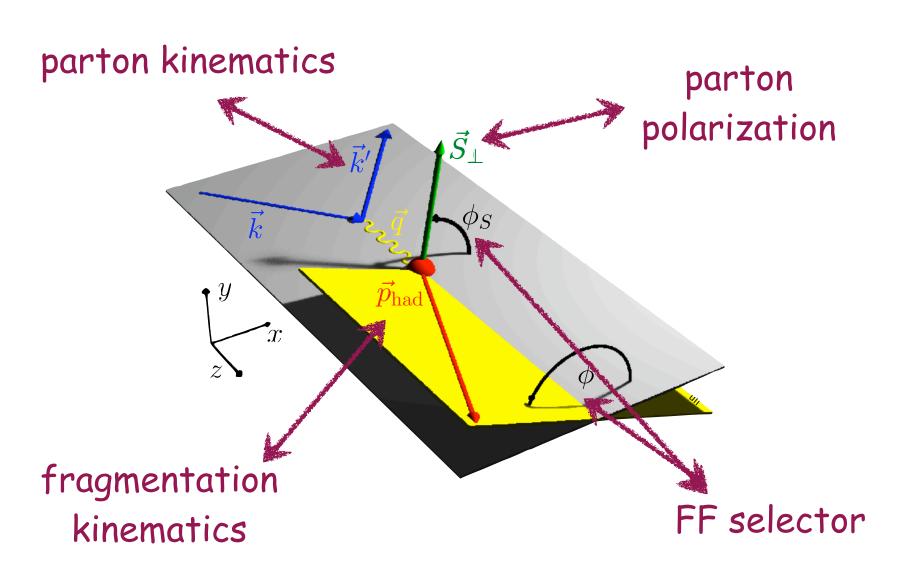


19th International Conference on Hadron Spectroscopy and Structure in memoriam Simon Eidelman (HADRON2021) Mexico City (virtual) — July 26 to 31, 2021



Overview of recent HERMES results on transverse-momentum-dependent spin asymmetries in semi-inclusive DIS

Spin-momentum structure of the nucleon

$$\frac{1}{2} \text{Tr} \Big[(\gamma^{+} + \lambda \gamma^{+} \gamma_{5}) \Phi \Big] = \frac{1}{2} \Big[f_{1} + S^{i} \epsilon^{ij} k^{j} \frac{1}{m} f_{1T}^{\perp} + \lambda \Lambda g_{1} + \lambda S^{i} k^{i} \frac{1}{m} g_{1T} \Big]
\frac{1}{2} \text{Tr} \Big[(\gamma^{+} - s^{j} i \sigma^{+j} \gamma_{5}) \Phi \Big] = \frac{1}{2} \Big[f_{1} + S^{i} \epsilon^{ij} k^{j} \frac{1}{m} f_{1T}^{\perp} + s^{i} \epsilon^{ij} k^{j} \frac{1}{m} h_{1}^{\perp} + s^{i} S^{i} h_{1} \\
+ s^{i} (2k^{i} k^{j} - \mathbf{k}^{2} \delta^{ij}) S^{j} \frac{1}{2m^{2}} h_{1T}^{\perp} + \Lambda s^{i} k^{i} \frac{1}{m} h_{1L}^{\perp} \Big]$$

quark pol.

		U	L	${ m T}$
pol.	U	f_1		h_1^\perp
leon	L		g_{1L}	h_{1L}^{\perp}
nucleon	Τ	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

- each TMD describes a particular spinmomentum correlation
- functions in black survive integration over transverse momentum
- functions in green box are chirally odd
- functions in red are naive T-odd

Spin-momentum structure of the nucleon

$$\frac{1}{2}\operatorname{Tr}\left[\left(\gamma^{+} + \lambda\gamma^{+}\gamma_{5}\right)\Phi\right] = \frac{1}{2}\left[f_{1} + S^{i}\epsilon^{ij}k^{j}\frac{1}{m}f_{1T}^{\perp} + \lambda\Lambda g_{1} + \lambda S^{i}k^{i}\frac{1}{m}g_{1T}\right]$$

$$\frac{1}{2} \text{Tr} \left[(\gamma^{+} - s^{j} i \sigma^{+j} \gamma_{5}) \Phi \right] = \frac{1}{2} \left[f_{1} + S^{i} \epsilon^{ij} k^{j} \frac{1}{m} f_{1T}^{\perp} + s^{i} \epsilon^{ij} k^{j} \frac{1}{m} h_{1}^{\perp} + s^{i} S^{i} h_{1} \right]$$

$$+ s^{i} (2k^{i}k^{j} - \mathbf{k}^{2}\delta^{ij})S^{j} \frac{1}{2m^{2}} \frac{1}{h_{1T}^{\perp}} + \Lambda s^{i}k^{i} \frac{1}{m} \frac{1}{h_{1L}^{\perp}}$$

helicity

quark pol.

		Γ	ho		\mathbf{T}
I	U	f_1			h_1^{\perp}
	L		g_{1L}	1	n_{1L}^{\perp}
	Τ	f_{1T}^{\perp}	g_{1T}	h_1	$,~h_{1T}^{\perp}$

Boer-Mulders

pretzelosity

- each TMD describes a particular spinmomentum correlation
- functions in black survive integration over transverse momentum
- functions in green box are chirally odd
- functions in red are naive T-odd

Sivers

nucleon pol

transversity

worm-gear

quark pol.

		U	L	T
pol.	U	D_1		H_1^\perp
nadron pol	L		G_1	H_{1L}^{\perp}
had	Τ	D_{1T}^{\perp}	G_{1T}^{\perp}	$H_1 H_{1T}^{\perp}$

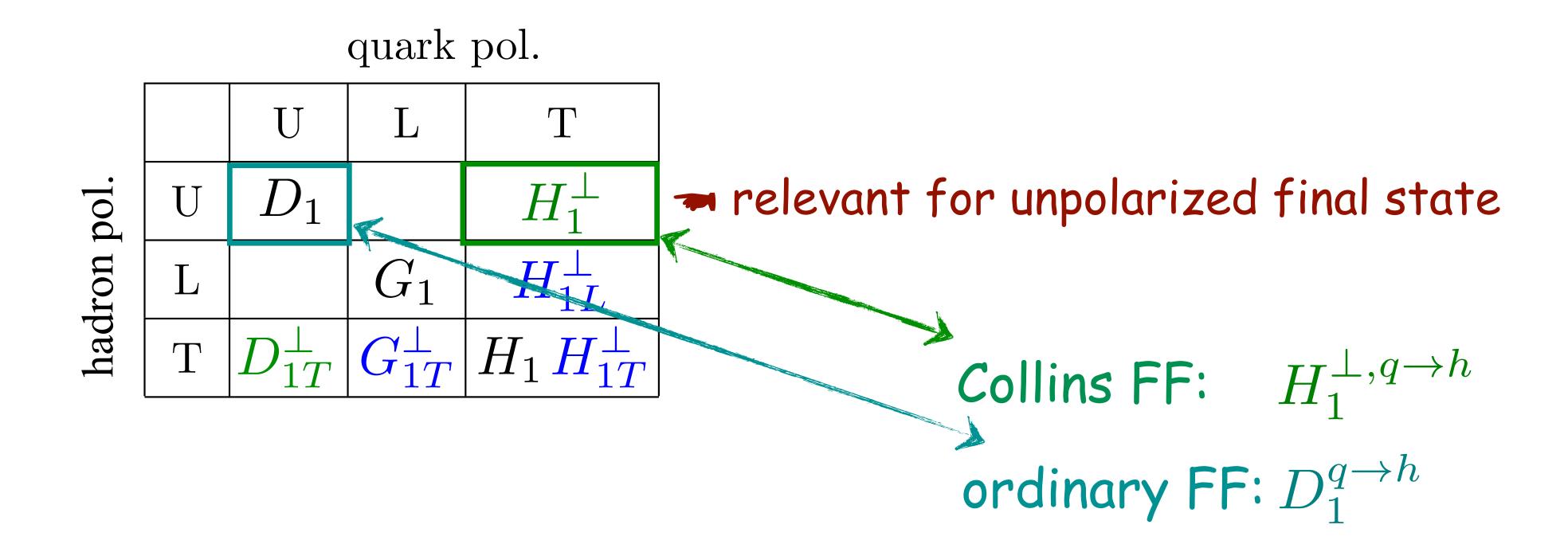
quark pol.

 H_1^{\perp}

 H_{1L}^{\perp}

in the second representation of the second r

relevant for unpolarized final state

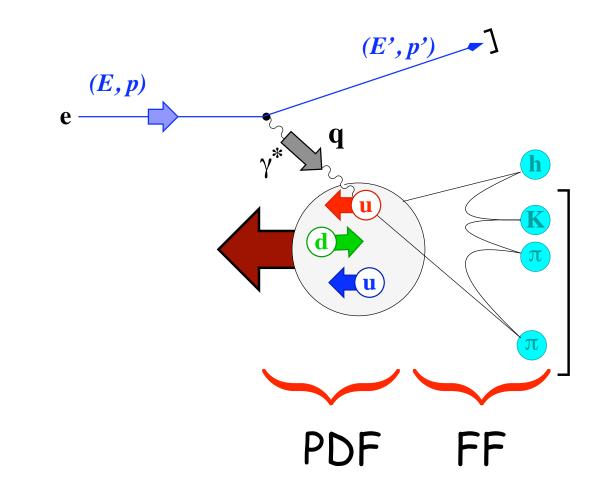


quark pol.

relevant for unpolarized final state

polarized final-state hadrons

Probing TMDs in semi-inclusive DIS



quarl	7	n0	
quari		ho	L •

		U	${ m L}$	\mathbf{T}
pol.	U	f_1		h_1^\perp
leon	L		g_{1L}	h_{1L}^{\perp}
nucl	\overline{T}	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^{\perp}

in SIDIS*) couple PDFs to:

Collins FF: $H_1^{\perp,q \to h}$

ordinary FF: $D_1^{q o h}$

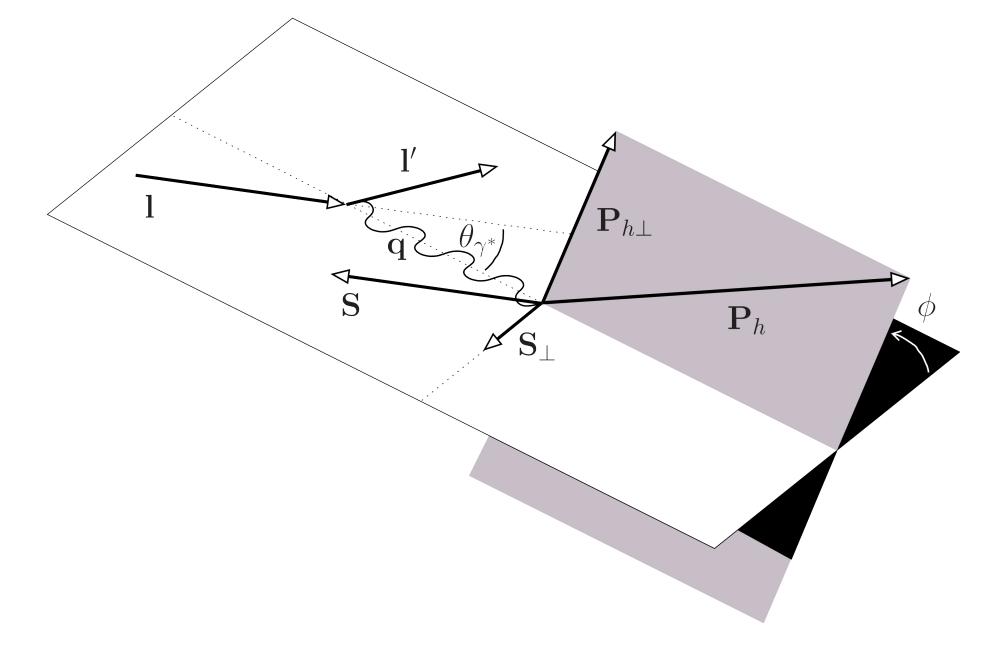
→ give rise to characteristic azimuthal dependences

*) semi-inclusive DIS with unpolarized final state

Gunar Schnell 4 HADRON 2021

excluding transverse polarization:

$$\begin{split} \frac{\mathrm{d}\sigma^h}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}P_{h\perp}^2\,\mathrm{d}\phi} &= \frac{2\pi\alpha^2}{xyQ^2}\frac{y^2}{2(1-\epsilon)}\left(1+\frac{\gamma^2}{2x}\right) \\ \left\{F_{UU,T}^h + \epsilon F_{UU,L}^h + \lambda\Lambda\sqrt{1-\epsilon^2}F_{LL}^h \right. \\ &+ \sqrt{2\epsilon}\left[\lambda\sqrt{1-\epsilon}\,F_{LU}^{h,\sin\phi} + \Lambda\sqrt{1+\epsilon}\,F_{UL}^{h,\sin\phi}\right]\sin\phi \\ &+ \sqrt{2\epsilon}\left[\lambda\Lambda\sqrt{1-\epsilon}\,F_{LL}^{h,\cos\phi} + \sqrt{1+\epsilon}\,F_{UU}^{h,\cos\phi}\right]\cos\phi \\ &+ \Lambda\epsilon\,F_{UL}^{h,\sin2\phi}\sin2\phi + \epsilon\,F_{UU}^{h,\cos2\phi}\cos2\phi \right. \end{split}$$



$$F_{XY}^{h,\text{mod}} = F_{XY}^{h,\text{mod}}(x, Q^2, z, P_{h\perp})$$

Beam (λ) / Target (Λ) helicities

excluding transverse polarization:

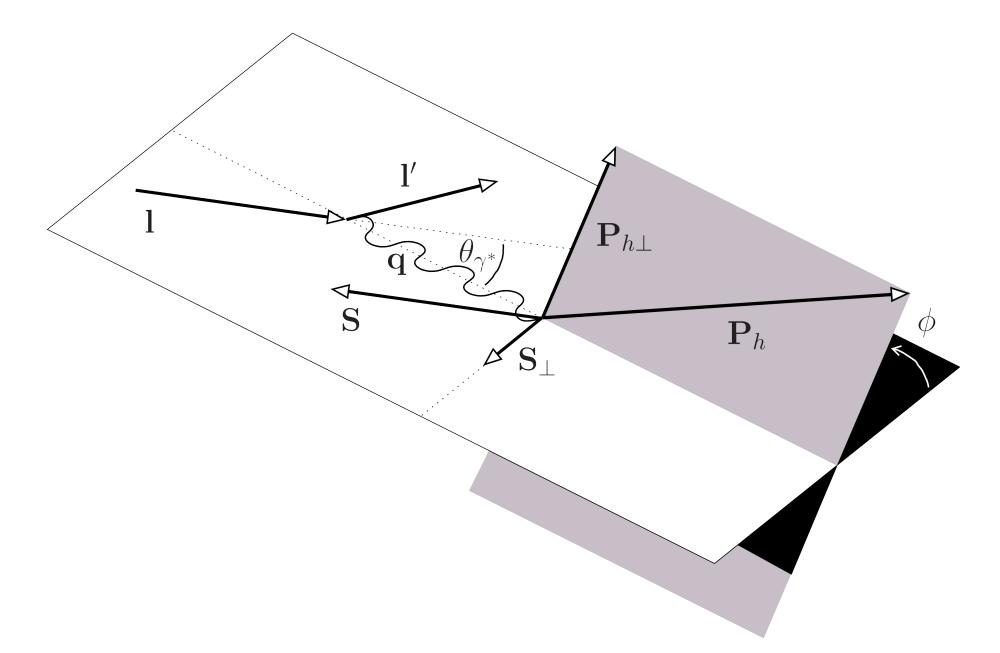
$$\frac{\mathrm{d}\sigma^{h}}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}P_{h\perp}^{2}\,\mathrm{d}\phi} = \frac{2\pi\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\epsilon)}\left(1+\frac{\gamma^{2}}{2x}\right)$$

$$\left\{F_{UU,T}^{h} + \epsilon F_{UU,L}^{h} + \lambda\Lambda\sqrt{1-\epsilon^{2}}F_{LL}^{h}\right.$$

$$\left. + \sqrt{2\epsilon}\left[\lambda\sqrt{1-\epsilon}\,F_{LU}^{h,\sin\phi} + \Lambda\sqrt{1+\epsilon}\,F_{UL}^{h,\sin\phi}\right]\sin\phi\right.$$

$$\left. + \sqrt{2\epsilon}\left[\lambda\Lambda\sqrt{1-\epsilon}\,F_{LL}^{h,\cos\phi} + \sqrt{1+\epsilon}\,F_{UL}^{h,\cos\phi}\right]\cos\phi\right.$$

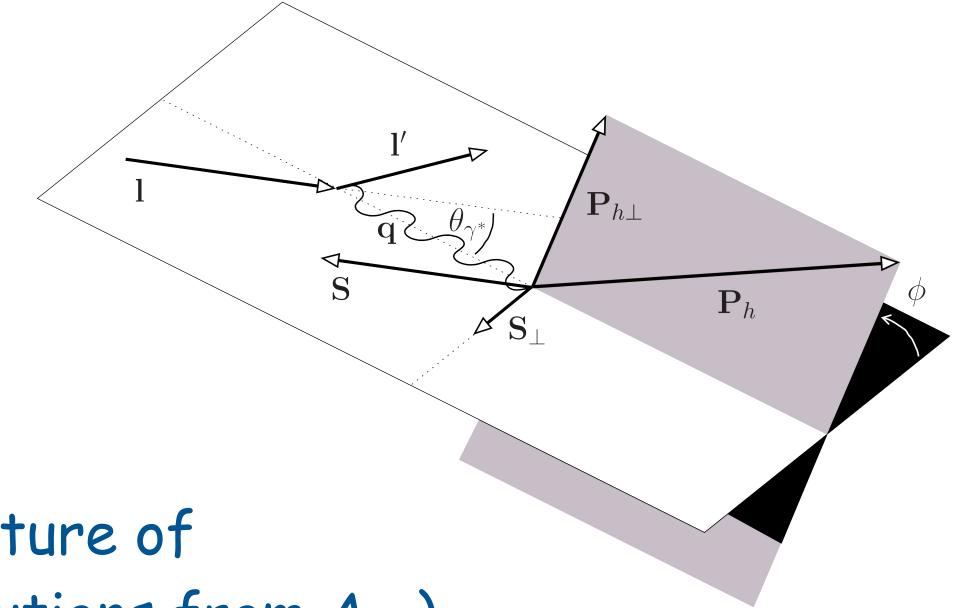
$$\left. + \Lambda\epsilon\,F_{UL}^{h,\sin2\phi}\sin2\phi + \epsilon\,F_{UU}^{h,\cos2\phi}\cos2\phi\right.\right\}$$



$$A_{LL}^{h} \equiv \frac{\sigma_{++}^{h} - \sigma_{+-}^{h} + \sigma_{--}^{h} - \sigma_{-+}^{h}}{\sigma_{++}^{h} + \sigma_{+-}^{h} + \sigma_{--}^{h} + \sigma_{-+}^{h}}$$

- in experiment extract instead A_{II} which differs from A_{LL} in the way the polarization is measured:
 - ALL: along virtual-photon direction
 - \bullet $A_{||}$: along beam direction (results in small admixture of transverse target polarization and thus contributions from A_{LT})
- All related to virtual-photon-nucleon asymmetry A1

$$A_1^h = \frac{1}{D(1+\eta\gamma)}A_{\parallel}^h$$

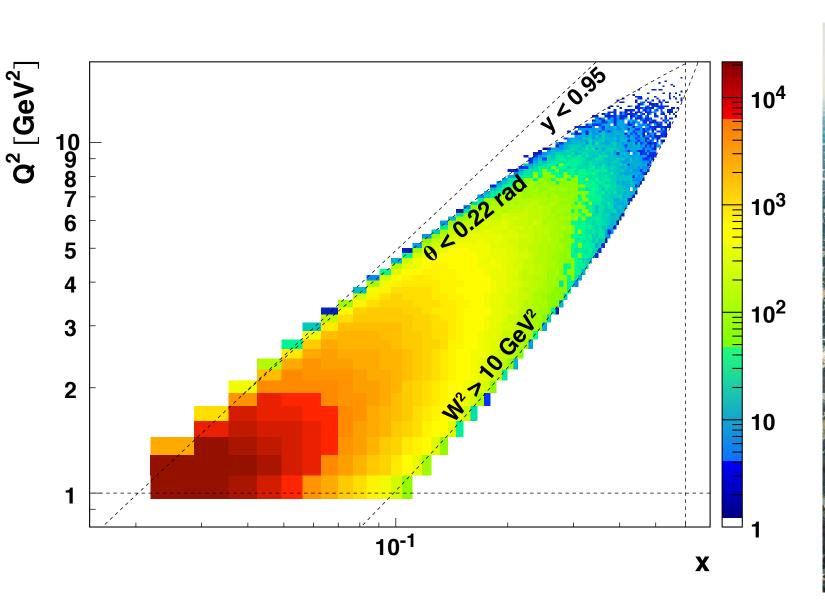


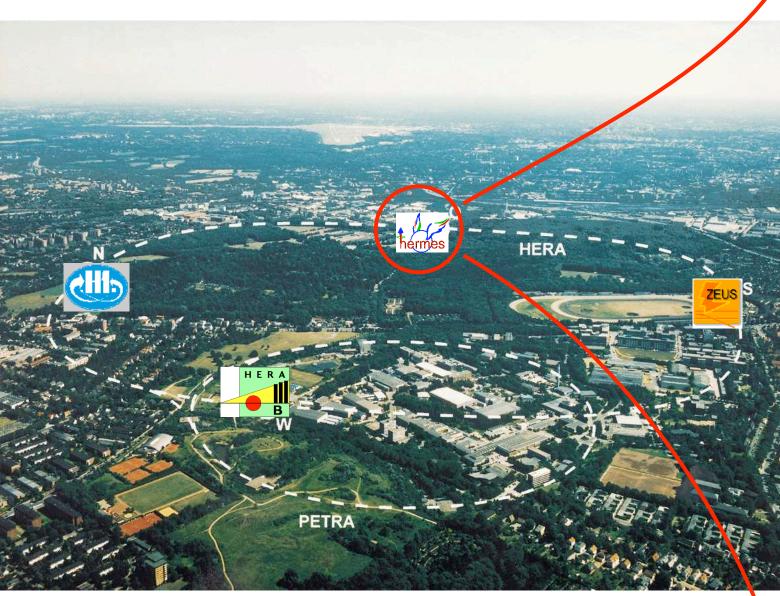
$$D = \frac{1 - (1 - y)\epsilon}{1 + \epsilon R}$$

