Current Status of ULQ2 Experiment: Proton Radius Measurement with Low-energy Electron Scattering

Yuki Honda

Research Center for Electron Photon Science (ELPH), Tohoku Univ.,

- 1. Proton radius puzzle
- 2. ULQ2 experiment
- 3. Commissioning
- 4. Summary

Proton radius puzzle

$$r_p^2 \equiv -6 \frac{dG_E(Q^2)}{dQ^2}|_{Q^2 \to 0}$$

July. 28th, 2021

HADRON2021, YUKI HONDA

THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE 8 July 2010 www.nature.com/nature nature **OIL SPILLS** There's more to come PLAGIARISM It's worse than you think CHIMPANZEES The battle for survival New value from exotic atom trims radius by four per cent rs for hire

Present status of the proton radius puzzle

July. 28th, 2021

HADRON2021, YUKI HONDA

e+H Mainz (2014)

eH world (2014)

eH 1S-3S (2018)

0.89

electron scattering hydrogen spec. \blacktriangle μ -hydrogen spec.

What makes the difference?

QED calculation? Undiscovered systematic effects?

0.9 Model dependencies?

Ultra Low Q^2 (ULQ2) experiment

ULQ2 experiment

- Proton radius measurement with electron scattering
- Removing model dependencies as much as possible

characteristics

- Extreme low Q^2 : 0.0003 $\leq Q^2 \leq 0.008$ (GeV/c)².
- Absolute cross section with $\sim 10^{-3}$ accuracy.
- Rosenbluth separated $G_E(Q^2)$ and $G_M(Q^2)$.

ULQ2 experiment

- Proton radius measurement with electron scattering
- Removing model dependencies as much as possible

characteristics

July. 28th, 2021

- Extreme low Q^2 : 0.0003 $\leq Q^2 \leq 0.008$ (GeV/c)². (1)
- Absolute cross section with $\sim 10^{-3}$ accuracy.
- Rosenbluth separated $G_E(Q^2)$ and $G_M(Q^2)$.

 $G_{E}(\boldsymbol{Q}^{2})$

$$r_p^2 \equiv -6 \frac{dG_E(Q^2)}{dQ^2} |_{Q^2 \to 0}$$
$$\left(\frac{d\sigma}{d\Omega}\right) \propto (G_E^2(Q^2) + \alpha(\theta)G_M^2(Q^2))$$
$$Q^2 \sim 4E_e E'_e \sin^2(\theta/2)$$

ULQ2 experiment

- Proton radius measurement with electron scattering
- Removing model dependencies as much as possible

characteristics

July. 28th, 2021

- Extreme low Q^2 : 0.0003 $\leq Q^2 \leq 0.008$ (GeV/c)².
- Absolute cross section with $\sim 10^{-3}$ accuracy. (2)
- Rosenbluth separated $G_E(Q^2)$ and $G_M(Q^2)$.

 $G_{E}(\boldsymbol{Q}^{2})$

$$r_p^2 \equiv -6 \frac{dG_E(Q^2)}{dQ^2} |_{Q^2 \to 0}$$
$$\left(\frac{d\sigma}{d\Omega}\right) \propto (G_E^2(Q^2) + \alpha(\theta)G_M^2(Q^2))$$
$$Q^2 \sim 4E_e E'_e \sin^2(\theta/2)$$

Ultra Low Q^2 (ULQ2) experiment

ULQ2 experiment

Proton radius measurement with electron scattering

Removing model dependencies as much as possible

characteristics

- Extreme low Q^2 : 0.0003 $\leq Q^2 \leq 0.008$ (GeV/c)².
- (2)Absolute cross section with $\sim 10^{-3}$ accuracy.

