliders
 - Insights into EHM could be gained experimentally.

Summary and perspectives

Perspectives

Currently at work

- 1. Exploit realistic and phenomenological pion PDF
- 2. Extension to EicC.
- 3. Comparison with previous studies
 - Original paper by D. Amrath, M. Diehl and J. P. Lansberg [D.Amrath et al.-EPJC:179(58)2008]

Forthcoming developments

- **4.** Extension of the computating chain
 - Higher order analysis
 - Baryons

Thank you!