$$\eta = \frac{\epsilon \gamma y}{1 - (1 - y) \epsilon}$$

HERMES (†2007) @ DESY

27.6 GeV polarized e⁺/e⁻ beam scattered off ...



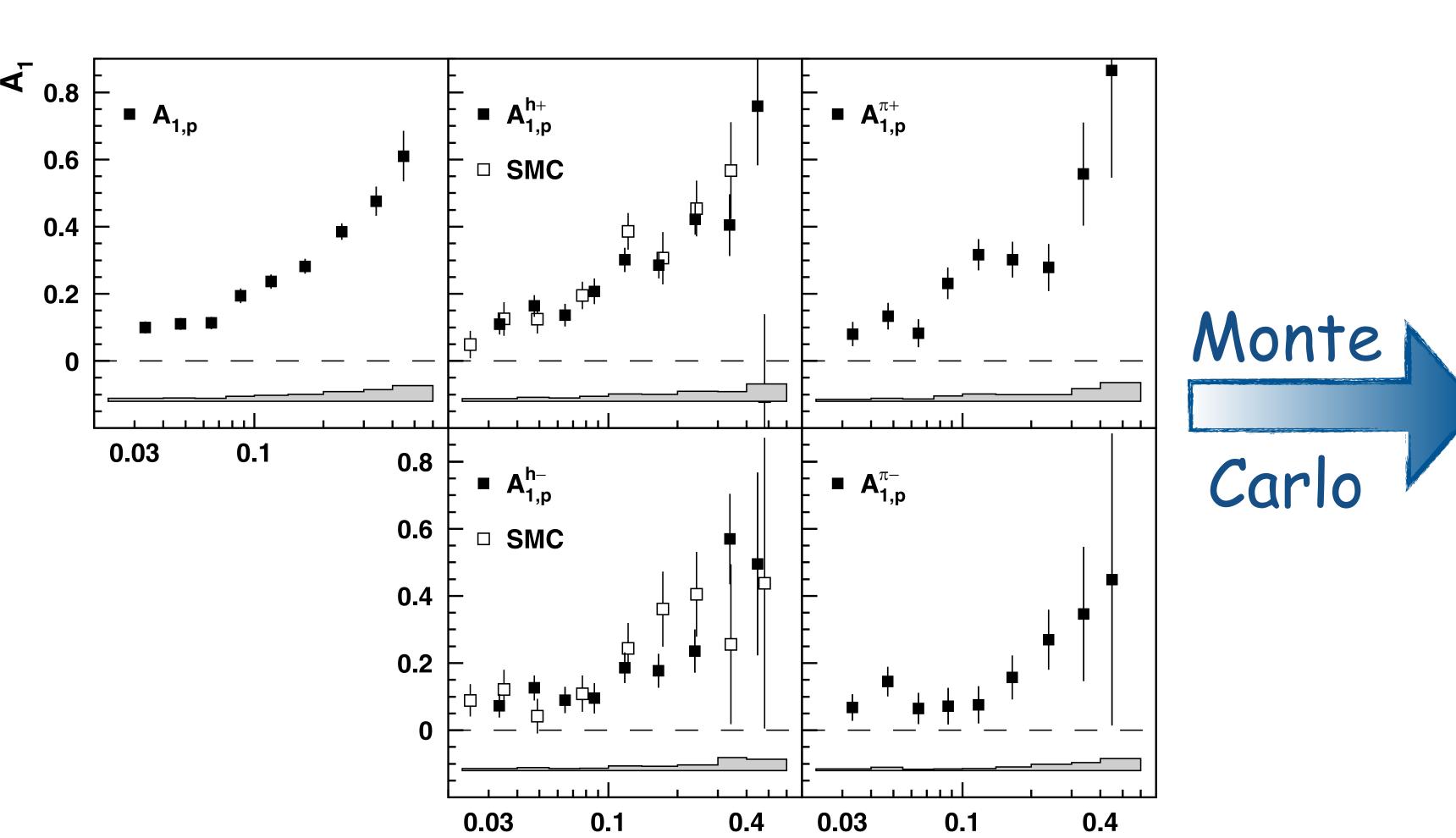


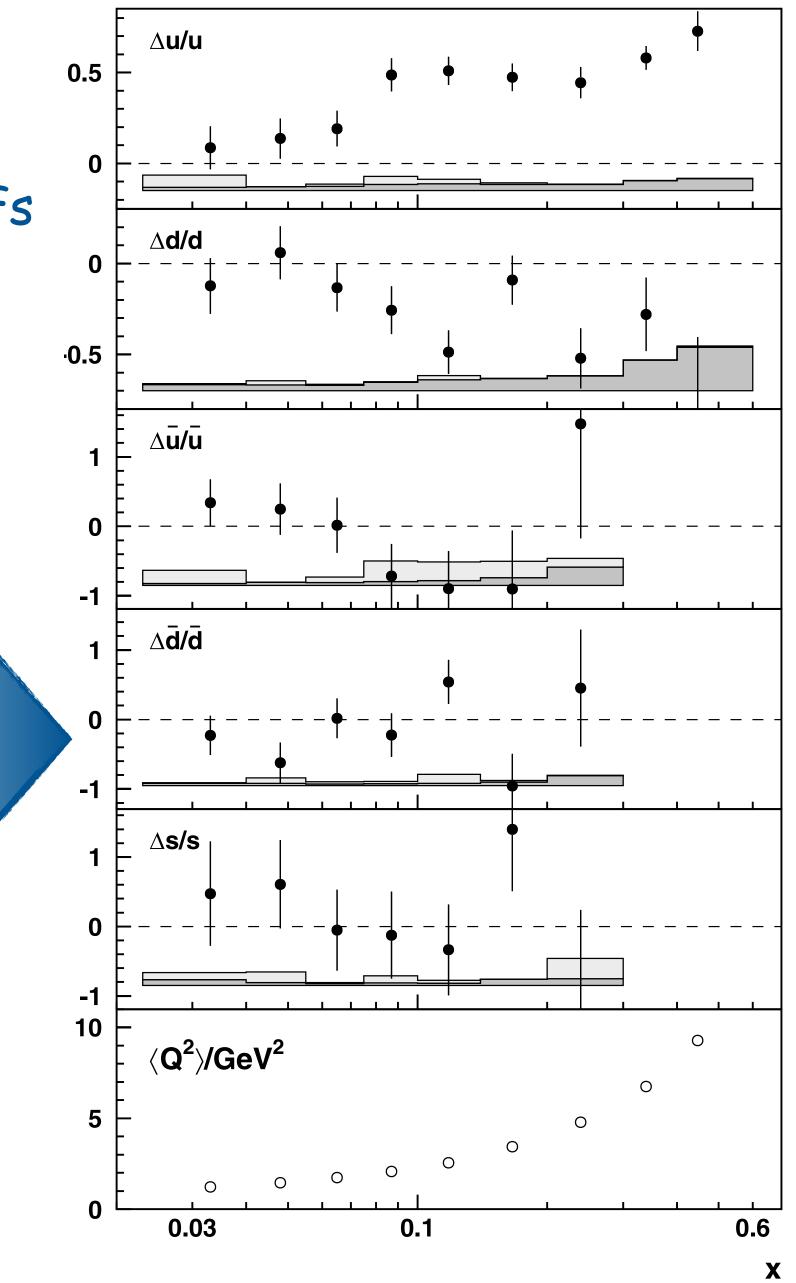


- unpolarized (H, D, He,..., Xe) as well as
- Transversely (H) or longitudinally (H, D, He) polarized pure gas targets
- matricle ID (incl. dual-radiator RICH) for efficient e/pi/K/p separation

previous HERMES analysis

(semi-) inclusive asymmetries used for LO extraction of helicity PDFs





re-analysis of double-spin asymmetries

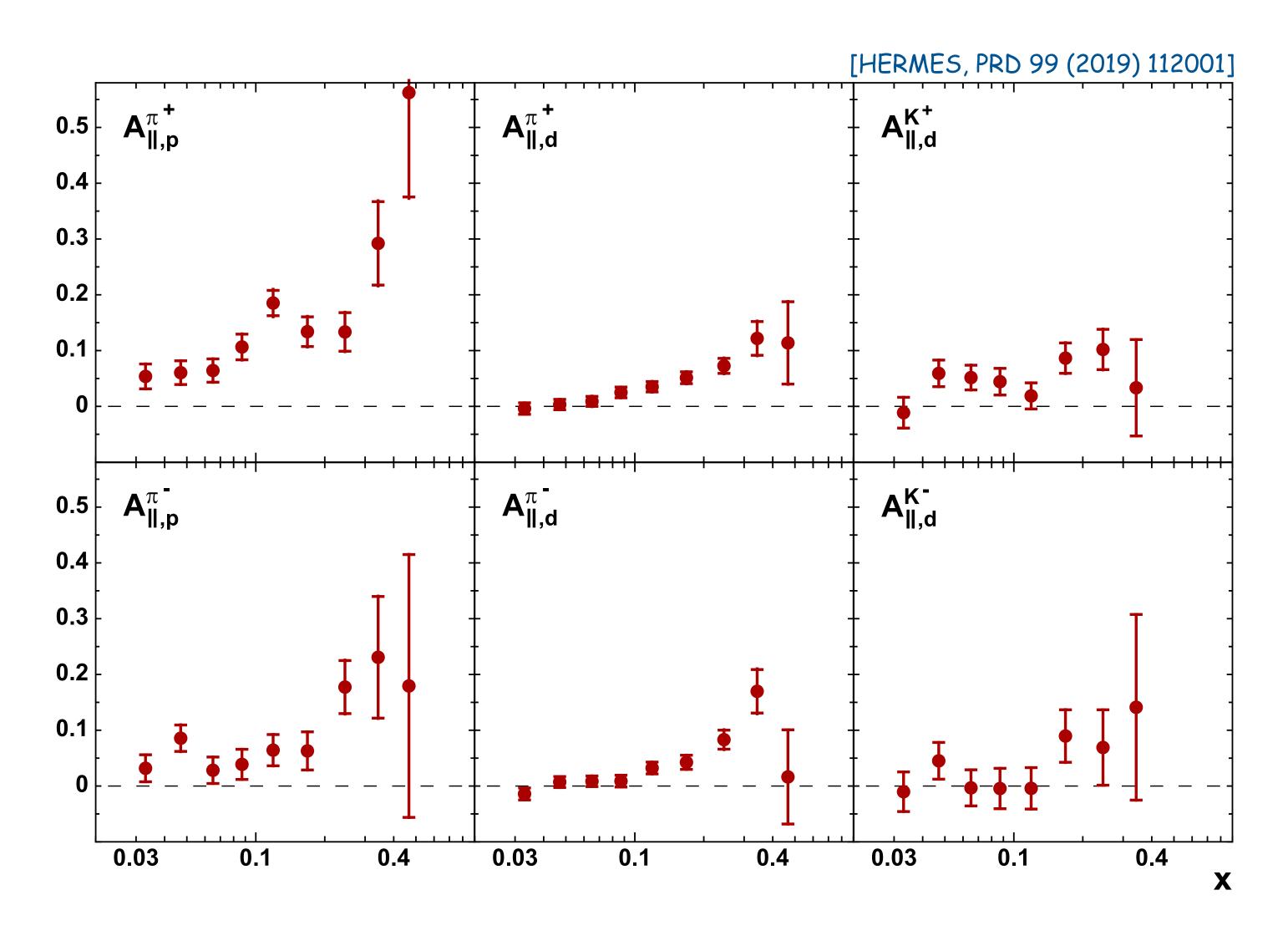
- revisited [PRD 71 (2005) 012003] A1 analysis at HERMES in order to
 - exploit slightly larger data set (less restrictive momentum range)
 - \bullet provide A_{\parallel} in addition to A_{1}

$$A_1^h = \frac{1}{D(1+\eta\gamma)} A_{\parallel}^h \qquad D = \frac{1-(1-y)\epsilon}{1+\epsilon R}$$

R (ratio of longitudinal-to-transverse cross-sec'n) still to be measured! [only available for inclusive DIS data, e.g., used in g_1 SF measurements]

- correct for D-state admixture (deuteron case) on asymmetry level
- ocrrect better for azimuthal asymmetries coupling to acceptance
- look at multi-dimensional $(x, z, P_{h\perp})$ dependences
- extract twist-3 cosine modulations

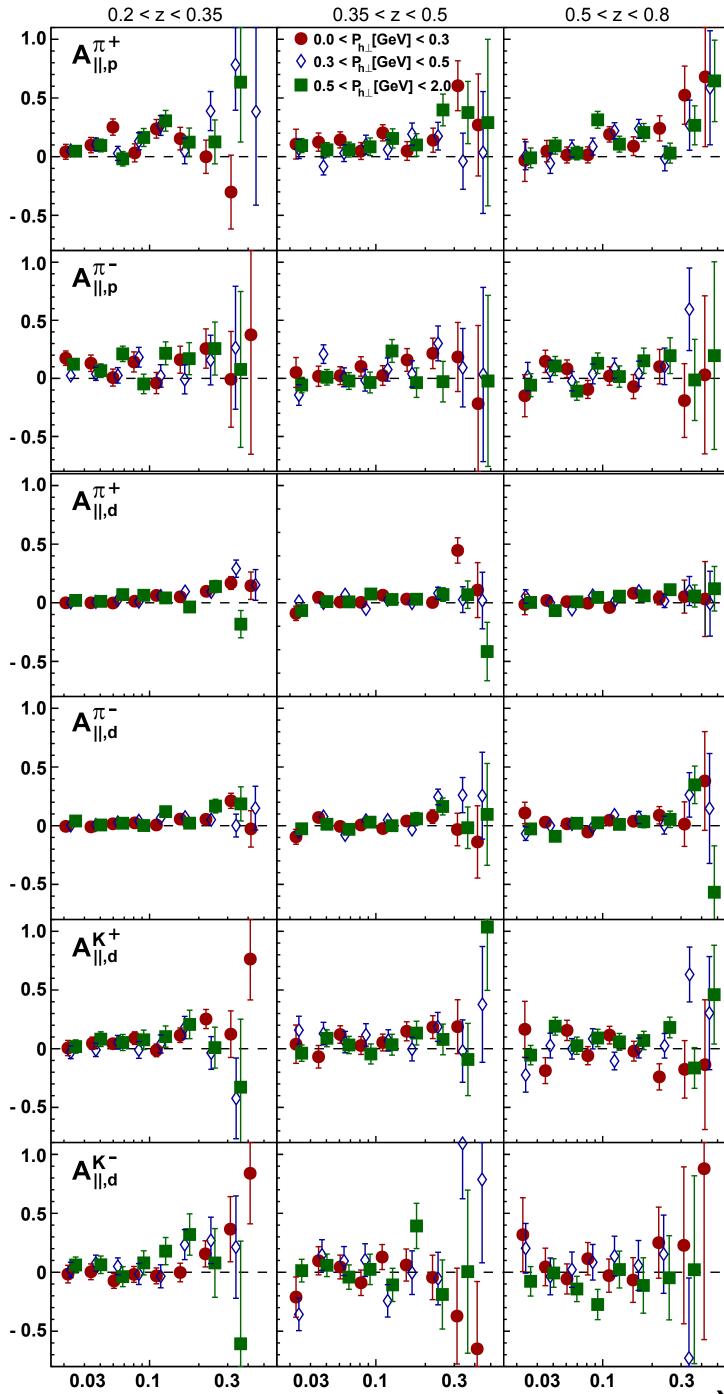
x dependence of A11



If fully consistent with previous HERMES publication [PRD 71 (2005) 012003]

3-dimensional binning

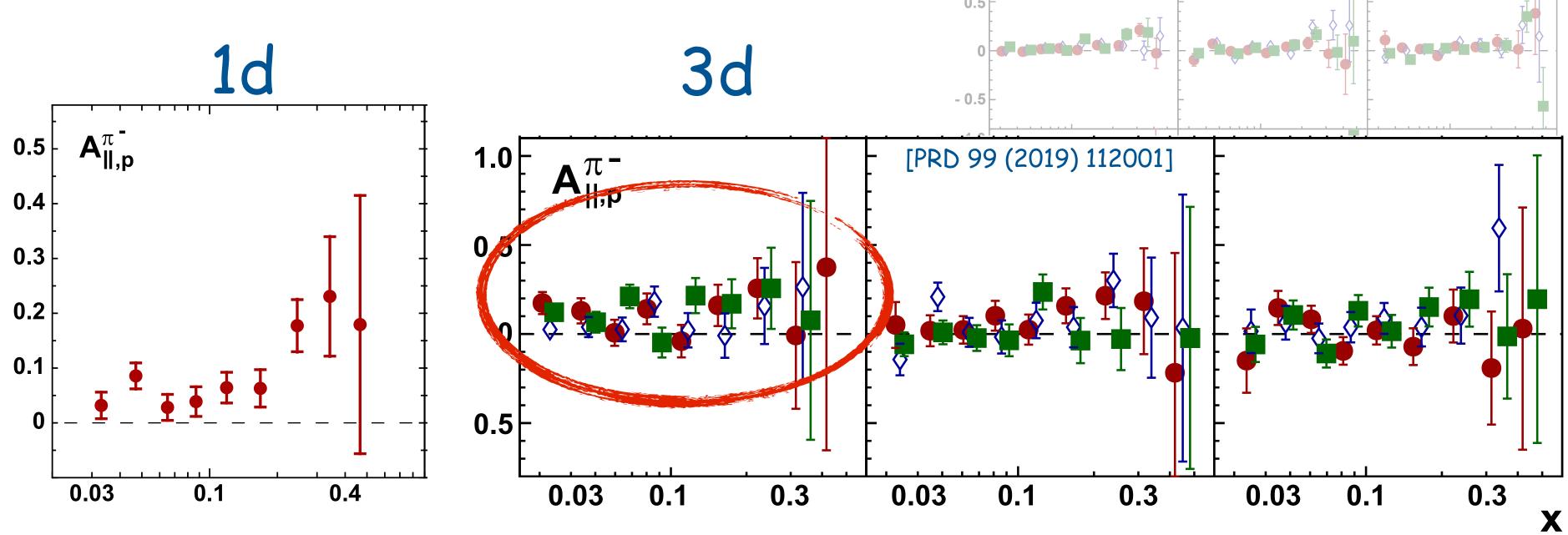
• first-ever 3d binning provides transverse-momentum dependence



Gunar Schnell 12 12 12 13 0.03 0.1 0.3 0.03 0.1 0.3 x HADRON 2021

3-dimensional binning

- first-ever 3d binning provides transverse-momentum dependence
- but also extra flavor sensitivity, e.g.,
 - \bullet π^- asymmetries mainly coming from low-z region where disfavored fragmentation large and thus sensitivity to the large positive up-quark polarization



- 0.5

- 0.5

 $\mathbf{A}_{\parallel,\mathsf{p}}^{\pi^-}$

Gunar Schnell

0.5 < z < 0.8

with transverse target polarization:

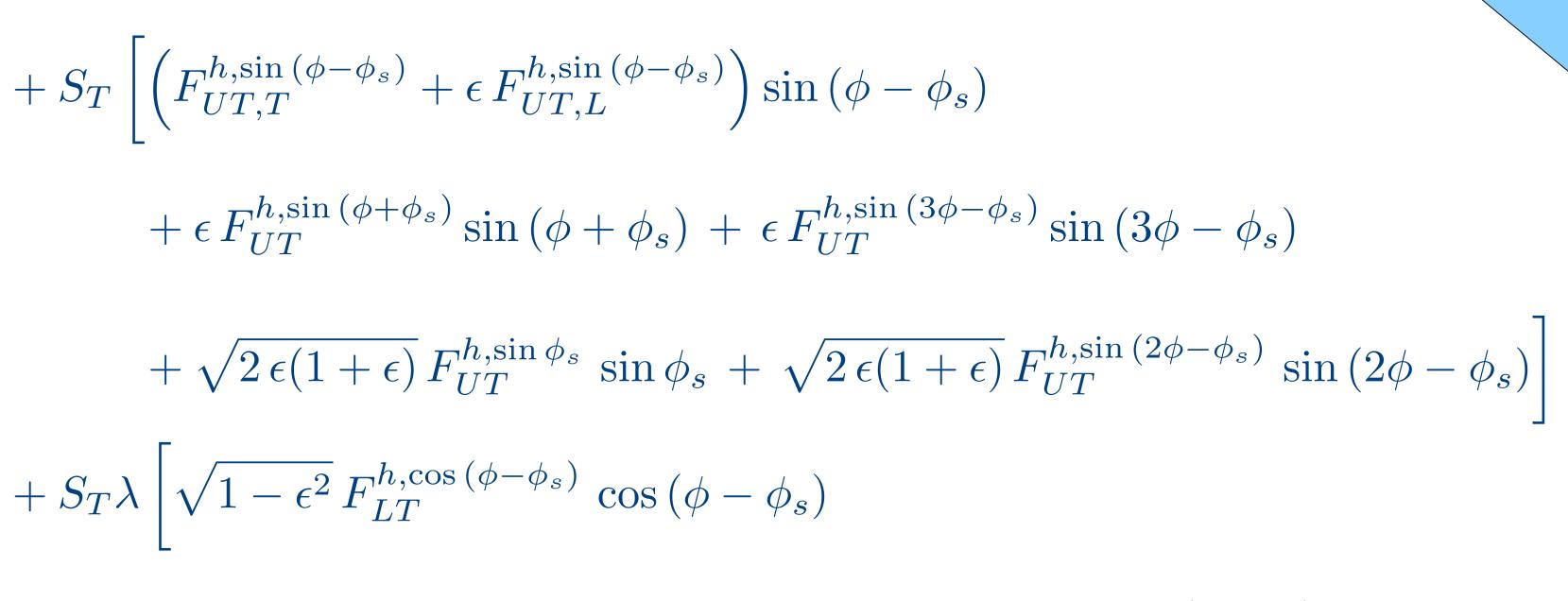
$$\frac{\mathrm{d}\sigma^{h}}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}P_{h\perp}^{2}\,\mathrm{d}\phi\,\mathrm{d}\phi_{s}} = \frac{2\pi\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\epsilon)}\left(1+\frac{\gamma^{2}}{2x}\right)$$

$$\left\{F_{UU,T}^{h} + \epsilon F_{UU,L}^{h} + \text{terms not involving transv. polarization}\right.$$

$$+ S_{T}\left[\left(F_{UT,T}^{h,\sin\left(\phi-\phi_{s}\right)} + \epsilon F_{UT,L}^{h,\sin\left(\phi-\phi_{s}\right)}\right)\sin\left(\phi-\phi_{s}\right)\right.$$

$$\left. + \epsilon F_{VT}^{h,\sin\left(\phi+\phi_{s}\right)}\sin\left(\phi+\phi_{s}\right) + \epsilon F_{VT}^{h,\sin\left(3\phi-\phi_{s}\right)}\sin\left(3\phi-\phi_{s}\right)\right\}$$

$$+ \epsilon F_{VT}^{h,\sin\left(\phi+\phi_{s}\right)}\sin\left(\phi+\phi_{s}\right) + \epsilon F_{VT}^{h,\sin\left(3\phi-\phi_{s}\right)}\sin\left(3\phi-\phi_{s}\right)$$



$$+\sqrt{2\epsilon(1-\epsilon)}F_{LT}^{h,\cos\phi_s}\cos\phi_s + \sqrt{2\epsilon(1-\epsilon)}F_{LT}^{h,\cos(2\phi-\phi_s)}\cos(2\phi-\phi_s)\right]\right\}$$

Gunar Schnell 14 HADRON 2021

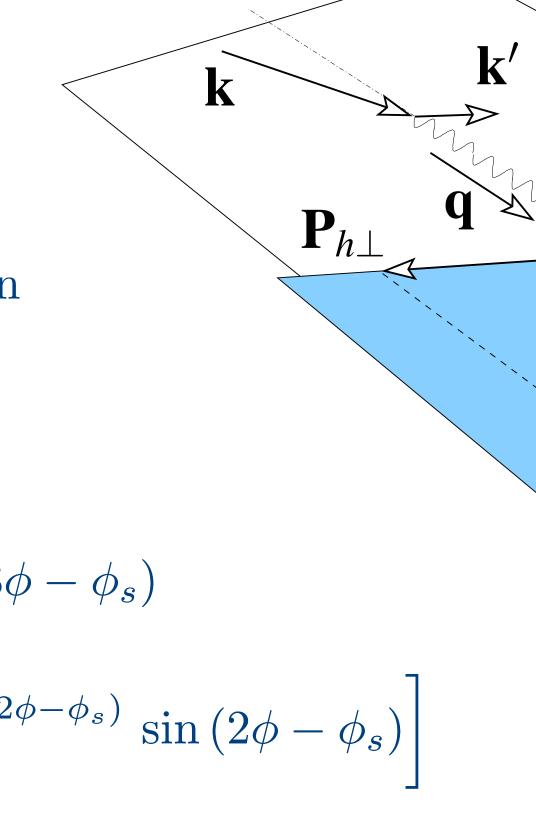
with transverse target polarization:

$$\frac{\mathrm{d}\sigma^{h}}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}P_{h\perp}^{2}\,\mathrm{d}\phi\,\mathrm{d}\phi_{s}} = \frac{2\pi\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\epsilon)}\left(1+\frac{\gamma^{2}}{2x}\right)$$

$$\left\{F_{UU,T}^{h} + \epsilon F_{UU,L}^{h} + \text{terms not involving transv. polarization}\right.$$

$$+ S_{T}\left[\left(F_{UT,T}^{h,\sin\left(\phi-\phi_{s}\right)} + \epsilon F_{UT,L}^{h,\sin\left(\phi-\phi_{s}\right)}\right)\sin\left(\phi-\phi_{s}\right)\right.$$

$$+ \epsilon F_{UT}^{h,\sin\left(\phi+\phi_{s}\right)}\sin\left(\phi+\phi_{s}\right) + \epsilon F_{UT}^{h,\sin\left(3\phi-\phi_{s}\right)}\sin\left(3\phi-\phi_{s}\right)$$

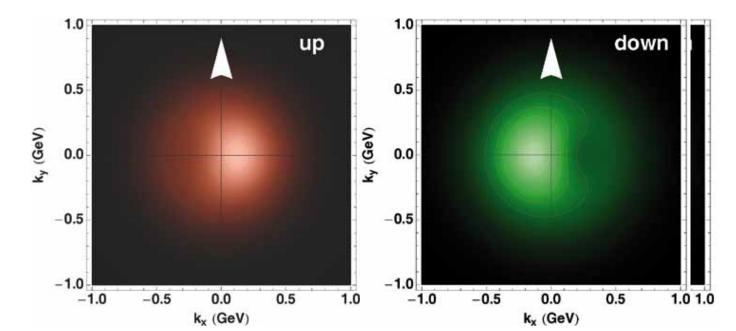


$$+ \sqrt{2 \epsilon (1 + \epsilon)} F_{UT}^{h, \sin \phi_s} \sin \phi_s + \sqrt{2 \epsilon (1 + \epsilon)} F_{UT}^{h, \sin (2\phi - \phi_s)} \sin (2\phi - \phi_s)$$