Relative measurement to well-known cross section. e+p / e+C scattering → CH₂ target

ULQ2 experiment

Proton radius measurement with electron scattering

Removing model dependencies as much as possible

characteristics

- Extreme low Q^2 : 0.0003 $\leq Q^2 \leq 0.008$ (GeV/c)².
- Absolute cross section with $\sim 10^{-3}$ accuracy. (2)

Events

July. 28th, 2021

Relative measurement to well-known cross section. e+p / e+C scattering → CH₂ target

ULQ2 experiment

- Proton radius measurement with electron scattering
- Removing model dependencies as much as possible

characteristics

- Extreme low Q^2 : 0.0003 $\leq Q^2 \leq 0.008$ (GeV/c)².
- Absolute cross section with $\sim 10^{-3}$ accuracy.
- Rosenbluth separated $G_E(Q^2)$ and $G_M(Q^2)$. (3)

HADRON2021, YUKI HONDA

Rosenbluth separation requires frequently change of E_e and θ

Ultra Low Q^2 (ULQ2) experiment

ULQ2 experiment

- Proton radius measurement with electron scattering
- Removing model dependencies as much as possible

characteristics

- 1 Extreme low Q^2 : **0.0003** $\leq Q^2 \leq 0.008$ (GeV/c)².
- 2 Absolute cross section with $\sim 10^{-3}$ accuracy.
- ③ Rosenbluth separated $G_E(Q^2)$ and $G_M(Q^2)$.

 $\Rightarrow E_e = 20 - 60 \text{ MeV}, \ \theta = 30 - 150^{\circ}$

Lowest-ever beam energy !!

July. 28th, 2021

• Rosenbluth separation requires frequently change of E_e and θ

ULQ2 experiment

- Proton radius measurement with electron scattering
- Removing model dependencies as much as possible

characteristics

- Extreme low Q^2 : 0.0003 $\leq Q^2 \leq 0.008$ (GeV/c)². (1)
- (2)Absolute cross section with $\sim 10^{-3}$ accuracy.
- Rosenbluth separated $G_E(Q^2)$ and $G_M(Q^2)$. 3

 $\Rightarrow E_e = 20 - 60 \text{ MeV}, \ \theta = 30 - 150^{\circ}$

Lowest-ever beam energy !!

 Rosenbluth separation requires frequently change of E_e and θ

Research Center for Electron Photon Science (ELPH)

HADRON2021, YUKI HONDA

Research Center for Electron Photon Science (ELPH)

HADRON2021, YUKI HONDA

ULQ2 : Commissioning

First beam

Sep. 11, 2020

Commissioning

Sep., Oct., Nov. 2020, May, June, July 2021

HADRON2021, Yuki Honda

ULQ2 beam line

Previous status

- $E_e = 20 60 \text{ MeV}$
- $\sigma_E/E_e \sim 0.5 \%$
- $\sigma_{x,y} \sim 3 \text{ mm}$
- *I*_{max} ~ 180 μA

HADRON2021, YUKI HONDA

July. 28th, 2021

Requirement : ULQ2 exp.

- $E_e = 20 60 \text{ MeV}$
- $\sigma_E / E_e \le 0.1 \%$
- $\sigma_{x,y} \leq 1 \text{ mm}$
- $I_{\rm max} \sim 1 \,\mu A$

Commissioning $\succ E_e = 50 \text{ MeV}$ $\succ \sigma_E / E_e = 0.06 \%$ $\succ \sigma_{x,y} \sim 0.6 \text{ mm}$ $\geq I \sim 50 \text{ nA} \text{ (not max)}$

Spectrometer

July. 28th, 2021

HADRON2021, YUKI HONDA

Spectrometer property

radius	50 cm			
bending angle	90°			
B _{Max}	0.4 T @ 60 MeV			
gap	70 mm			
dispersion	855 mm			
σ_p/p	8×10^{-4}			
momentum bite	11 %			
$\sigma_{ heta}$	5 mrad			
solid angle	10 mSr			

Spectrometer performance study

e+H elastic peak was observed.

Reproduced simulation well

- Momentum resolution (Req. : 10^{-3}) Exp. 7.0(4) × 10^{-4} Sim. 6.8 × 10^{-4}
- Transition matrix $(x|\delta), (x|x)$
- Unevaluated : Angle resolution

Basically, it was confirmed that there are no serious problems with the spectrometer design.

2021/7/28 Hitmap on SSD

Summary

- Proton radius has a serious inconsistency.
- ULQ2 experiment aims to determine the proton radius removing model dependencies as much as possible.
- Commissioning of the new beamline and spectrometer has been performed, and it is confirmed there are no serious problems.

	FY2021			FY2022			
2 nd spectrometer							
Physics run							
Analysis							