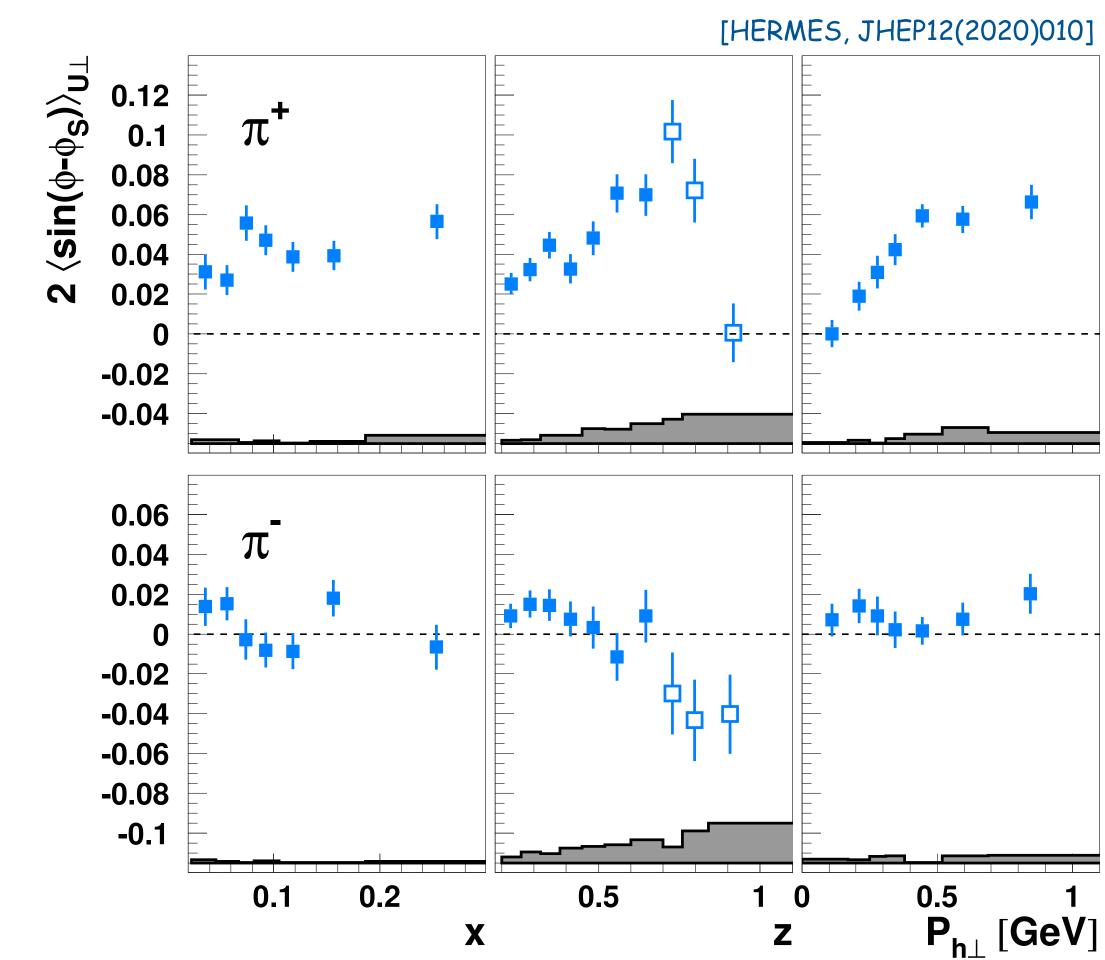
$$+ S_T \lambda \left[\sqrt{1 - \epsilon^2} F_{LT}^{h, \cos (\phi - \phi_s)} \cos (\phi - \phi_s) \right]$$

$$+ \sqrt{2 \epsilon (1 - \epsilon)} F_{LT}^{h, \cos \phi_s} \cos \phi_s + \sqrt{2 \epsilon (1 - \epsilon)} F_{LT}^{h, \cos (2\phi - \phi_s)} \cos (2\phi - \phi_s) \right]$$

	U	L	Γ
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
T	f_{1T}^{\perp}	g_{1T}	$oxed{h_1,h_{1T}^ot}$

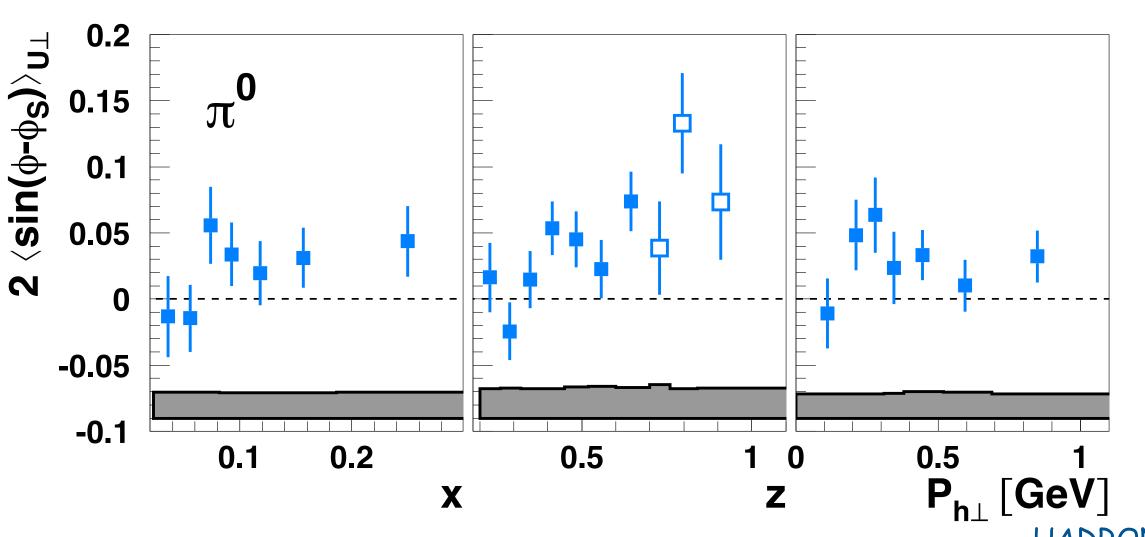


[A. Bacchetta et al.]



Sivers amplitudes for pions

- Sivers TMD probes correlation between nucleon spin and parton transverse momentum
- previous HERMES results focused on z < 0.7</p>

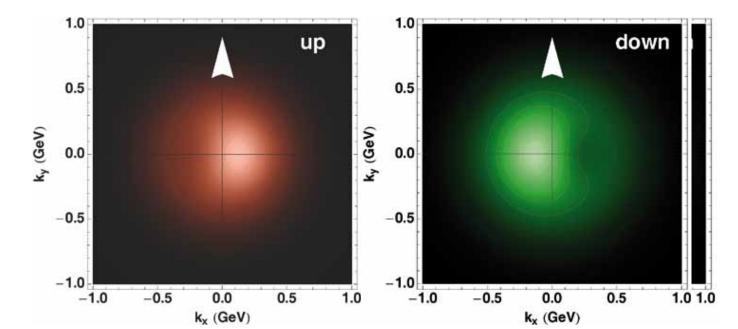


Gunar Schnell

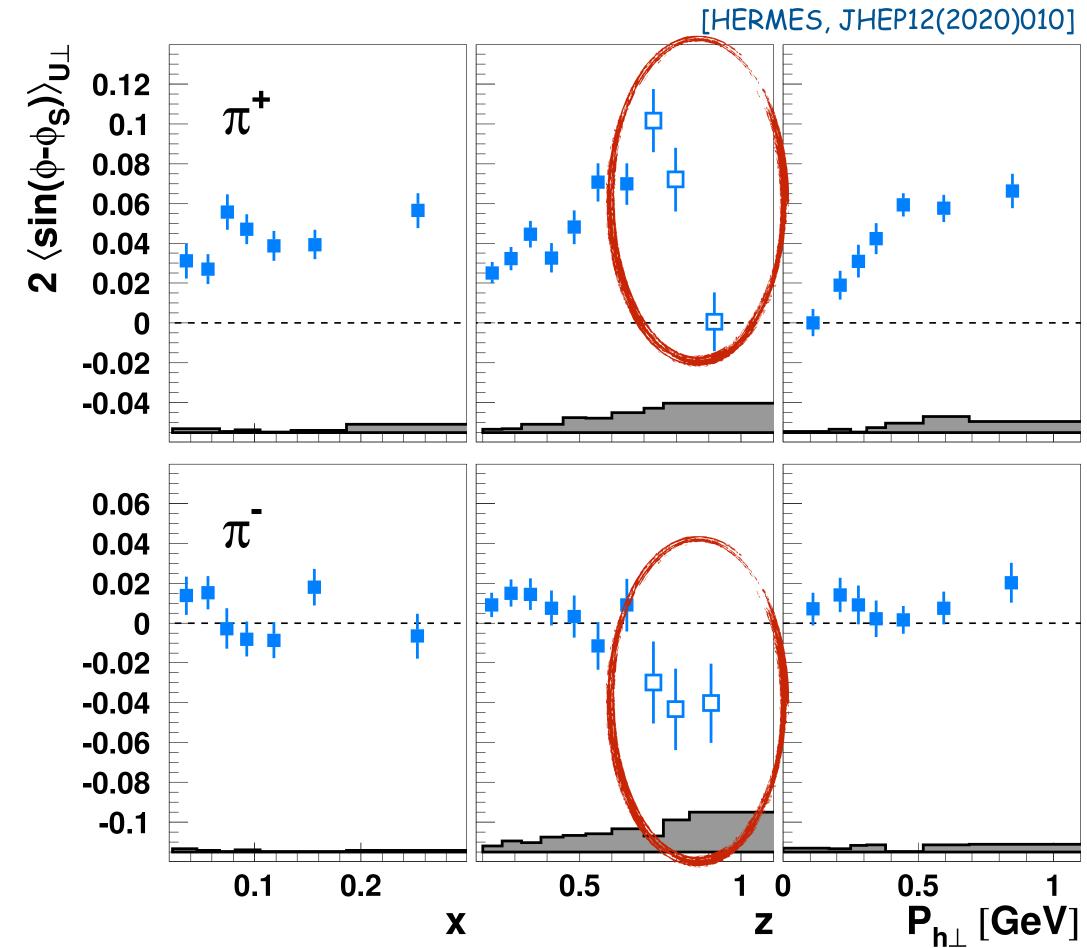
HADRON 2021

15

	U	m L	T
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
T	f_{1T}^{\perp}	g_{1T}	$oxed{h_1,h_{1T}^ot}$

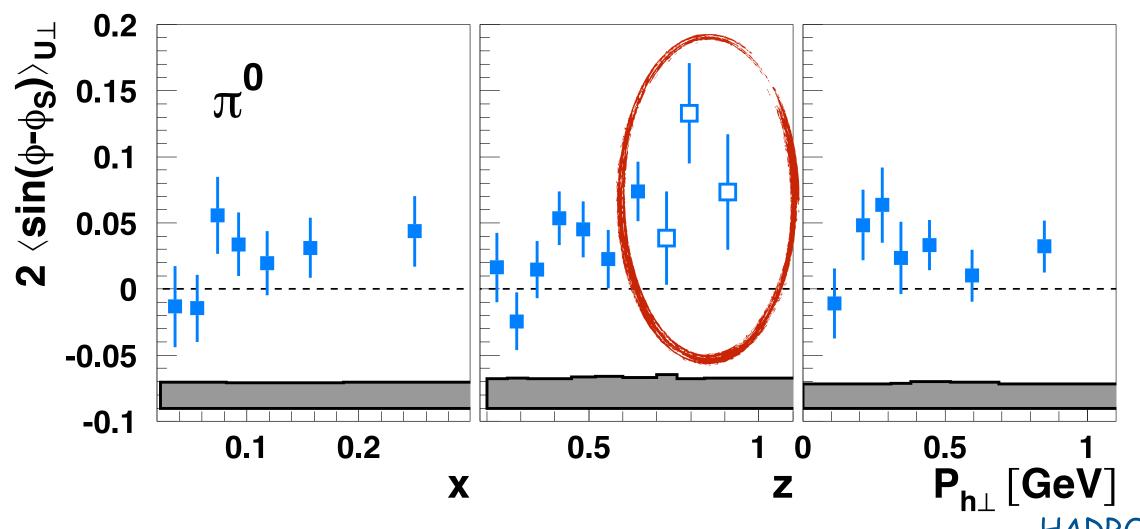


[A. Bacchetta et al.]



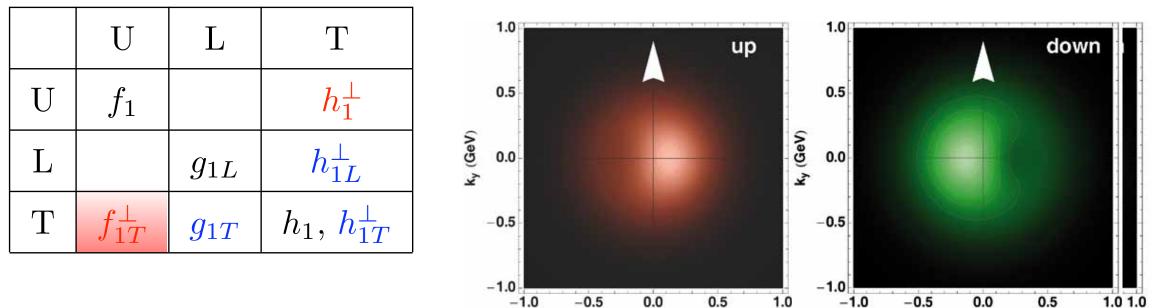
Sivers amplitudes for pions

- Sivers TMD probes correlation between nucleon spin and parton transverse momentum
- previous HERMES results focused on z < 0.7</p>
- high-z data probes transition region towards exclusive meson production but also increased sensitivity to struck quark's flavor



15

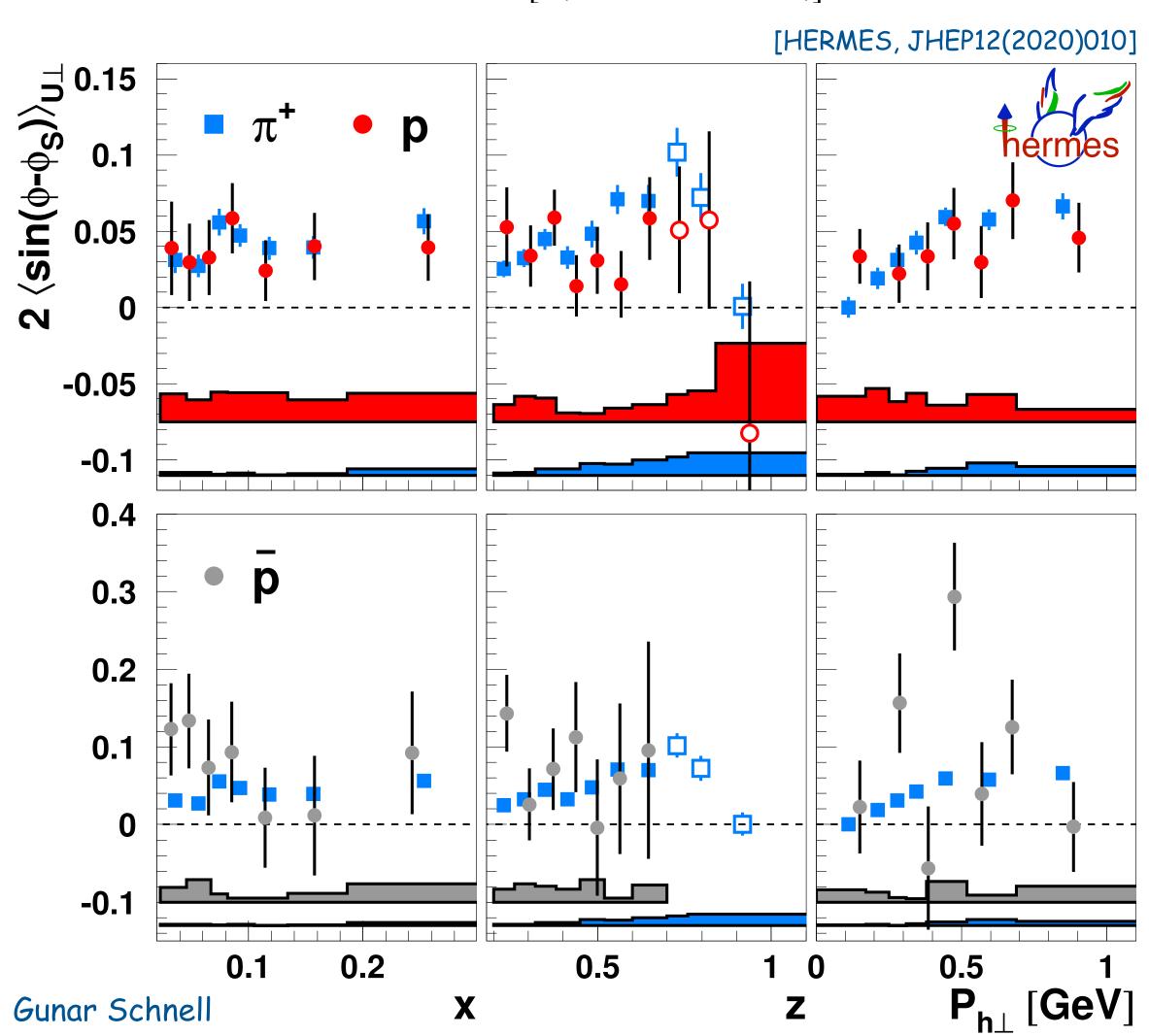
Gunar Schnell



[A. Bacchetta et al.]

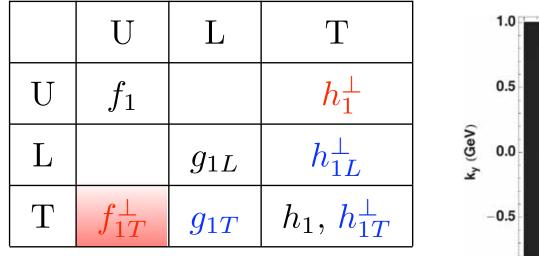
k_x (GeV)

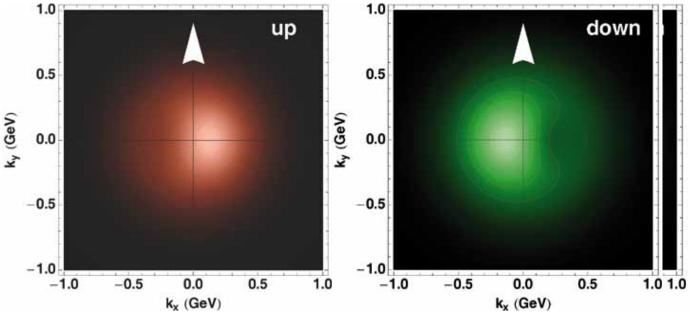
16



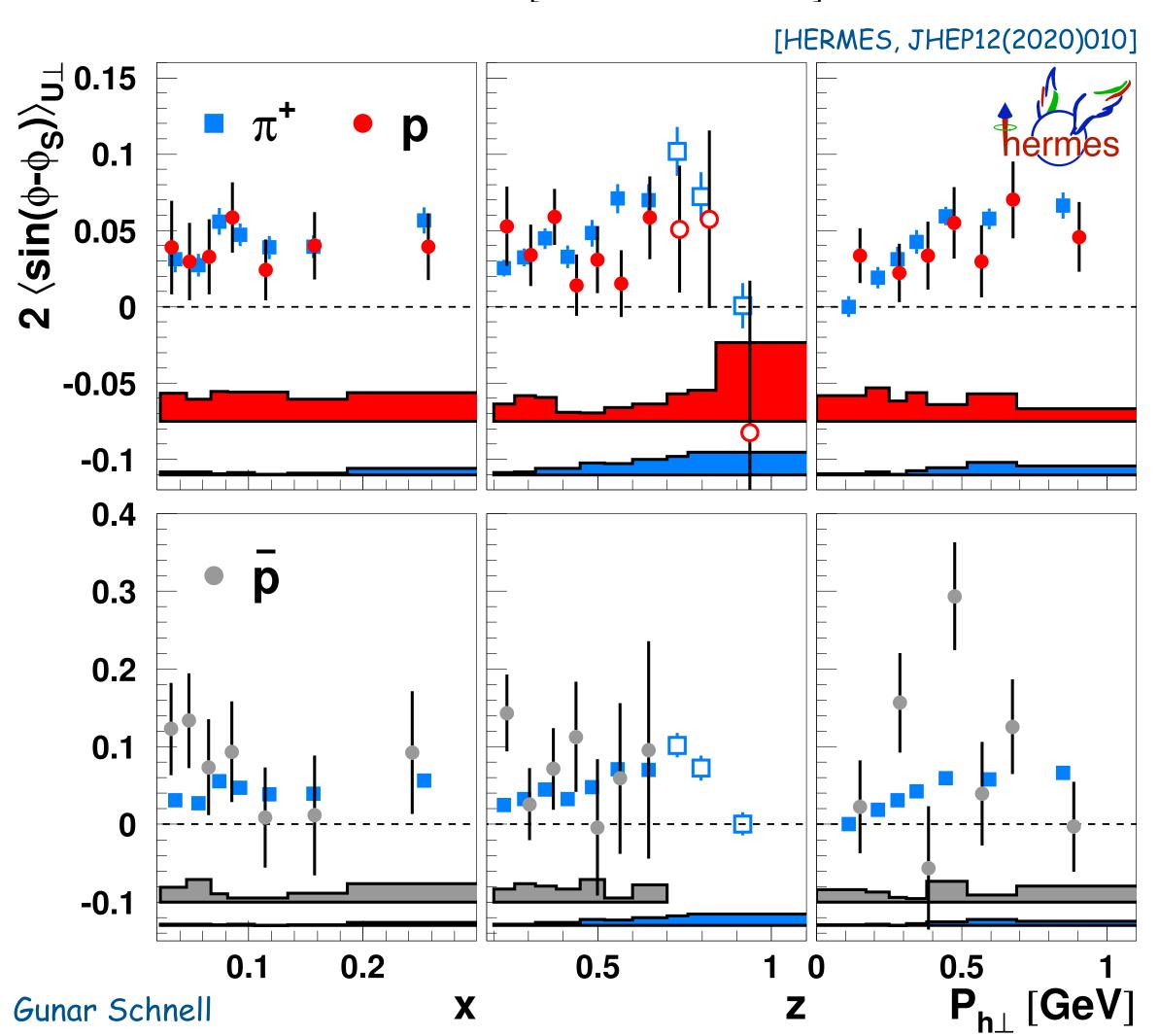
Sivers amplitudes pions vs. (anti)protons

• first-ever results for protons and anti-protons





[A. Bacchetta et al.]



Sivers amplitudes pions vs. (anti)protons

- first-ever results for protons and anti-protons
- similar-magnitude asymmetries for (anti)protons and pions
 - ⇒consequence of u-quark dominance in both cases?

HADRON 2021

16

	U	$oxed{L}$	m T
U	f_1		h_1^{\perp}
$oxed{L}$		g_{1L}	h_{1L}^{\perp}
Γ	f_{1T}^{\perp}	g_{1T}	$oxed{h_1, h_{1T}^ot}$

Gunar Schnell

$0.00 < P_{h\perp} \, [\text{GeV}] < 0.23 \quad 0.23 < P_{h\perp} \, [\text{GeV}] < 0.36 \quad 0.36 < P_{h\perp} \, [\text{GeV}] < 0.54 \quad 0.54 < P_{h\perp} \, [\text{GeV}] < 2.00$ $2 \left\langle \sin(\phi - \phi_{ m S}) ight angle_{ m U\perp}$ [JHEP12(2020)010] 0.2 0.2 0.1 -0.1 -0.2 0.2 0.49 -0.1 -0.2 0.2 0.1 -0.1 -0.2 0.2 0.2 0.2 0.2

Sivers amplitudes multi-dimensional analysis

- 3d analysis: 4x4x4 bins in $(x,z, P_{h\perp})$
 - reduced systematics

17

- disentangle correlations
- isolate phase-space region with large signal strength

	U	${ m L}$	${ m T}$
U	f_1		h_1^{\perp}
$oxed{L}$		g_{1L}	h_{1L}^{\perp}
T	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

Gunar Schnell

$0.00 < P_{h\perp} \, [\text{GeV}] < 0.23 \quad 0.23 < P_{h\perp} \, [\text{GeV}] < 0.36 \quad 0.36 < P_{h\perp} \, [\text{GeV}] < 0.54 \quad 0.54 < P_{h\perp} \, [\text{GeV}] < 2.00$ $2 \left\langle \sin(\phi - \phi_{\mathrm{S}}) ight angle_{\mathrm{U}}$ 0.2 0.2 0.1 -0.1 -0.2 0.2 < 0.49 -0.1 -0.2 0.2 0.1 -0.1 -0.2 0.2 0.2 0.2 0.2

Sivers amplitudes multi-dimensional analysis

- 3d analysis: 4x4x4 bins in $(x,z, P_{h\perp})$
 - reduced systematics

17

- disentangle correlations
- isolate phase-space region with large signal strength
- allows more detailed comparison with calculations

	U	L	T
U	f_1		h_1^{\perp}
$oxed{L}$		g_{1L}	h_{1L}^{\perp}
T	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

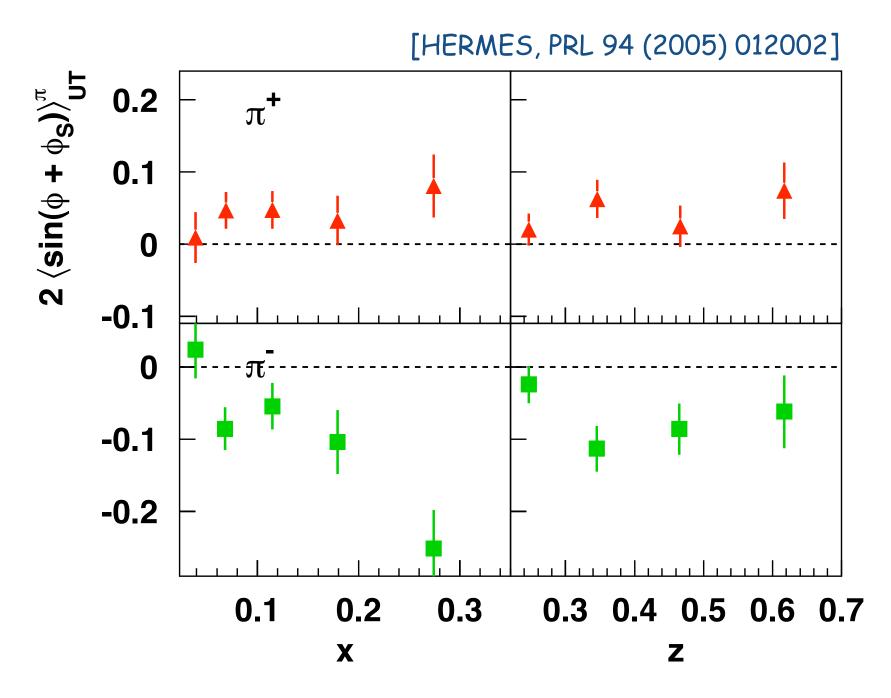
$0.00 < P_{h+}[GeV] < 0.23$ $0.23 < P_{h+}[GeV] < 0.36$ $0.36 < P_{h+}[GeV] < 0.54$ $0.54 < P_{h+}[GeV] < 2.00$ $2 \left\langle \sin(\phi - \phi_{\mathrm{S}}) ight angle_{\mathrm{U}}$ 0.2 0.1 0.2 0.1 -0.1 -0.2 0.2 < 0.49 -0.1 -0.2 0.2 -0.1 -0.2 0.2 0.2 0.2 0.2 X

Sivers amplitudes multi-dimensional analysis

- 3d analysis: 4x4x4 bins in $(x,z, P_{h\perp})$
 - reduced systematics
 - disentangle correlations
 - isolate phase-space region with large signal strength
- allows more detailed comparison with calculations
- accompanied by kinematic distribution to guide phenomenology*)

*) see, e.g., backup slides or supplemental material of JHEP12(2020)0210

	U	$oxed{L}$	$oxed{T}$
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^{\perp}

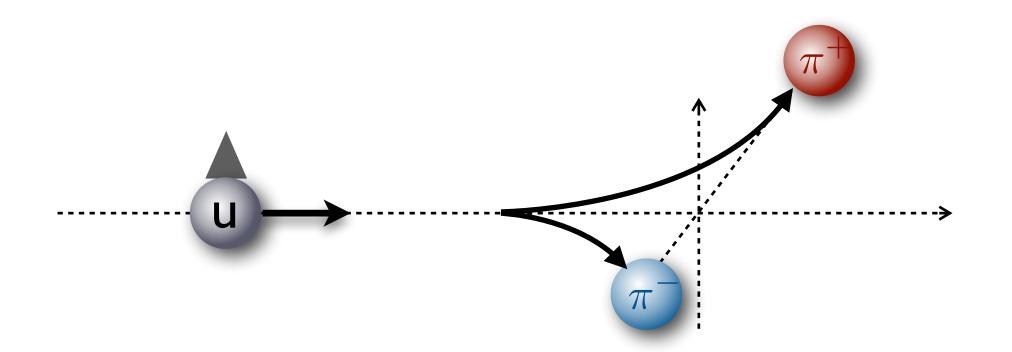


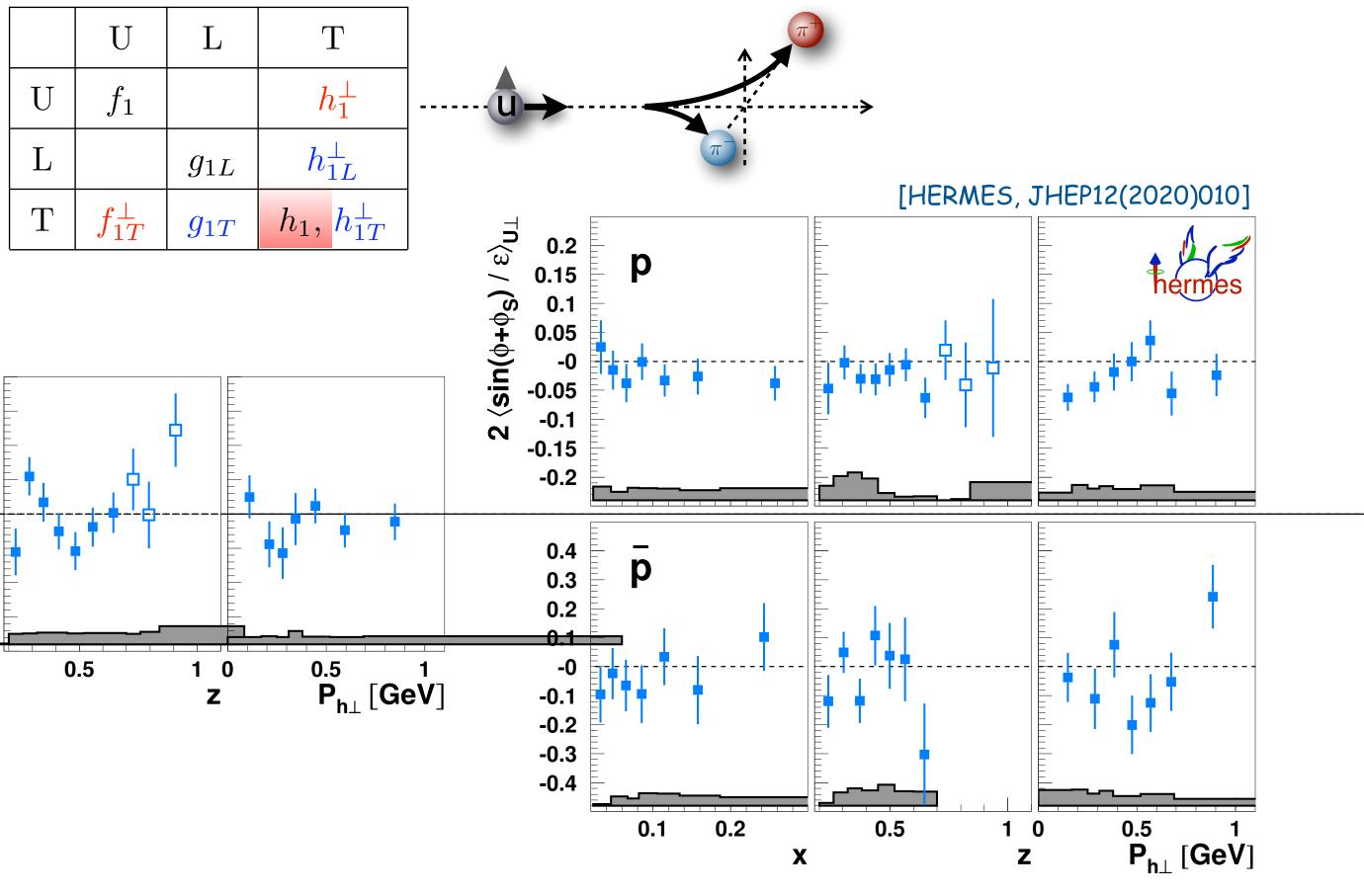
2005: First evidence from HERMES SIDIS on proton

Non-zero transversity
Non-zero Collins function

Transversity (Collins fragmentation)

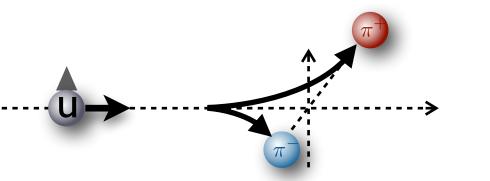
- significant in size and opposite in sign for charged pions
- disfavored Collins FF large and opposite in sign to favored one

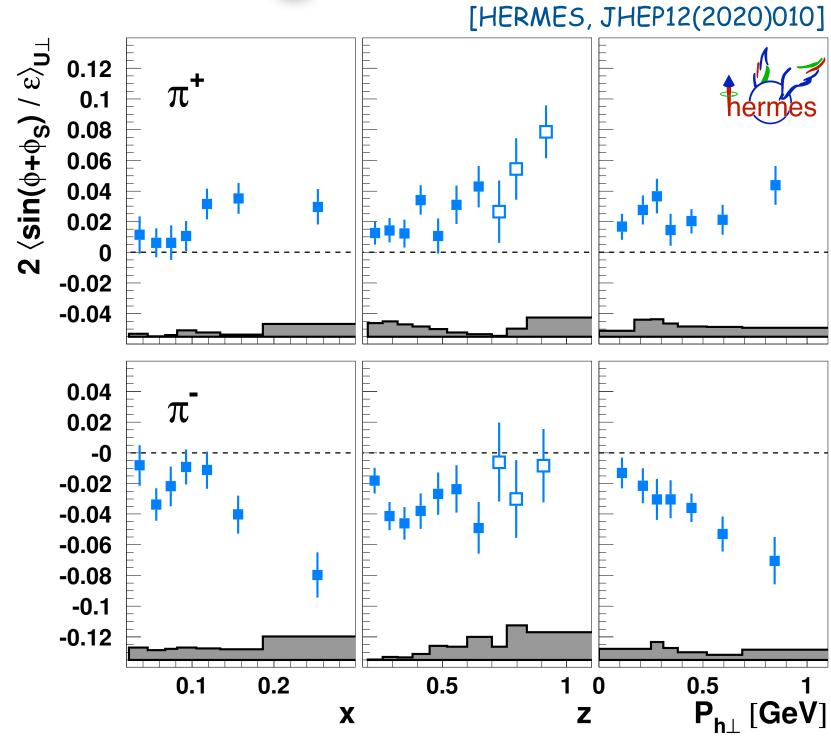




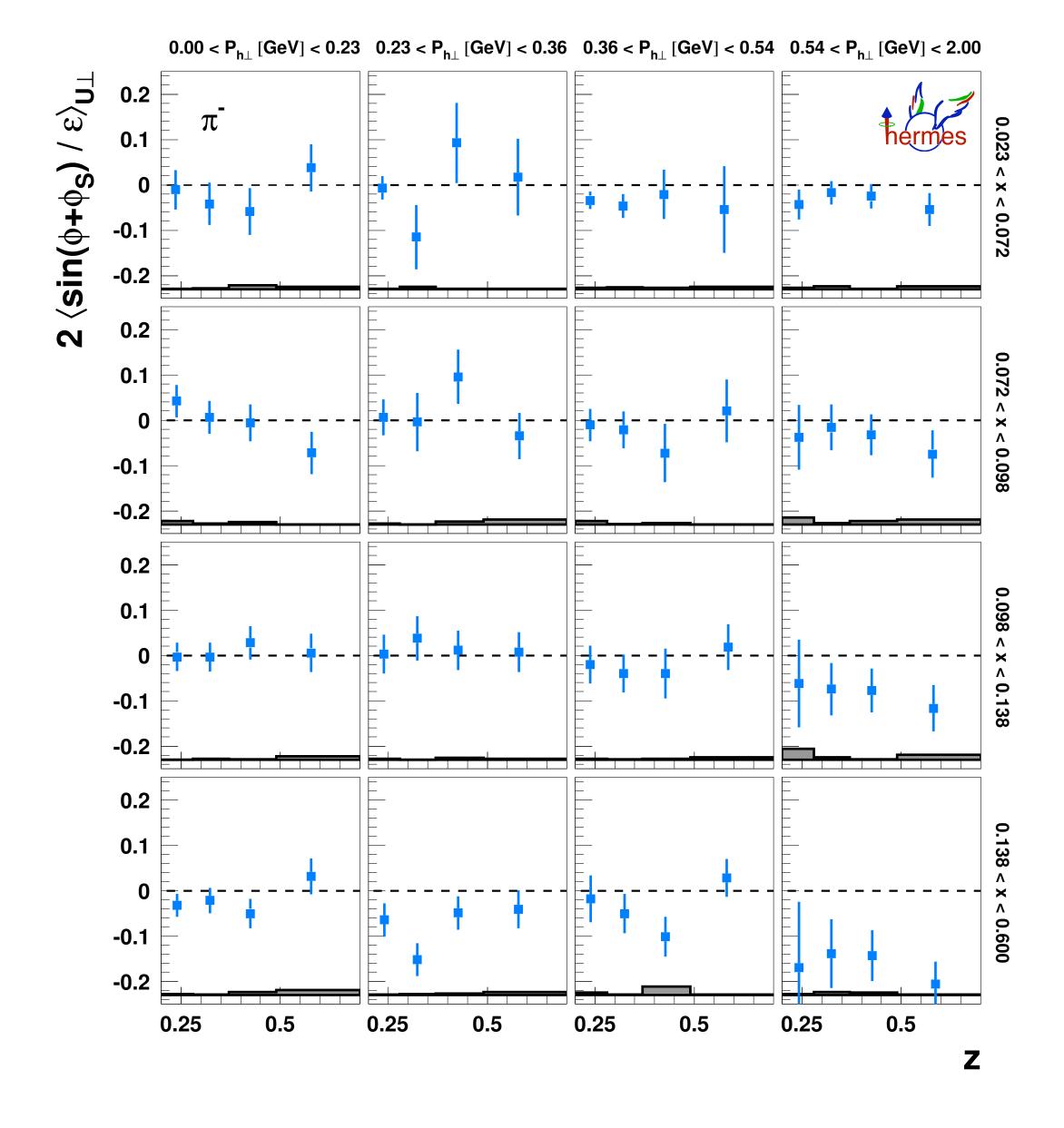
- first-ever results for (anti-)protons consistent with zero
 - → vanishing Collins effect for (spin-1/2) baryons?

	U	L	Γ
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

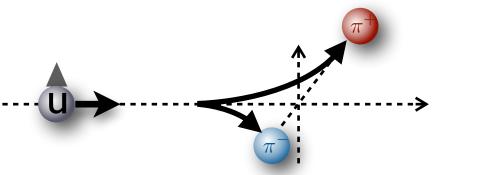


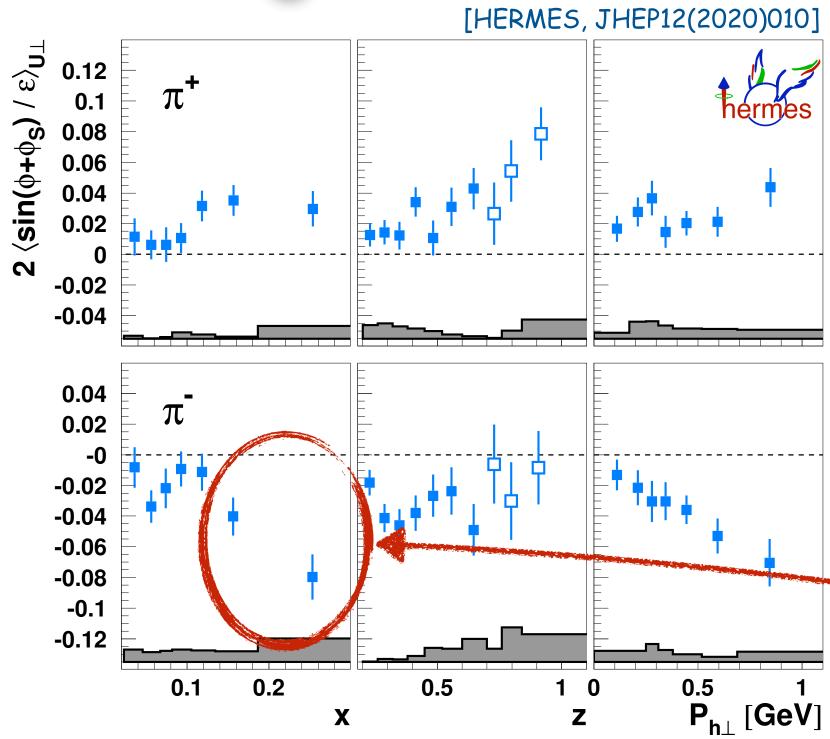


- first-ever results for (anti-)protons consistent with zero
 ⇒ vanishing Collins effect for (spin-1/2) baryons?
- analysis now performed in 3d



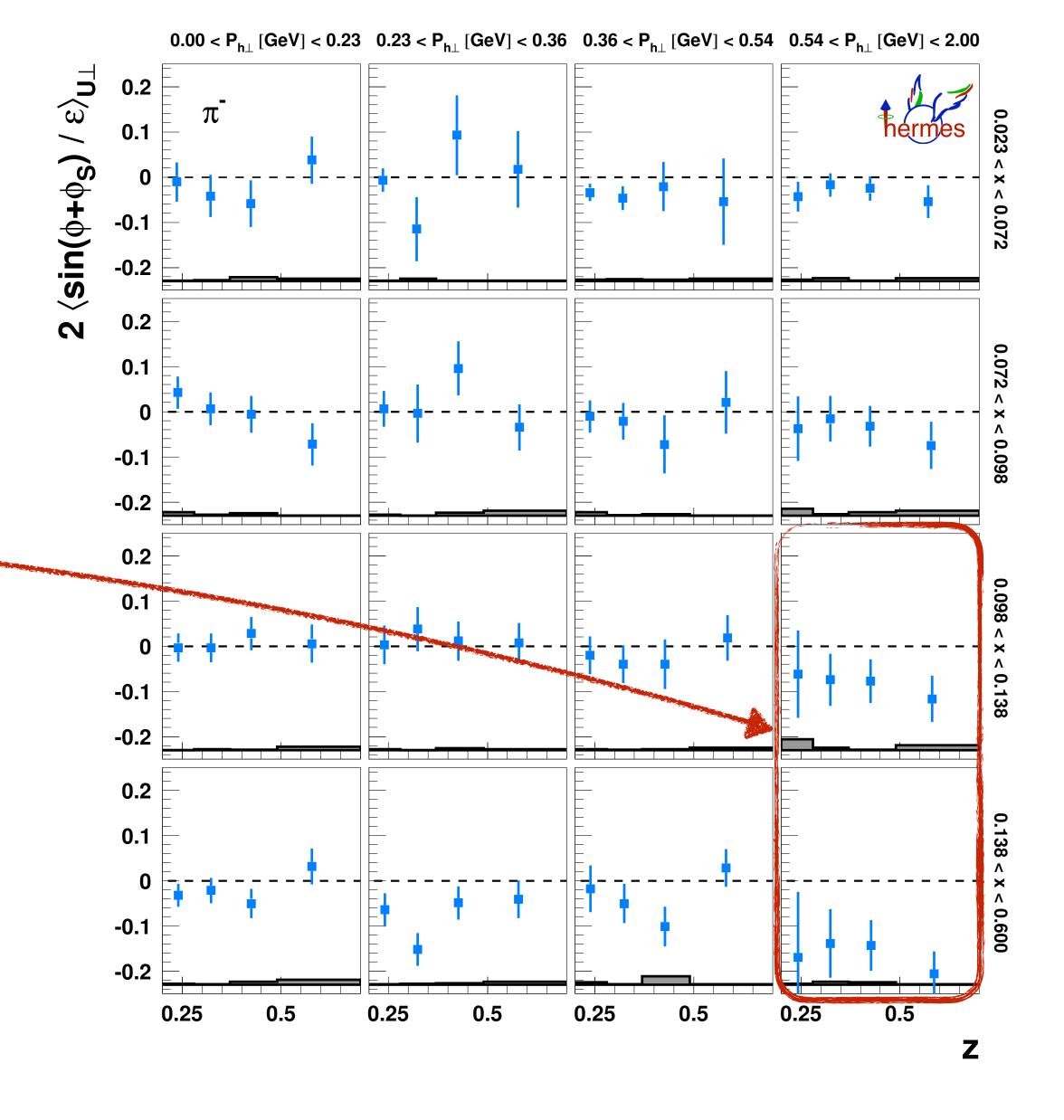
	U	L	${ m T}$
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
T	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp



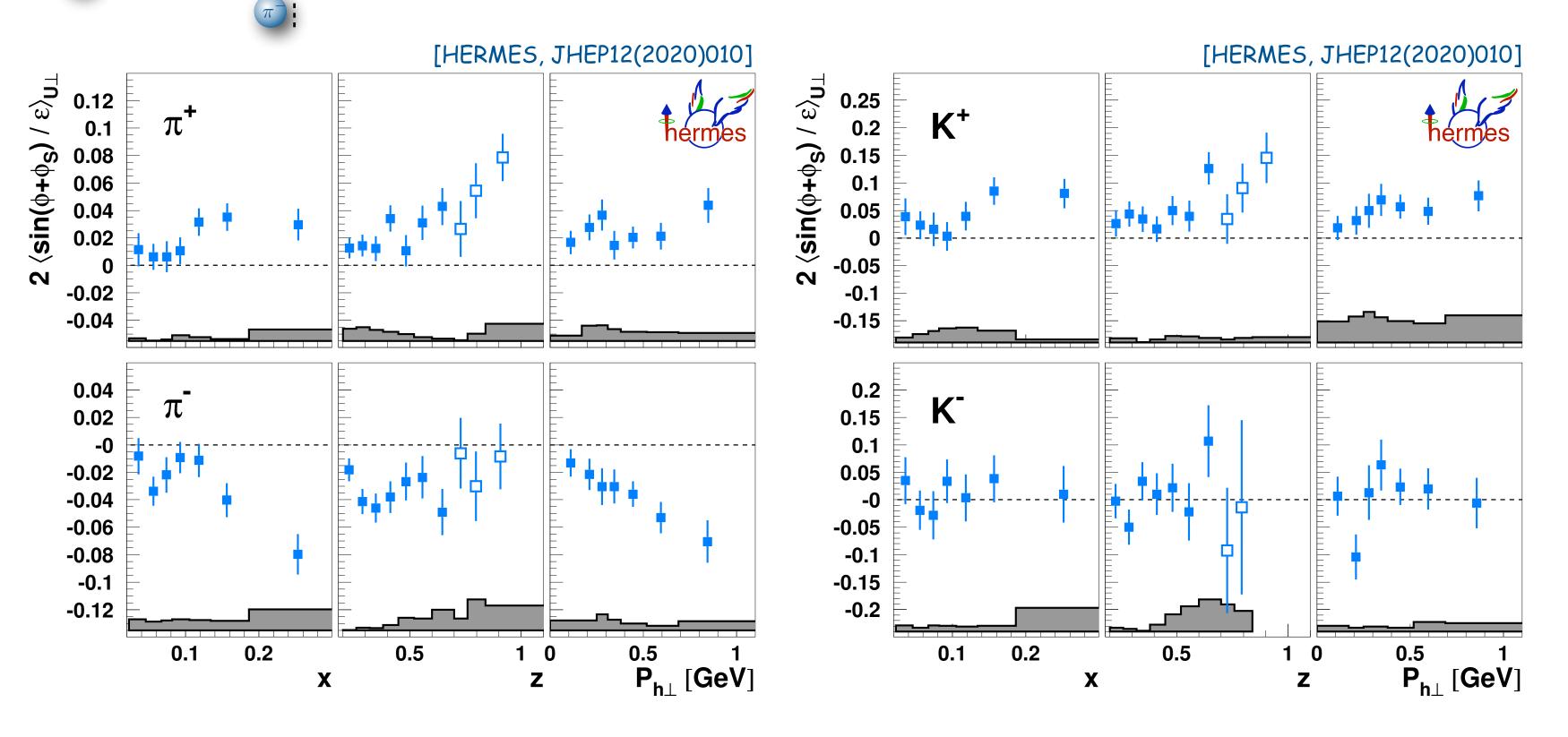


- first-ever results for (anti-)protons consistent with zero

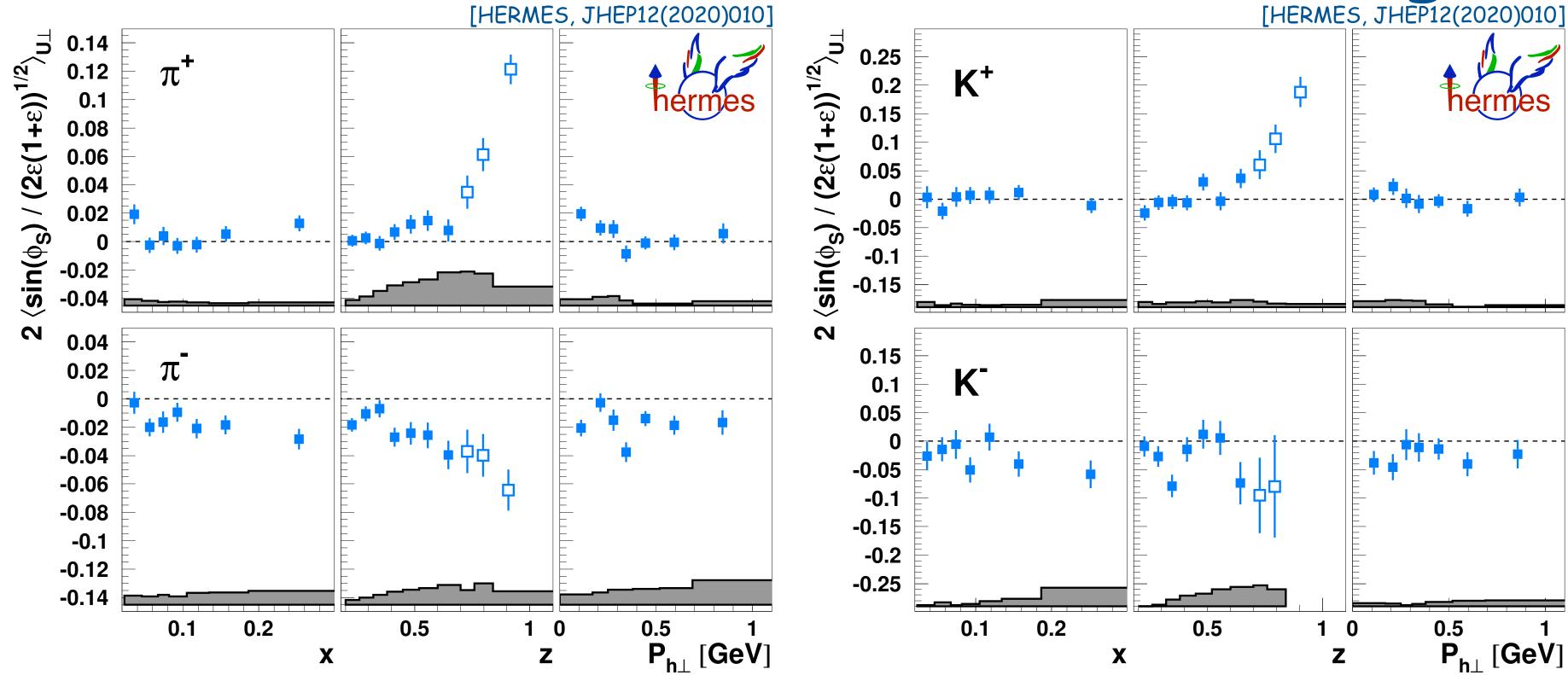
 → vanishing Collins effect for (spin-1/2) baryons?
- analysis now performed in 3d



	U	L	${ m T}$
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp



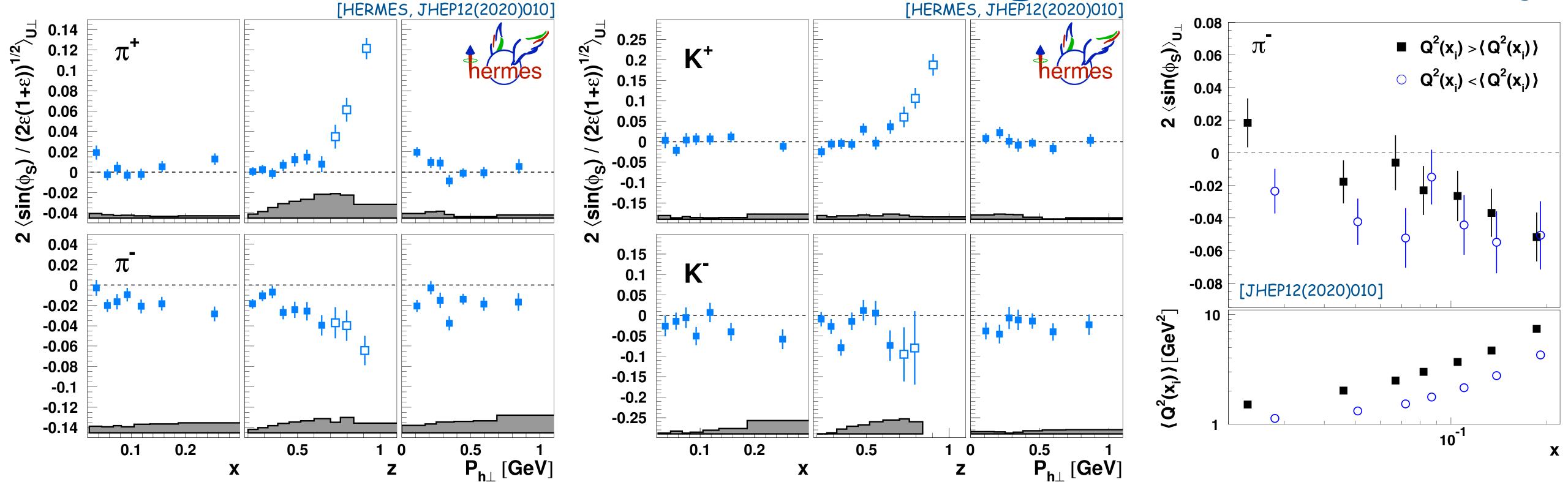
- results for (anti-)protons consistent with zero
 vanishing Collins effect for (spin-1/2) baryons?
- analysis now performed in 3d
- high-z region probes transition region to exclusive domain (with increasing amplitudes for positive pions and kaons)



[JHEP12(2020)010]

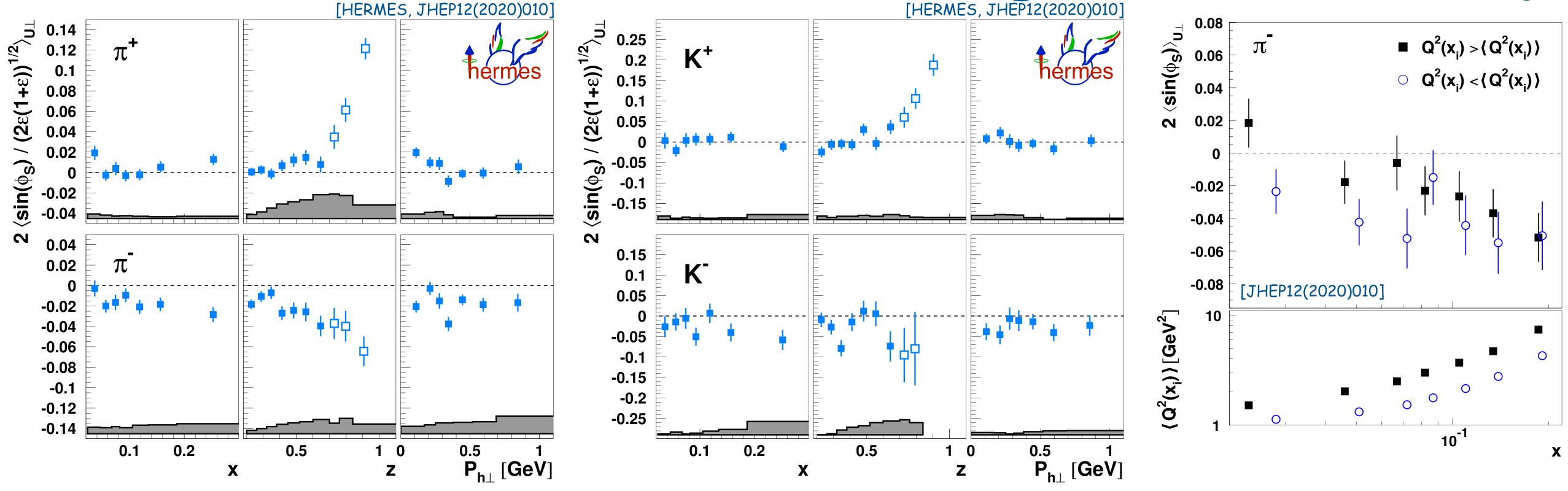
- clearly non-zero asymmetries with opposite sign for charged pions (Collins-like behavior)
- striking z dependence and in particular magnitude

subleading twist $-\langle \sin(\phi_s)\rangle_{UT}$

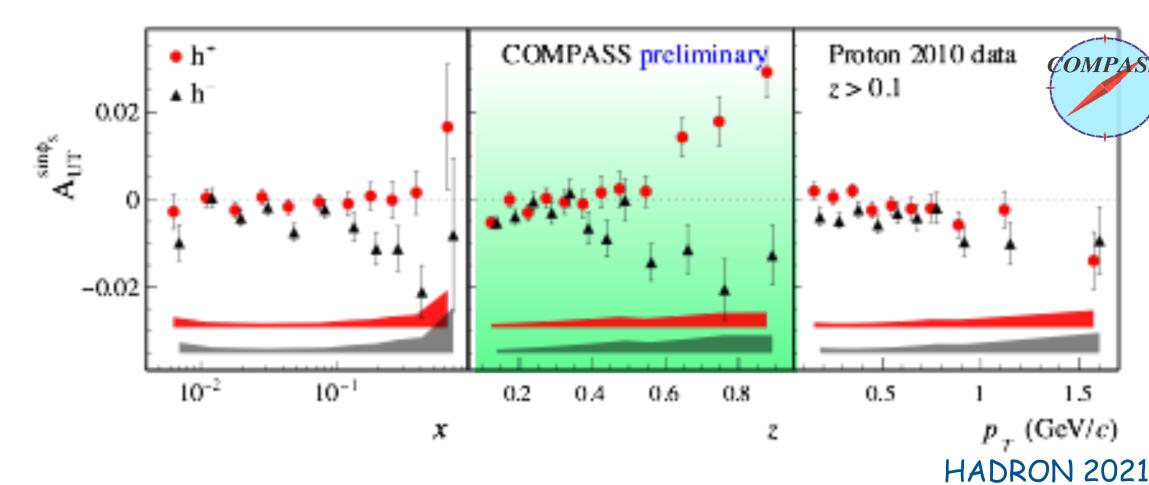


- clearly non-zero asymmetries with opposite sign for charged pions (Collins-like behavior)
- striking z dependence and in particular magnitude
- hint of Q suppression

subleading twist $-\langle \sin(\phi_s)\rangle_{UT}$

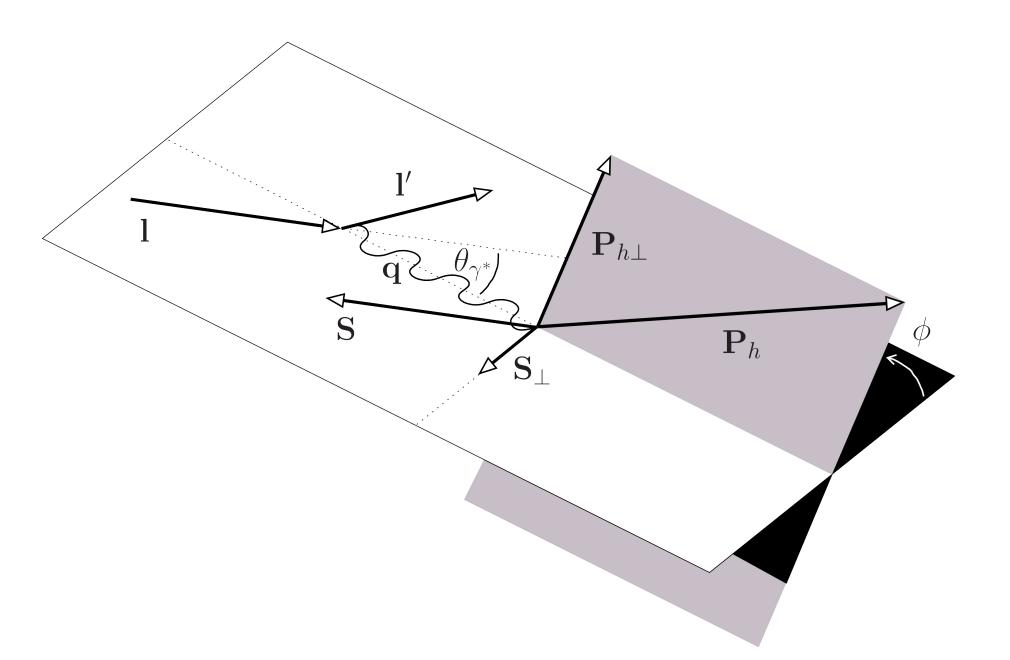


- clearly non-zero asymmetries with opposite sign for charged pions (Collins-like behavior)
- striking z dependence and in particular magnitude
- hint of Q suppression
- similar z behaviour seen at COMPASS



excluding transverse polarization:

$$\begin{split} \frac{\mathrm{d}\sigma^h}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}P_{h\perp}^2\,\mathrm{d}\phi} &= \frac{2\pi\alpha^2}{xyQ^2}\frac{y^2}{2(1-\epsilon)}\left(1+\frac{\gamma^2}{2x}\right) \\ \left\{F_{UU,T}^h + \epsilon F_{UU,L}^h + \lambda\Lambda\sqrt{1-\epsilon^2}F_{LL}^h \right. \\ &+ \sqrt{2\epsilon}\left[\lambda\sqrt{1-\epsilon}\,F_{LU}^{h,\sin\phi} + \Lambda\sqrt{1+\epsilon}\,F_{UL}^{h,\sin\phi}\right]\sin\phi \\ &+ \sqrt{2\epsilon}\left[\lambda\Lambda\sqrt{1-\epsilon}\,F_{LL}^{h,\cos\phi} + \sqrt{1+\epsilon}\,F_{UU}^{h,\cos\phi}\right]\cos\phi \\ &+ \Lambda\epsilon\,F_{UL}^{h,\sin2\phi}\sin2\phi + \epsilon\,F_{UU}^{h,\cos2\phi}\cos2\phi \end{split} \right\} \end{split}$$



$$A_{LU}^{h} \equiv \frac{\sigma_{+-}^{h} + \sigma_{++}^{h} - \sigma_{-+}^{h} - \sigma_{--}^{h}}{\sigma_{+-}^{h} + \sigma_{++}^{h} + \sigma_{-+}^{h} + \sigma_{--}^{h}}$$

beam-helicity asymmetry

$$\frac{M_h}{Mz}h_1^{\perp} ilde{E} \,\oplus\, xg^{\perp}D_1 \,\oplus\, \frac{M_h}{Mz}f_1 ilde{G}^{\perp} \,\oplus\, xeH_1^{\perp}$$

- naive-T-odd Boer-Mulders (BM) function coupled to a twist-3 FF
 - signs of BM from unpolarized SIDIS
 - little known about interaction-dependent FF

beam-helicity asymmetry

$$\frac{M_h}{Mz}h_1^{\perp} ilde{E} \oplus extbf{x} extbf{g}^{\perp}D_1 \oplus \frac{M_h}{Mz}f_1 ilde{G}^{\perp} \oplus extbf{x}eH_1^{\perp}$$

- naive-T-odd Boer-Mulders (BM) function coupled to a twist-3 FF
 - signs of BM from unpolarized SIDIS
 - little known about interaction-dependent FF
- little known about naive-T-odd g^{\perp} ; singled out in A_{LU} in jet production

beam-helicity asymmetry

$$\frac{M_h}{Mz}h_1^{\perp} \tilde{E} \oplus xg^{\perp}D_1 \oplus \frac{M_h}{Mz}f_1 \tilde{G}^{\perp} \oplus xeH_1^{\perp}$$

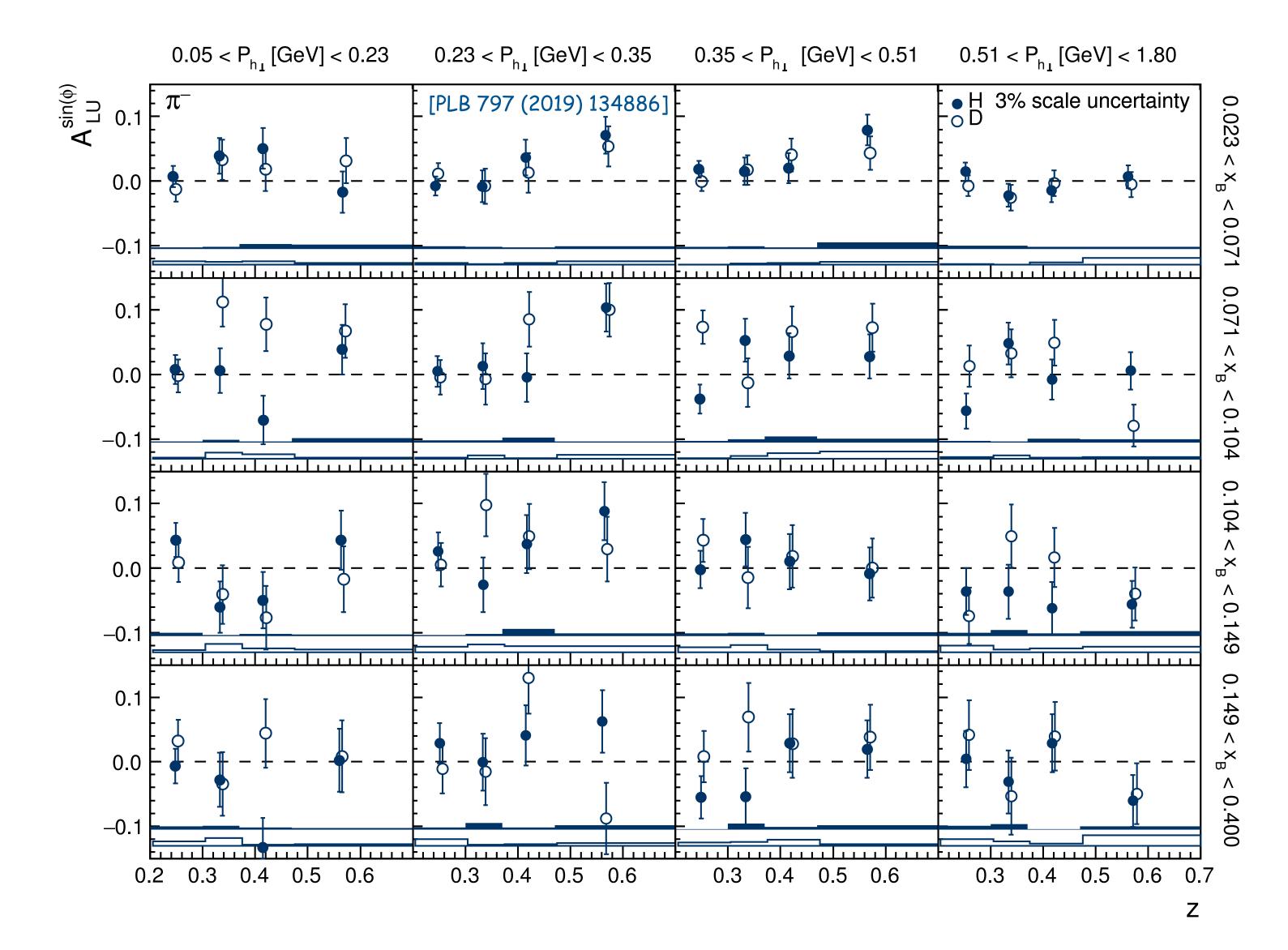
- naive-T-odd Boer-Mulders (BM) function coupled to a twist-3 FF
 - signs of BM from unpolarized SIDIS
 - little known about interaction-dependent FF
- little known about naive-T-odd g^{\perp} ; singled out in A_{LU} in jet production
- large unpolarized f₁, coupled to interaction-dependent FF

beam-helicity asymmetry

$$\frac{M_h}{Mz}h_1^{\perp} \tilde{E} \oplus xg^{\perp}D_1 \oplus \frac{M_h}{Mz}f_1 \tilde{G}^{\perp} \oplus xeH_1^{\perp}$$

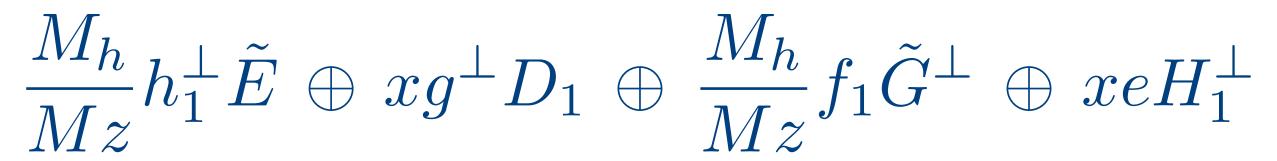
- naive-T-odd Boer-Mulders (BM) function coupled to a twist-3 FF
 - signs of BM from unpolarized SIDIS
 - little known about interaction-dependent FF
- little known about naive-T-odd g^{\perp} ; singled out in A_{LU} in jet production
- large unpolarized f₁, coupled to interaction-dependent FF
- ullet twist-3 e survives integration over $P_{h\perp}$; here coupled to Collins FF
 - \bullet e linked to the pion-nucleon σ -term
 - interpreted as color force (from remnant) on transversely polarized quarks at the moment of being struck by virtual photon

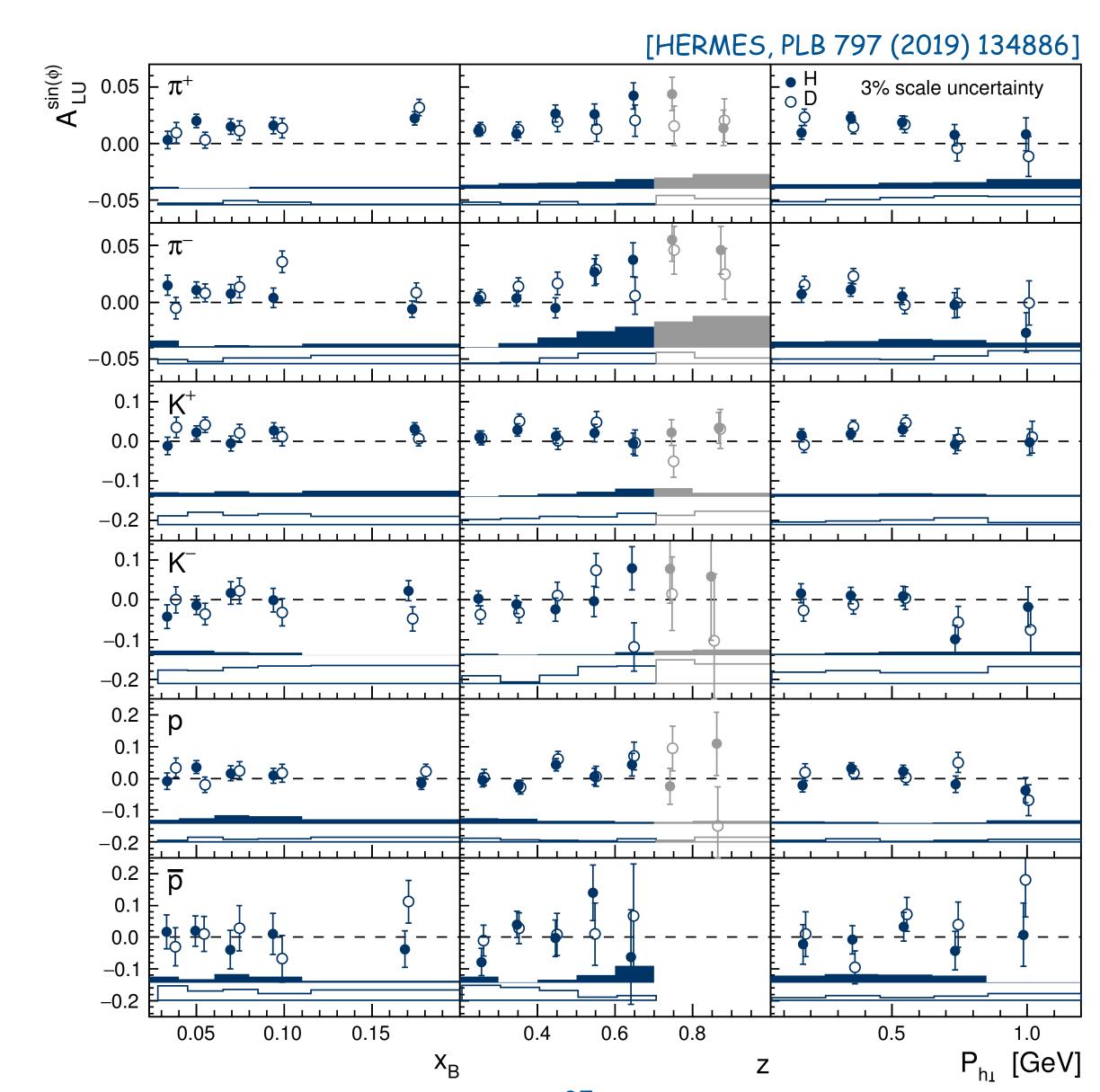
3d beam-helicity asymmetry for π^-



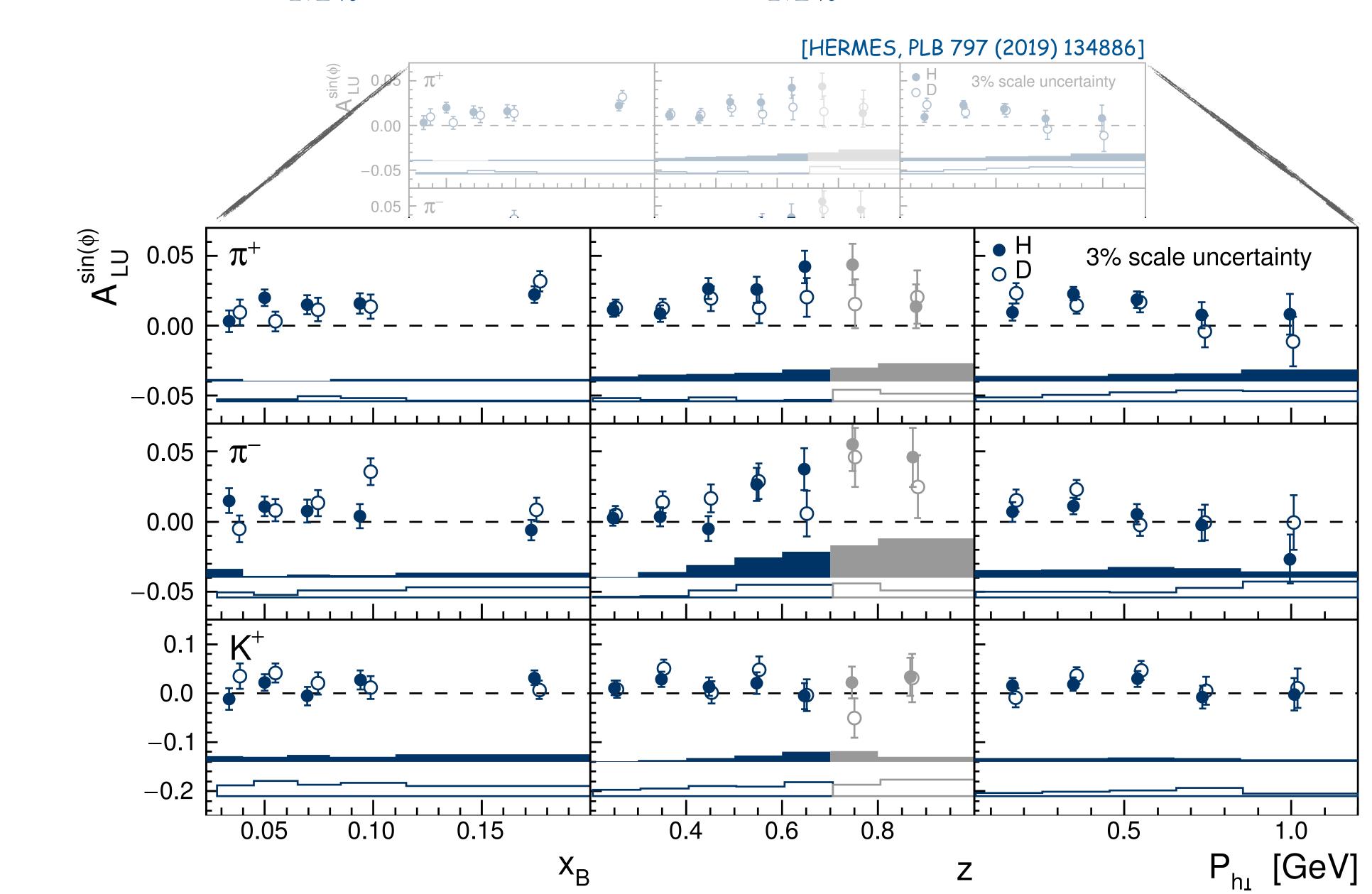
most comprehensive presentation, for discussion use 1d binning

Gunar Schnell 24 HADRON 2021

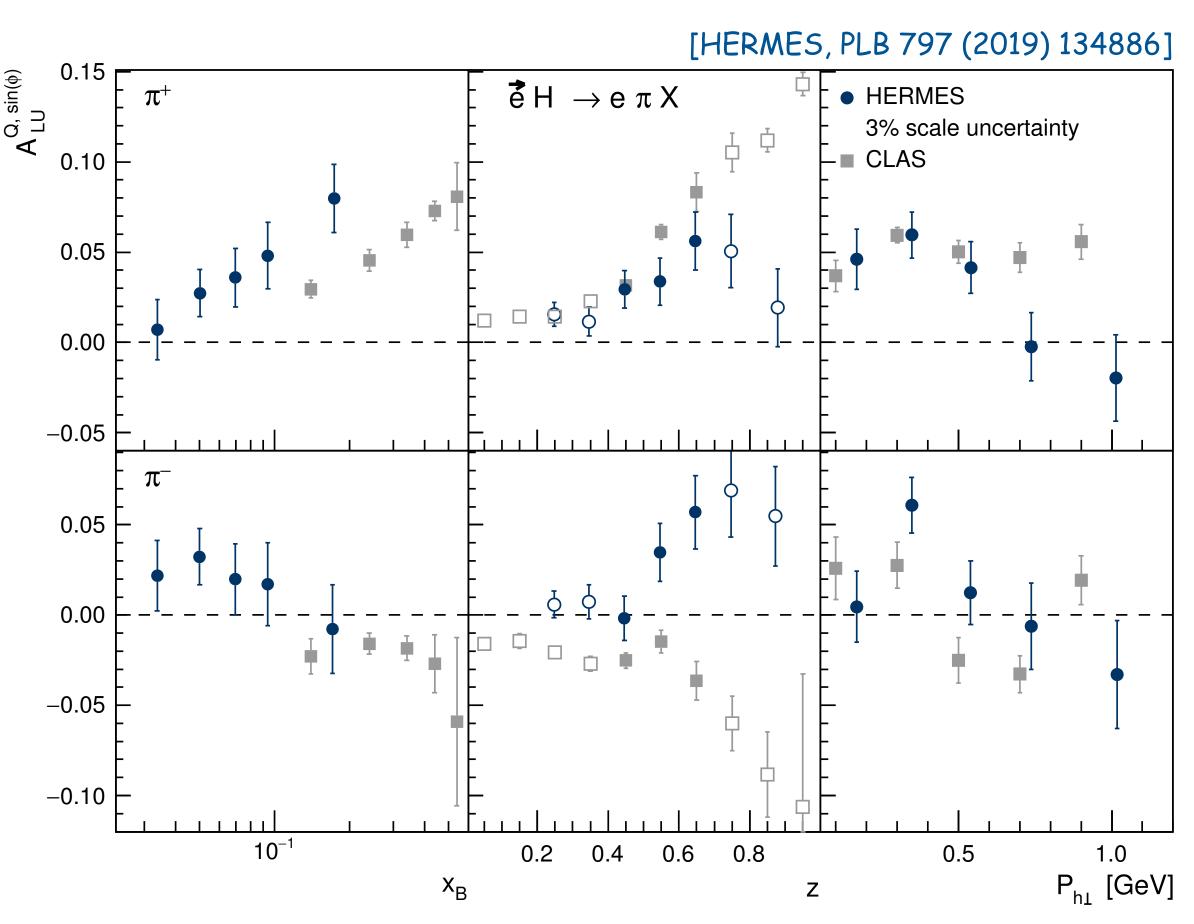




$$\frac{M_h}{Mz}h_1^{\perp}\tilde{E} \oplus xg^{\perp}D_1 \oplus \frac{M_h}{Mz}f_1\tilde{G}^{\perp} \oplus xeH_1^{\perp}$$

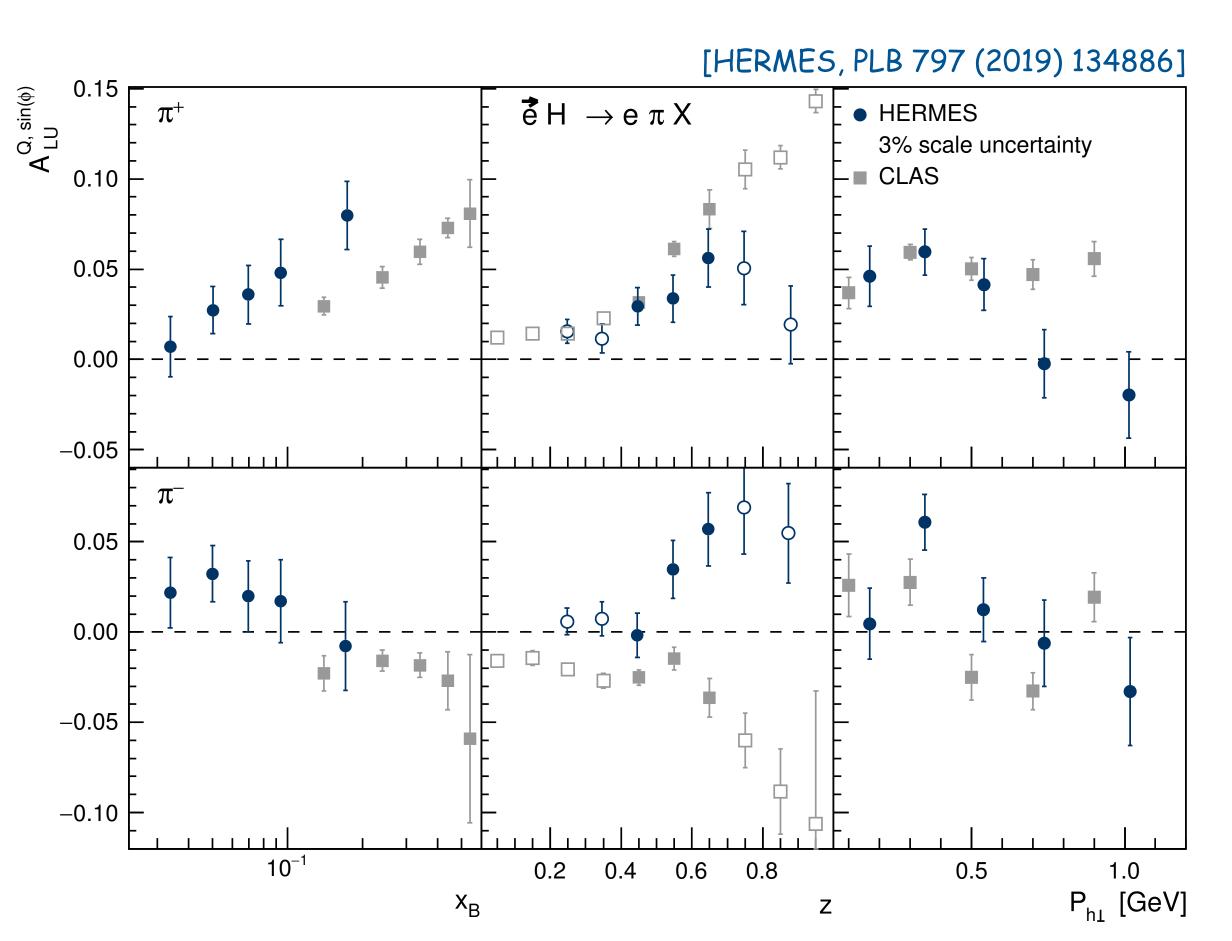


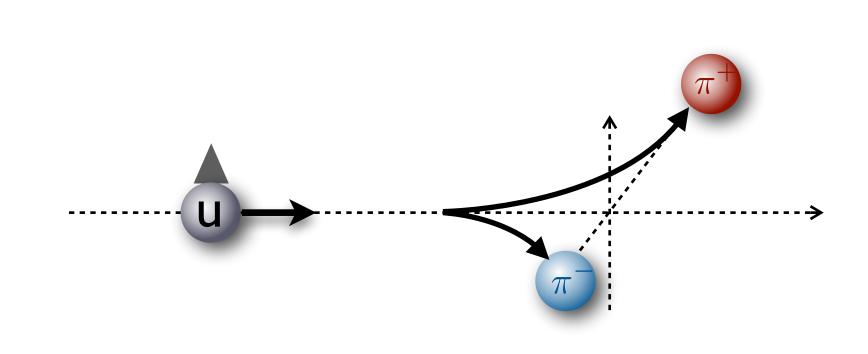
$$\frac{M_h}{Mz}h_1^{\perp} ilde{E} \oplus xg^{\perp}D_1 \oplus \frac{M_h}{Mz}f_1 ilde{G}^{\perp} \oplus xeH_1^{\perp}$$



• opposite behavior at HERMES/CLAS of negative pions in z projection due to different x-range probed

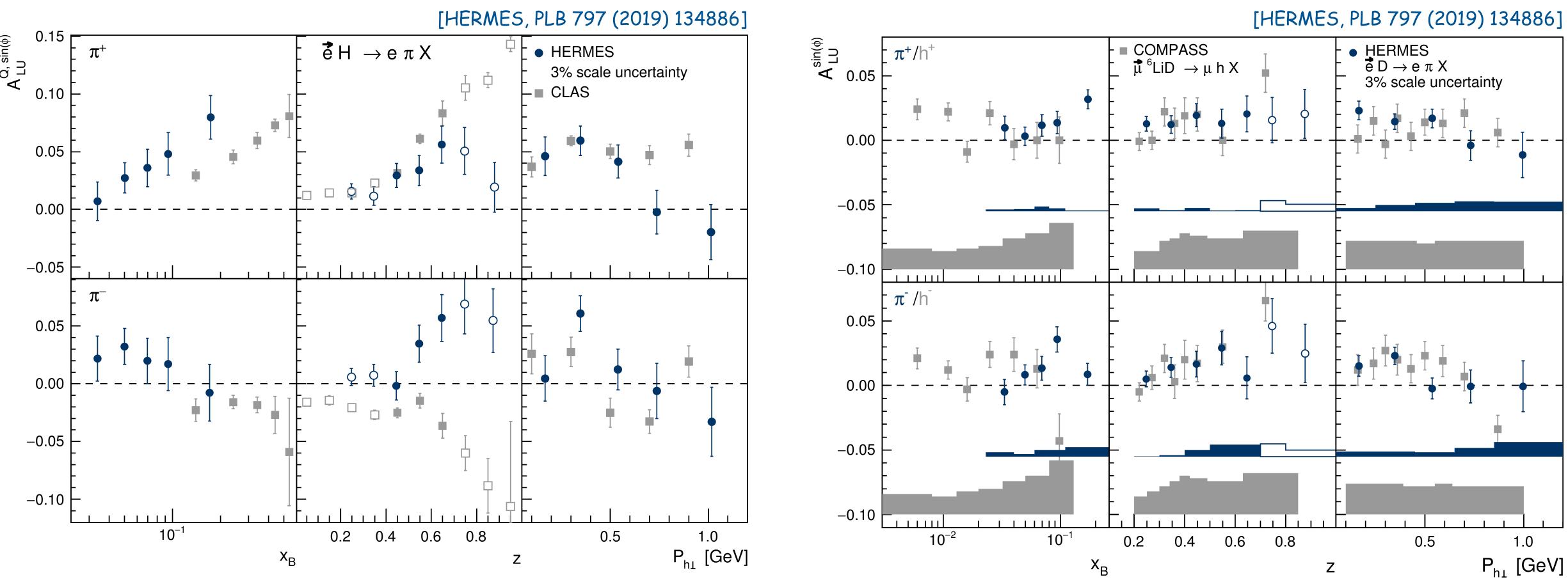
$$\frac{M_h}{Mz}h_1^{\perp} ilde{E} \oplus xg^{\perp}D_1 \oplus \frac{M_h}{Mz}f_1 ilde{G}^{\perp} \oplus xeH_1^{\perp}$$





- opposite behavior at HERMES/CLAS of negative pions in z projection due to different x-range probed
- CLAS more sensitive to $e(x) \otimes Collins$ term due to higher x probed?

$$\frac{M_h}{Mz}h_1^{\perp} ilde{E} \oplus xg^{\perp}D_1 \oplus \frac{M_h}{Mz}f_1 ilde{G}^{\perp} \oplus xeH_1^{\perp}$$



- opposite behavior at HERMES/CLAS of negative pions in z projection due to different x-range probed
- CLAS more sensitive to $e(x) \otimes Collins$ term due to higher x probed?
- consistent behavior for charged pions / hadrons at HERMES / COMPASS for isoscalar targets

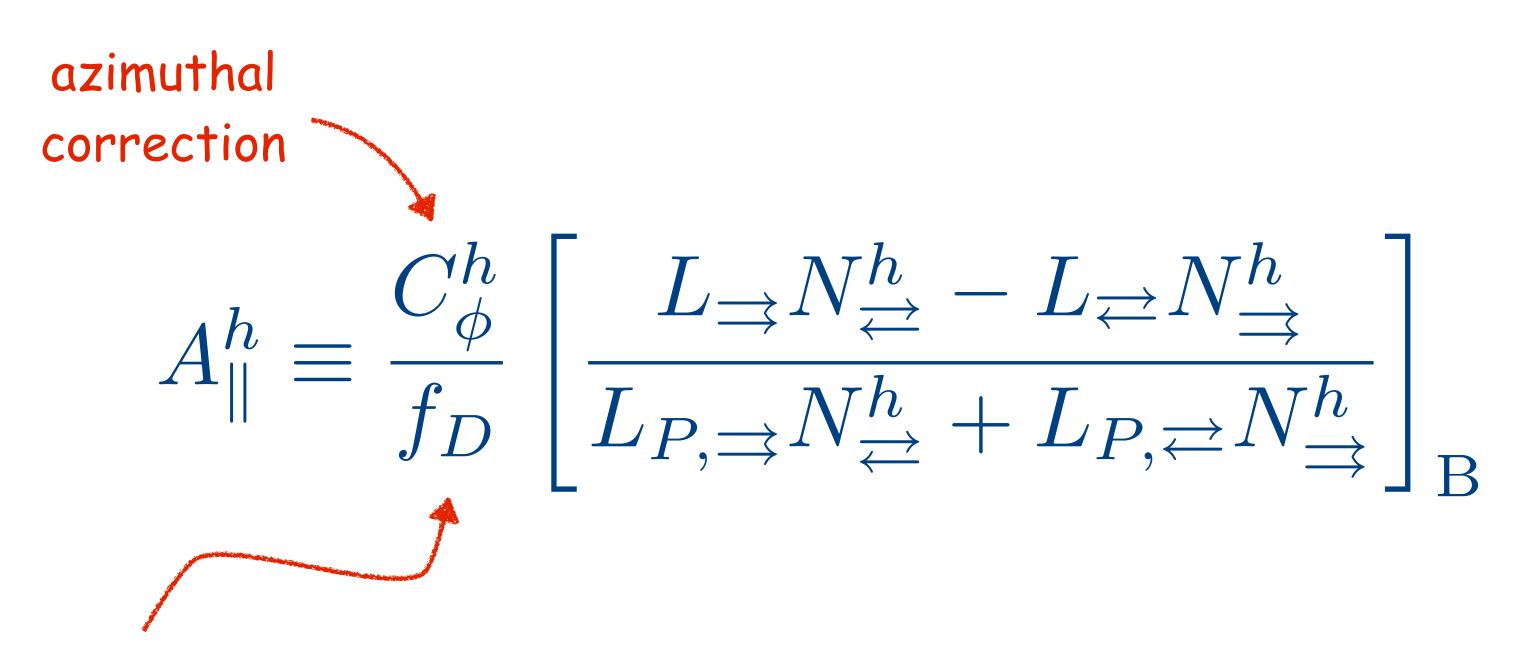
conclusions

- HERMES continues producing results long after its shut down
- latest publications provide 3-dimensional presentations of longitudinal and transverse
 SSA and DSA
 - ompletes the TMD analyses of single-hadron production
 - multi-d analyses not only important to reduce experimental systematics but also to permit the isolation of the phase space of interest
 - several significant leading-twist spin-momentum correlations (Sivers, Collins, worm-gear) and surprising twist-3 effects
 - by now, basically all asymmetries (except one: A_{UL}) extracted simultaneously in three or even four dimensions a rich data set on transverse-momentum distributions
- complementary to data from other facilities

backup slides

$$A_{\parallel}^{h} \equiv \frac{C_{\phi}^{h}}{f_{D}} \left[\frac{L_{\Rightarrow}N_{\rightleftharpoons}^{h} - L_{\rightleftharpoons}N_{\Rightarrow}^{h}}{L_{P,\Rightarrow}N_{\rightleftharpoons}^{h} + L_{P,\rightleftharpoons}N_{\Rightarrow}^{h}} \right]_{B}$$

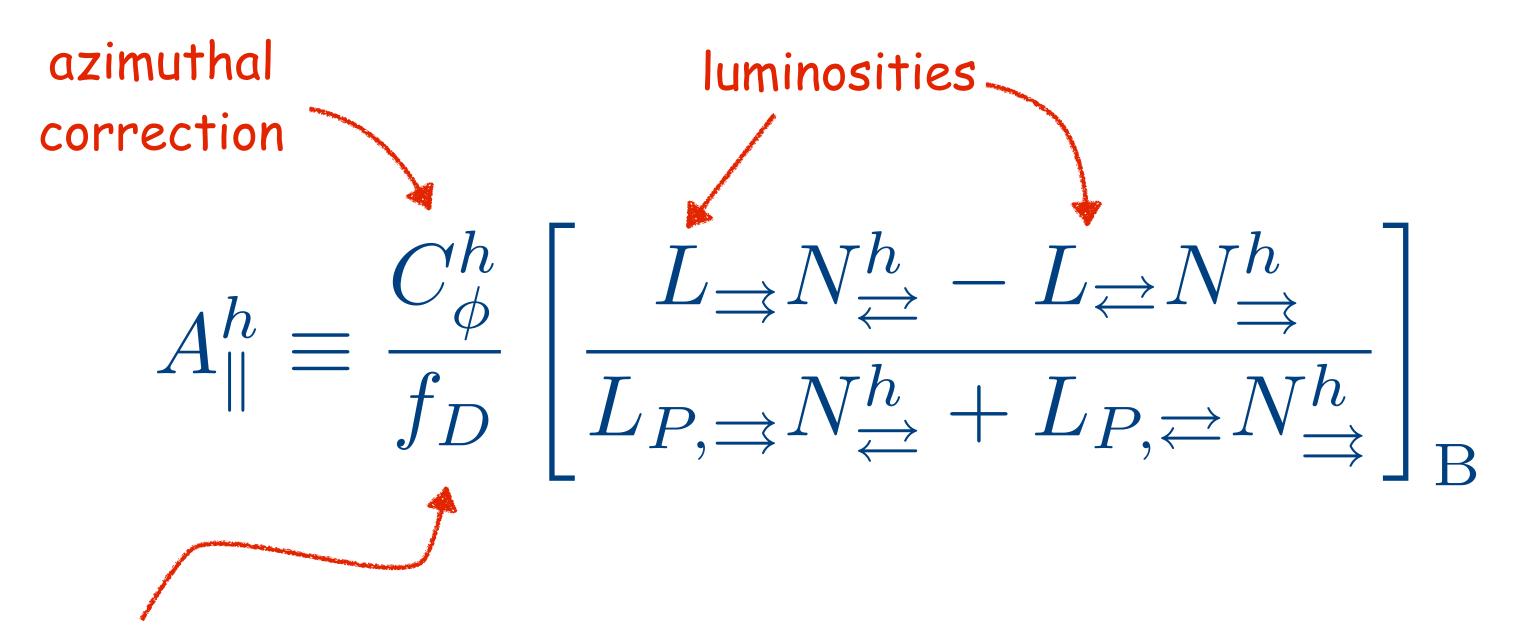
azimuthal correction
$$A_{\parallel}^{h} \equiv \frac{C_{\phi}^{h}}{f_{D}} \left[\frac{L_{\Rightarrow}N_{\rightleftharpoons}^{h} - L_{\rightleftharpoons}N_{\Rightarrow}^{h}}{L_{P,\Rightarrow}N_{\rightleftharpoons}^{h} + L_{P,\rightleftharpoons}N_{\Rightarrow}^{h}} \right]_{\mathrm{B}}$$



nucleon-in-nucleus

depolarization factor

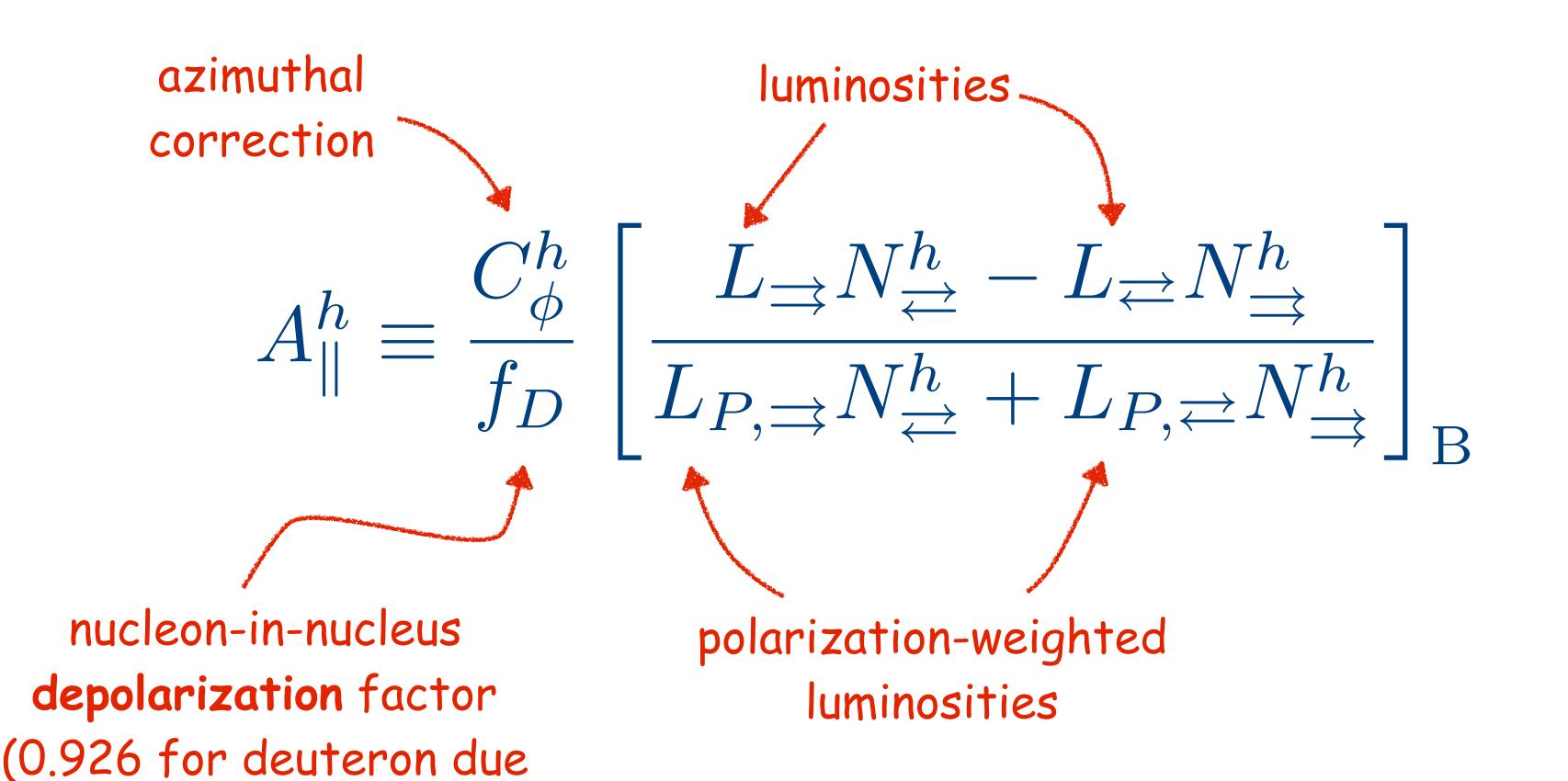
(0.926 for deuteron due
to D-state admixture)



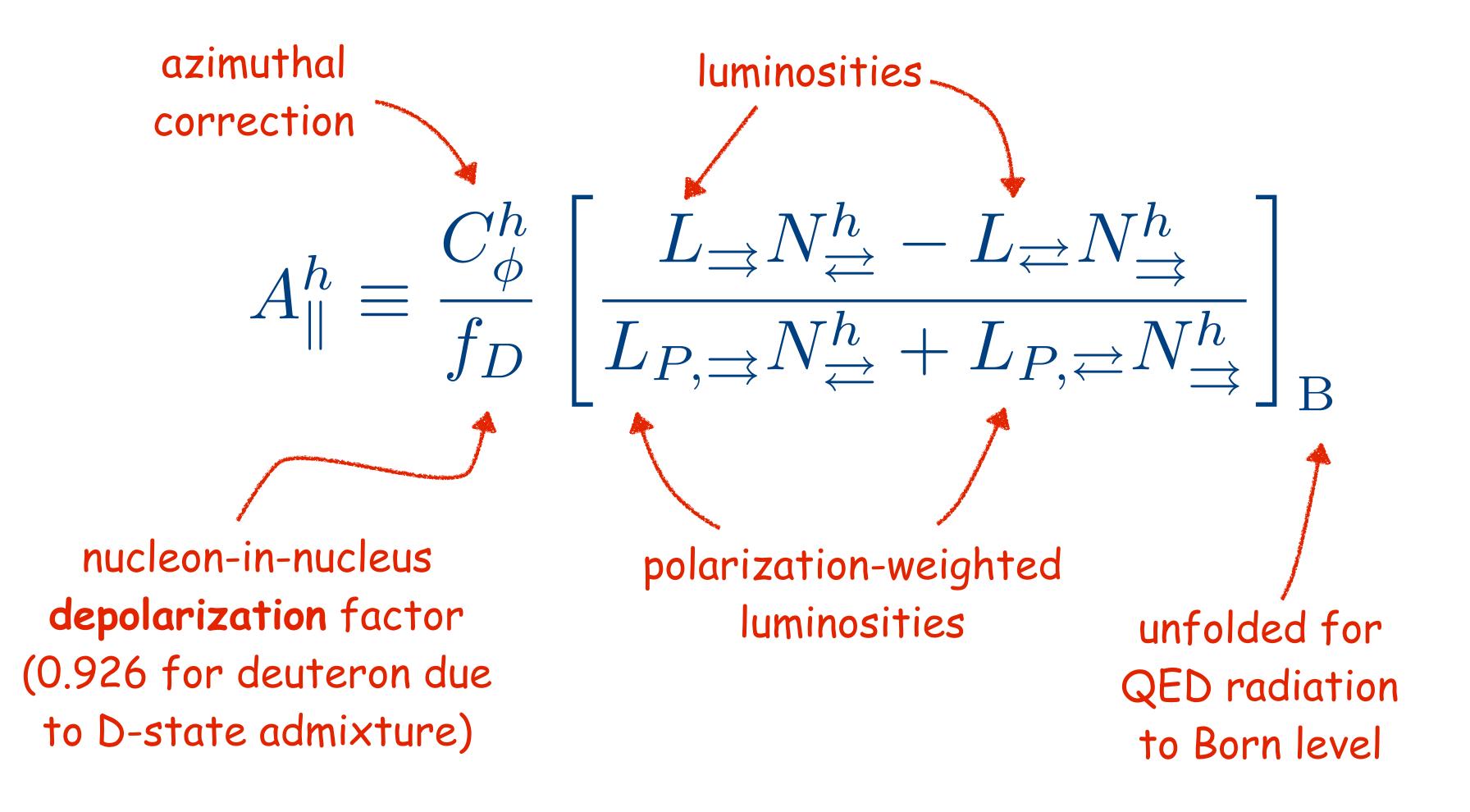
nucleon-in-nucleus

depolarization factor

(0.926 for deuteron due
to D-state admixture)



to D-state admixture)



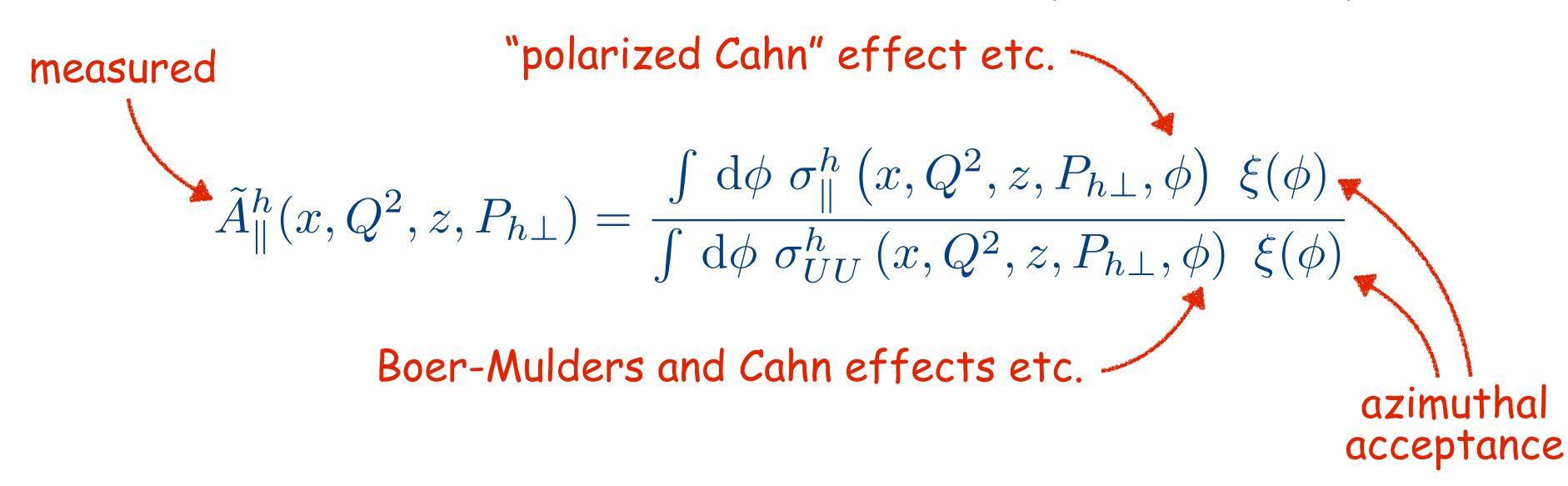
$$A_{\parallel}^{h} \equiv \frac{C_{\phi}^{h}}{f_{D}} \left[\frac{L_{\Rightarrow}N_{\rightleftharpoons}^{h} - L_{\rightleftharpoons}N_{\Rightarrow}^{h}}{L_{P,\Rightarrow}N_{\rightleftharpoons}^{h} + L_{P,\rightleftharpoons}N_{\Rightarrow}^{h}} \right]_{B}$$

dominated by statistical uncertainties

$$A_{\parallel}^{h} \equiv \frac{C_{\phi}^{h}}{f_{D}} \left[\frac{L_{\Rightarrow}N_{\rightleftharpoons}^{h} - L_{\rightleftharpoons}N_{\Rightarrow}^{h}}{L_{P,\Rightarrow}N_{\rightleftharpoons}^{h} + L_{P,\rightleftharpoons}N_{\Rightarrow}^{h}} \right]_{B}$$

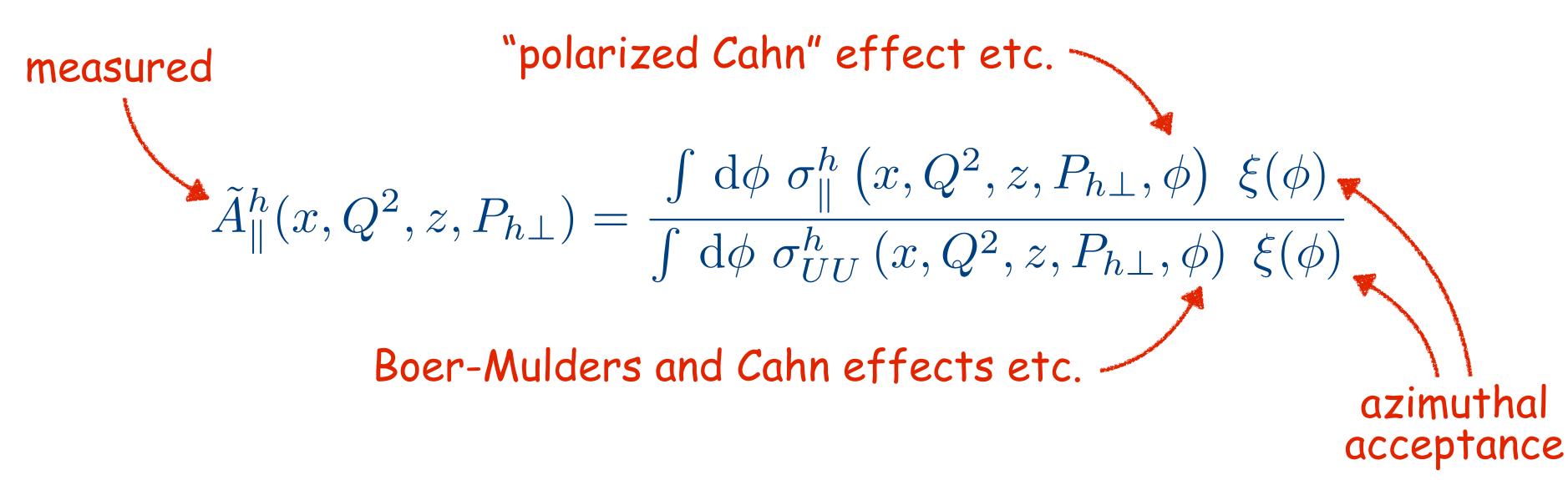
- dominated by statistical uncertainties
- main systematics arise from
 - polarization measurements [6.6% for hydrogen, 5.7% for deuterium)
 - azimuthal correction [O(few %)]

azimuthal-asymmetry corrections



- lacktriangle both numerator and in particular denominator ϕ dependent
 - in theory integrated out
 - \bullet in praxis, detector acceptance also ϕ dependent
 - onvolution of physics & acceptance leads to bias in normalization of asymmetries

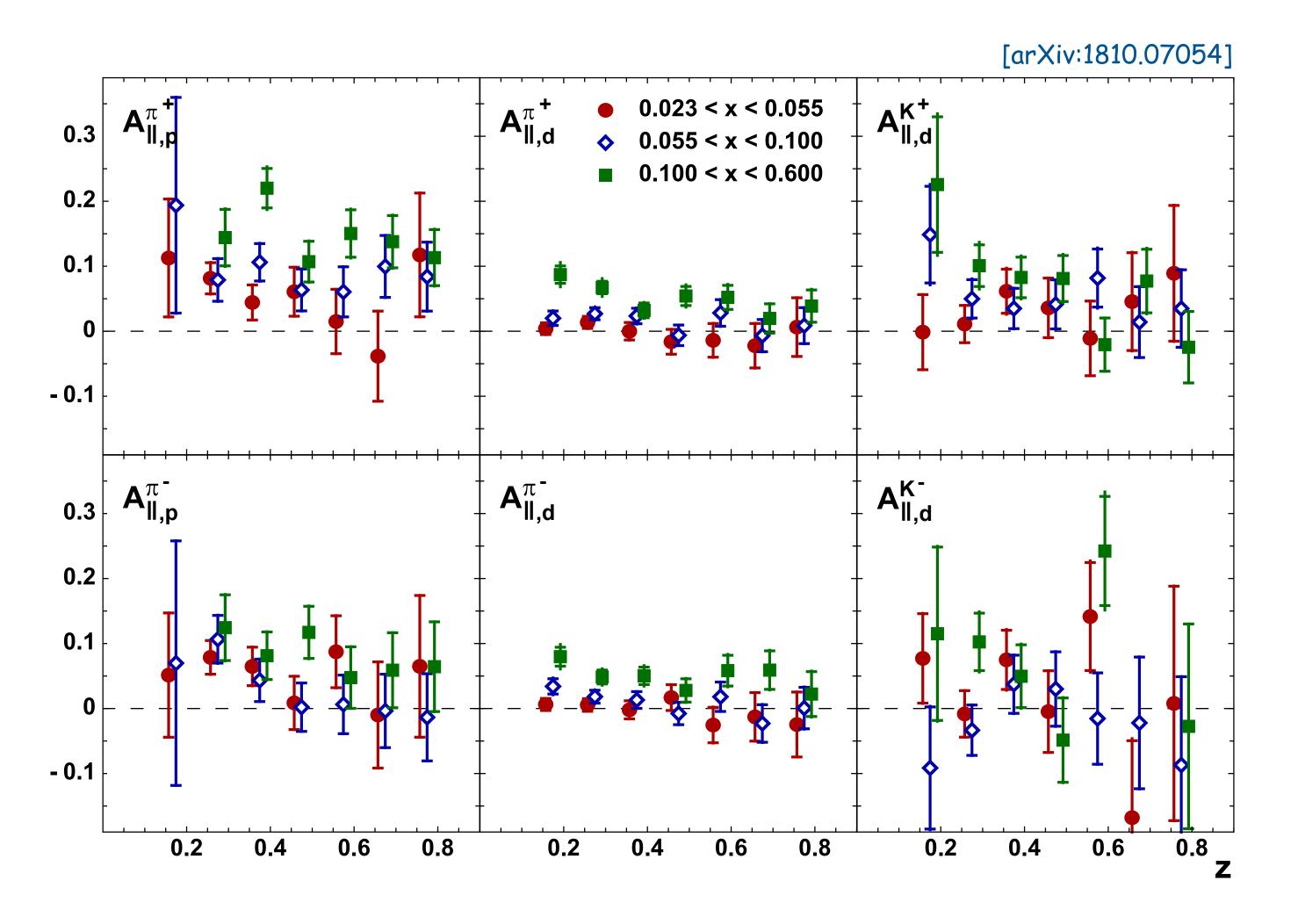
azimuthal-asymmetry corrections



- lacktriangle both numerator and in particular denominator ϕ dependent
 - in theory integrated out
 - ullet in praxis, detector acceptance also ϕ dependent
 - onvolution of physics & acceptance leads to bias in normalization of asymmetries
- implement data-driven model for azimuthal modulations [PRD 87 (2013) 012010] into MC extract correction factor & apply to data

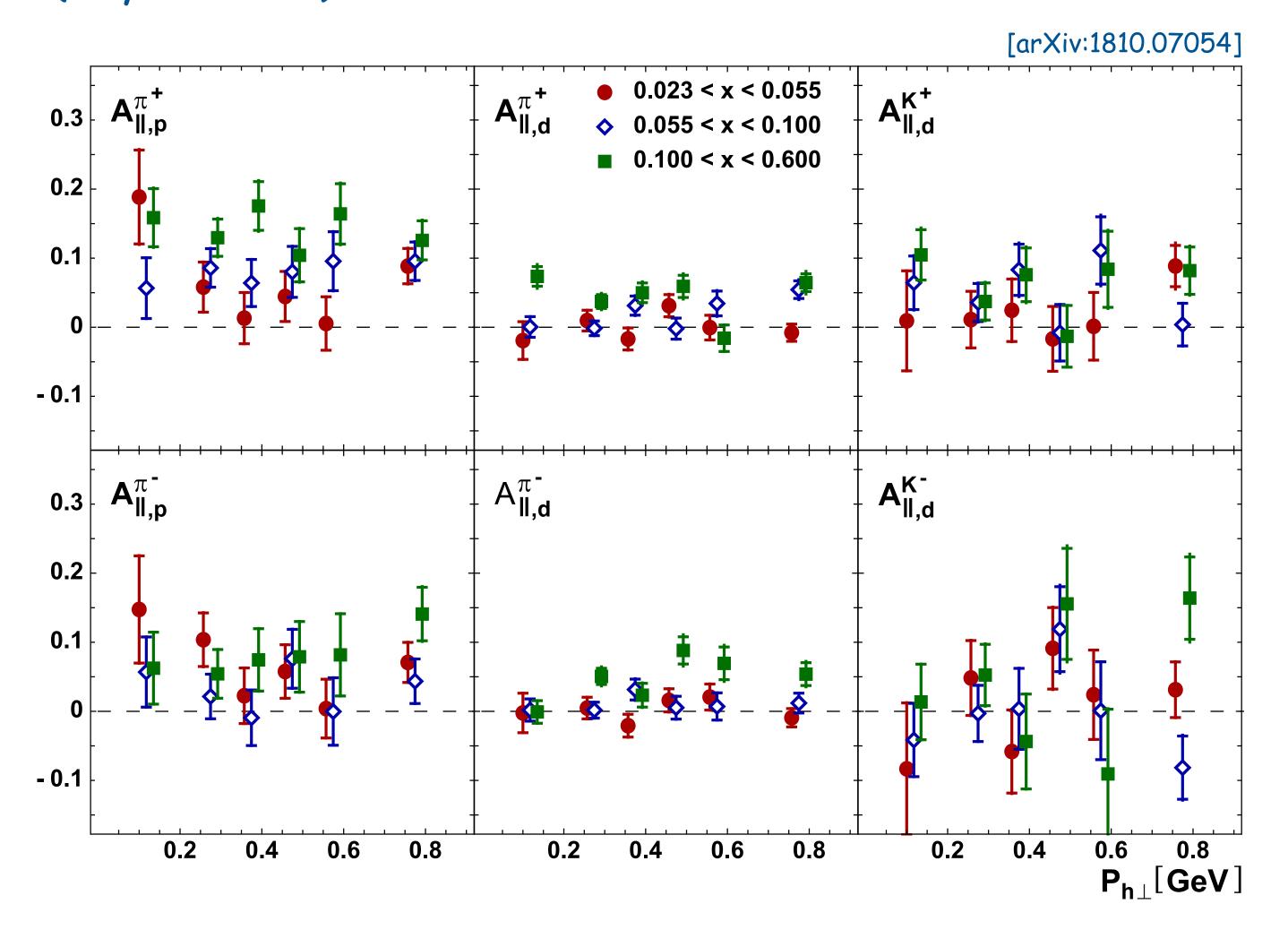
z dependence of A_{II} (three x ranges)

• in general, no strong z-dependence visible

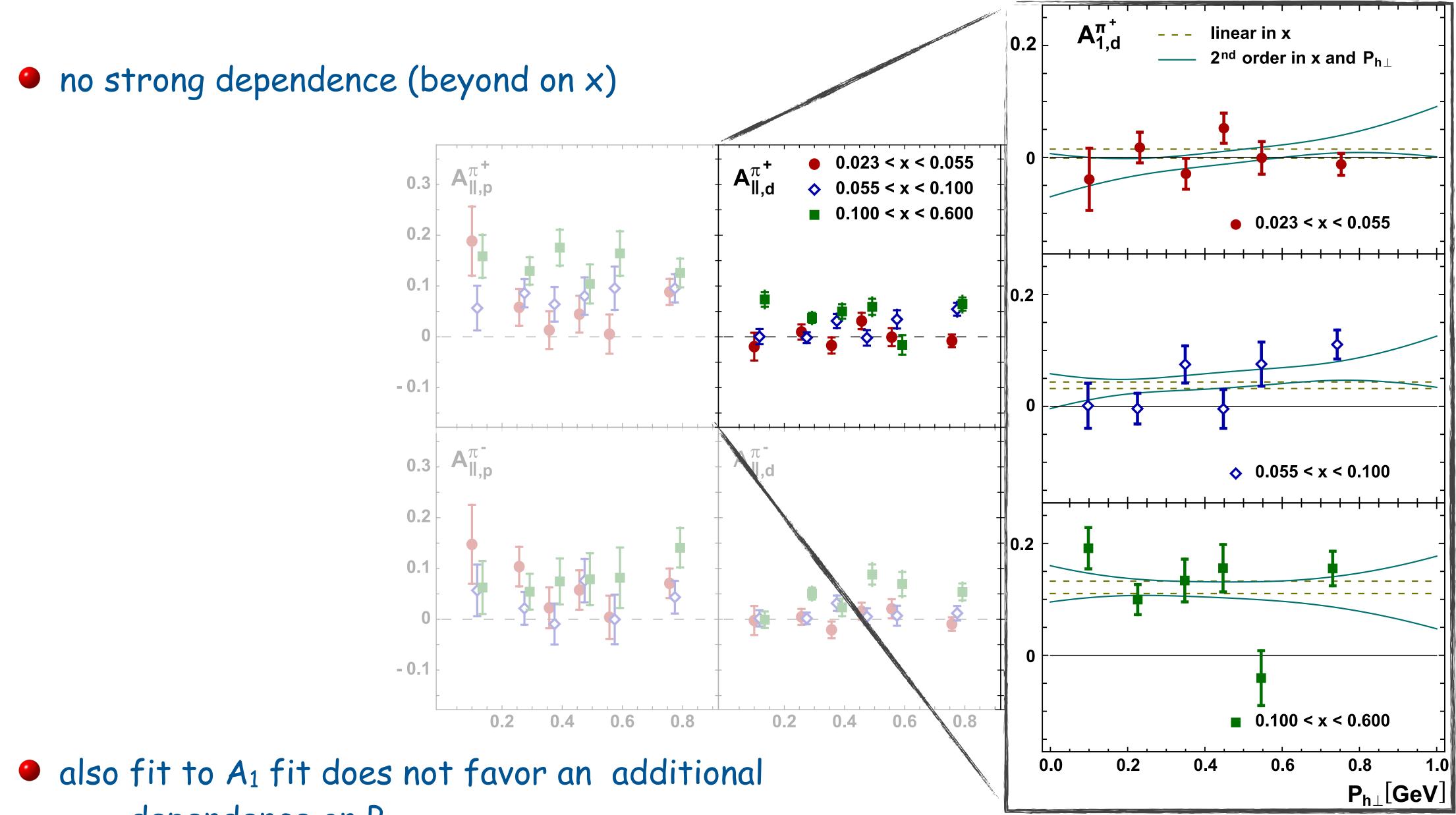


$P_{h\perp}$ dependence of $A_{||}$ (three x ranges)

no strong dependence (beyond on x)

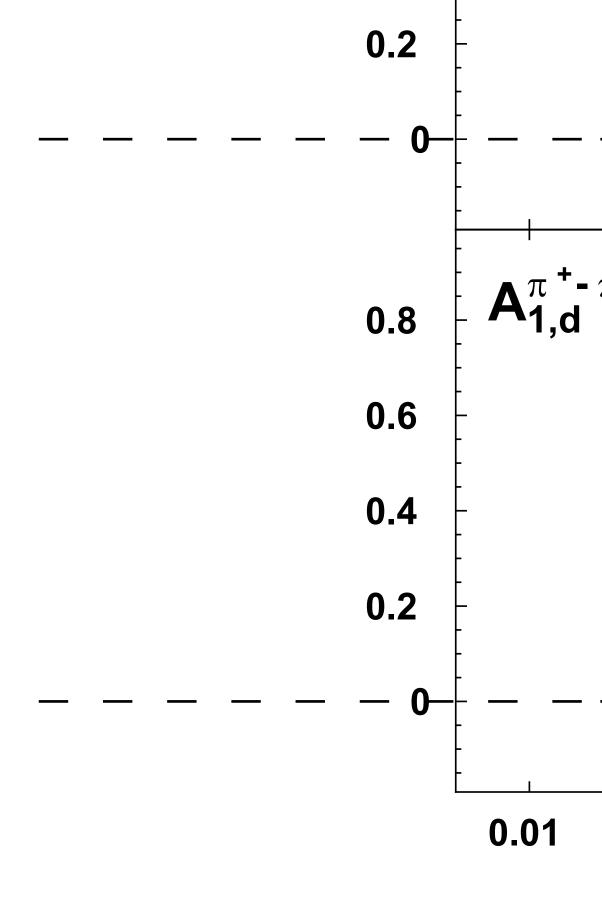


 $P_{h\perp}$ dependence of $A_{||}$ (three x ranges)



Gunar Schnell dependence on $P_{h\perp}$ HADRON 2021

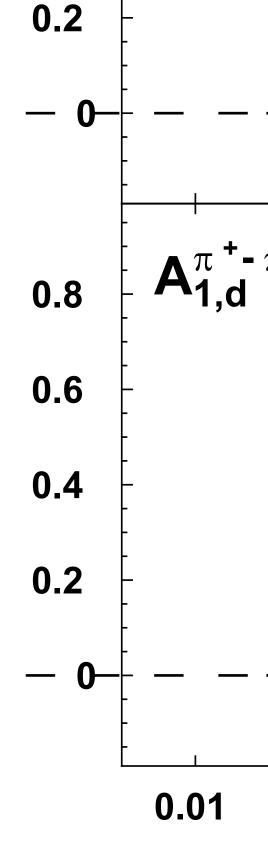
$$A_1^{h^+ - h^-}(x) \equiv \frac{\left(\sigma_{1/2}^{h^+} - \sigma_{1/2}^{h^-}\right) - \left(\sigma_{3/2}^{h^+} - \sigma_{3/2}^{h^-}\right)}{\left(\sigma_{1/2}^{h^+} - \sigma_{1/2}^{h^-}\right) + \left(\sigma_{3/2}^{h^+} - \sigma_{3/2}^{h^-}\right)}$$



$$A_1^{h^+ - h^-}(x) \equiv \frac{\left(\sigma_{1/2}^{h^+} - \sigma_{1/2}^{h^-}\right) - \left(\sigma_{3/2}^{h^+} - \sigma_{3/2}^{h^-}\right)}{\left(\sigma_{1/2}^{h^+} - \sigma_{1/2}^{h^-}\right) + \left(\sigma_{3/2}^{h^+} - \sigma_{3/2}^{h^-}\right)}$$

at leading-order and leading-twist, assuming charge conjugation sylfragmentation functions:

$$A_{1,d}^{h^{+}-h^{-}} \stackrel{\text{LO LT}}{=} \frac{g_{1}^{u_{v}} + g_{1}^{d_{v}}}{f_{1}^{u_{v}} + f_{1}^{d_{v}}}$$



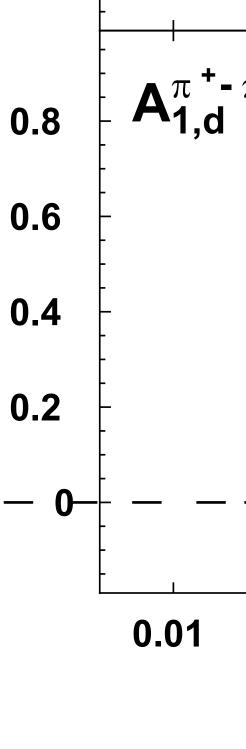
$$A_1^{h^+ - h^-}(x) \equiv \frac{\left(\sigma_{1/2}^{h^+} - \sigma_{1/2}^{h^-}\right) - \left(\sigma_{3/2}^{h^+} - \sigma_{3/2}^{h^-}\right)}{\left(\sigma_{1/2}^{h^+} - \sigma_{1/2}^{h^-}\right) + \left(\sigma_{3/2}^{h^+} - \sigma_{3/2}^{h^-}\right)}$$

at leading-order and leading-twist, assuming charge conjugation sylfragmentation functions:

$$A_{1,d}^{h^{+}-h^{-}} \stackrel{\text{LO}LT}{=} \frac{g_{1}^{u_{v}} + g_{1}^{d_{v}}}{f_{1}^{u_{v}} + f_{1}^{d_{v}}}$$

assuming also isospin symmetry in fragmentation:

$$A_{1,p}^{h^{+}-h^{-}} \stackrel{\text{LO}LT}{=} \frac{4g_{1}^{u_{v}} - g_{1}^{d_{v}}}{4f_{1}^{u_{v}} - f_{1}^{d_{v}}}$$



0.2

$$A_1^{h^+ - h^-}(x) \equiv \frac{\left(\sigma_{1/2}^{h^+} - \sigma_{1/2}^{h^-}\right) - \left(\sigma_{3/2}^{h^+} - \sigma_{3/2}^{h^-}\right)}{\left(\sigma_{1/2}^{h^+} - \sigma_{1/2}^{h^-}\right) + \left(\sigma_{3/2}^{h^+} - \sigma_{3/2}^{h^-}\right)}$$

at leading-order and leading-twist, assuming charge conjugation sylfragmentation functions:

$$A_{1,d}^{h^{+}-h^{-}} \stackrel{\text{LO}LT}{=} \frac{g_{1}^{u_{v}} + g_{1}^{d_{v}}}{f_{1}^{u_{v}} + f_{1}^{d_{v}}}$$

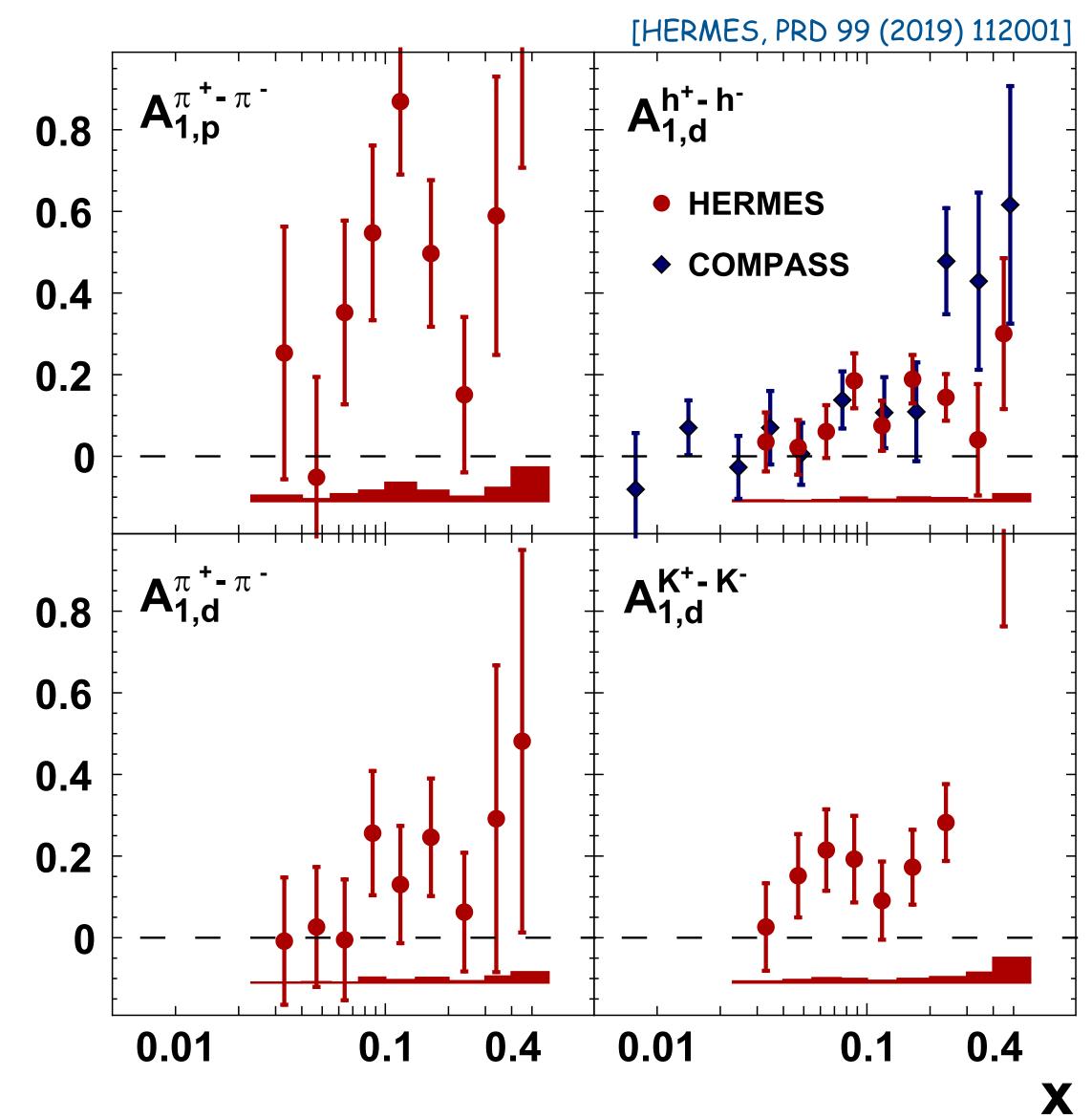
assuming also isospin symmetry in fragmentation:

$$A_{1,p}^{h^{+}-h^{-}} \stackrel{\text{LO} LT}{=} \frac{4g_{1}^{u_{v}} - g_{1}^{d_{v}}}{4f_{1}^{u_{v}} - f_{1}^{d_{v}}}$$

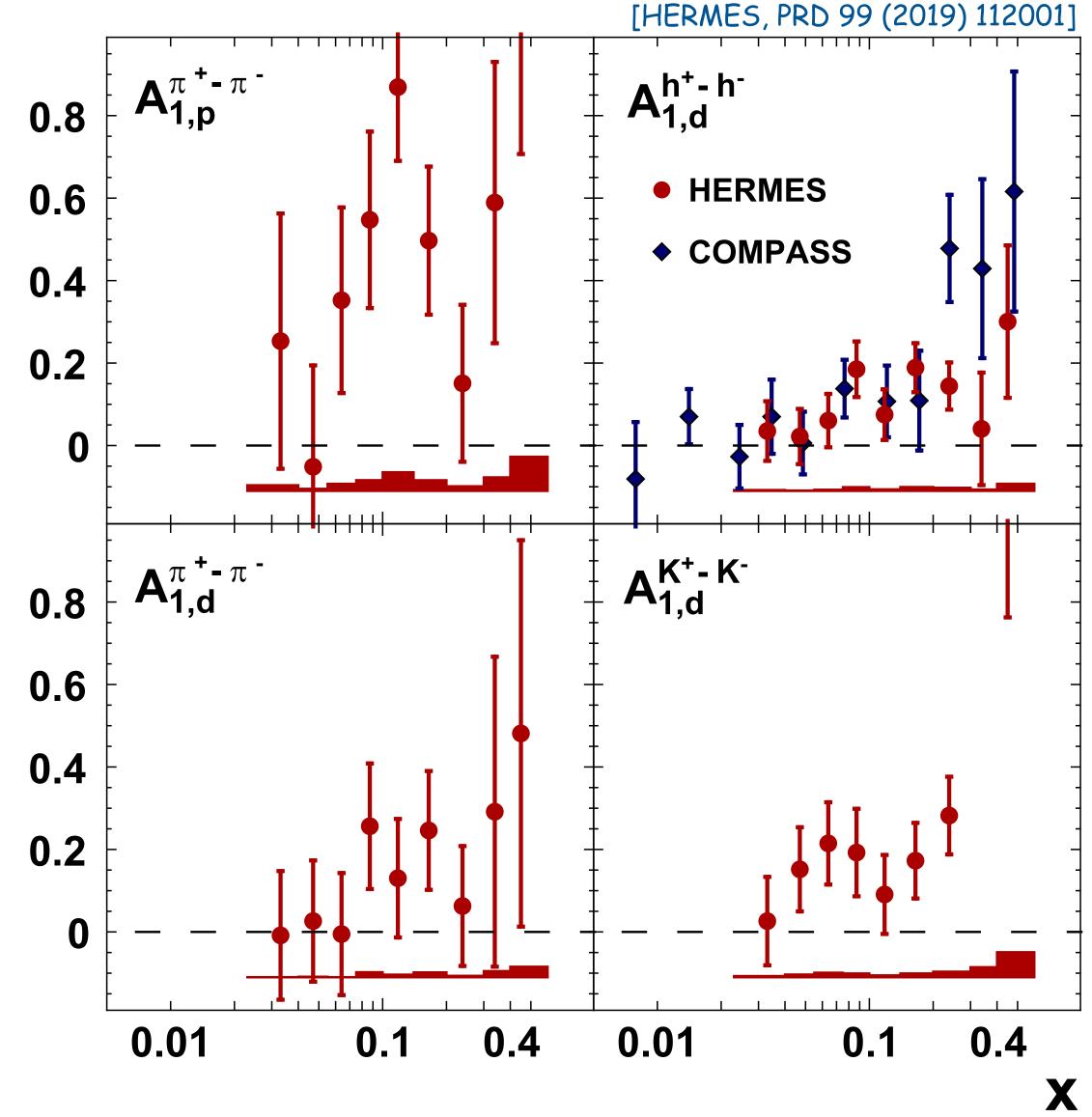
can be used to extract valence helicity distributions

0.2

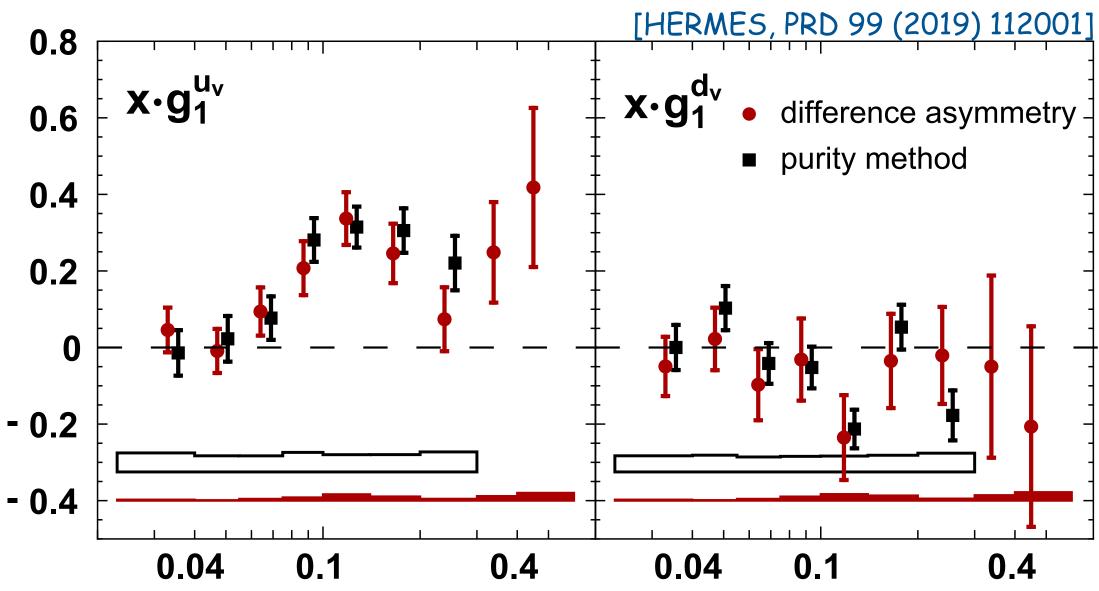
0.6



- no significant hadron-type dependence for deuterons
- deuteron results (unidentified hadrons) consistent with COMPASS



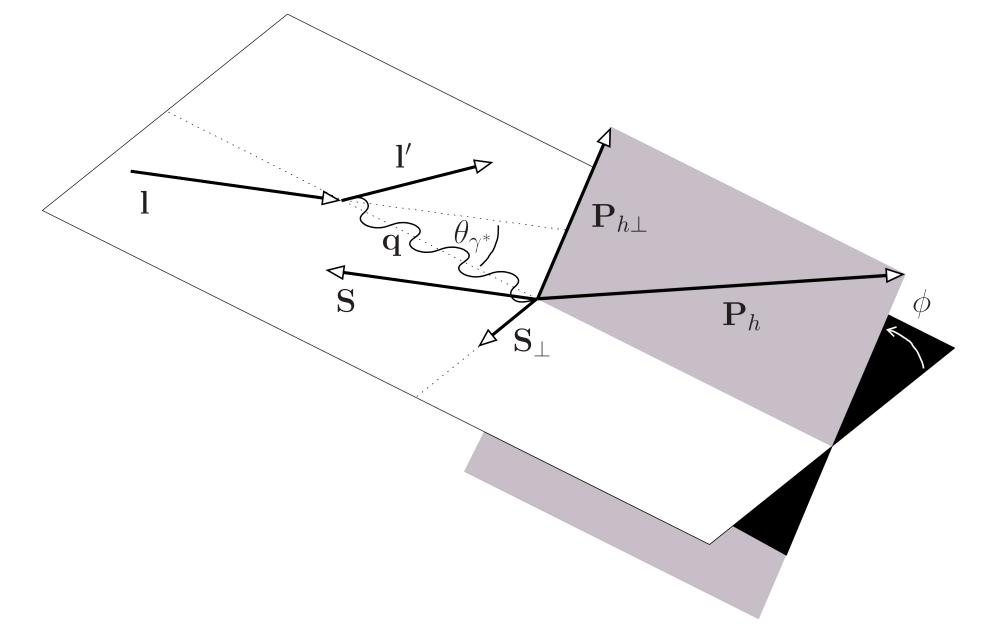
- no significant hadron-type dependence for deuterons
- deuteron results (unidentified hadrons)
 consistent with COMPASS
- valence distributions consistent with JETSET-based extraction:



semi-inclusive DIS

excluding transverse polarization:

$$\begin{split} \frac{\mathrm{d}\sigma^h}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}P_{h\perp}^2\,\mathrm{d}\phi} &= \frac{2\pi\alpha^2}{xyQ^2} \frac{y^2}{2(1-\epsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \\ \left\{ F_{UU,T}^h + \epsilon F_{UU,L}^h + \lambda\Lambda\sqrt{1-\epsilon^2} F_{LL}^h \right. \\ &+ \sqrt{2\epsilon} \left[\lambda\sqrt{1-\epsilon} \, F_{LU}^{h,\sin\phi} + \Lambda\sqrt{1+\epsilon} \, F_{UL}^{h,\sin\phi} \right] \sin\phi \\ &+ \sqrt{2\epsilon} \left[\lambda\Lambda\sqrt{1-\epsilon} \, F_{LL}^{h,\cos\phi} + \sqrt{1+\epsilon} \, F_{UU}^{h,\cos\phi} \right] \cos\phi \\ &+ \Lambda\epsilon \, F_{UL}^{h,\sin2\phi} \sin2\phi + \epsilon \, F_{UU}^{h,\cos2\phi} \cos2\phi \, \right\} \end{split}$$

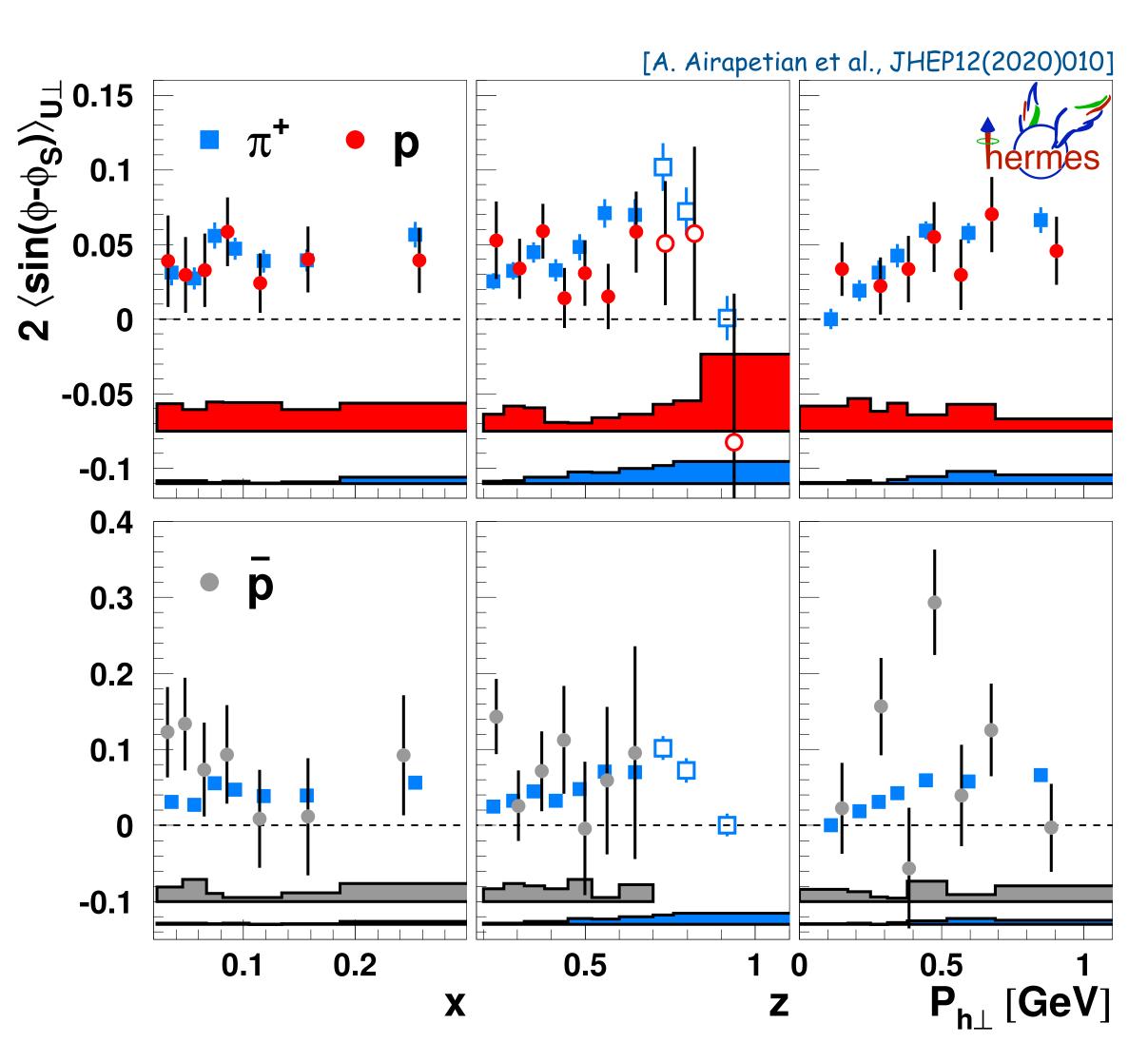


$$F_{XY}^{h,\text{mod}} = F_{XY}^{h,\text{mod}}(x, Q^2, z, P_{h\perp})$$

Beam (λ) / Target (Λ) helicities

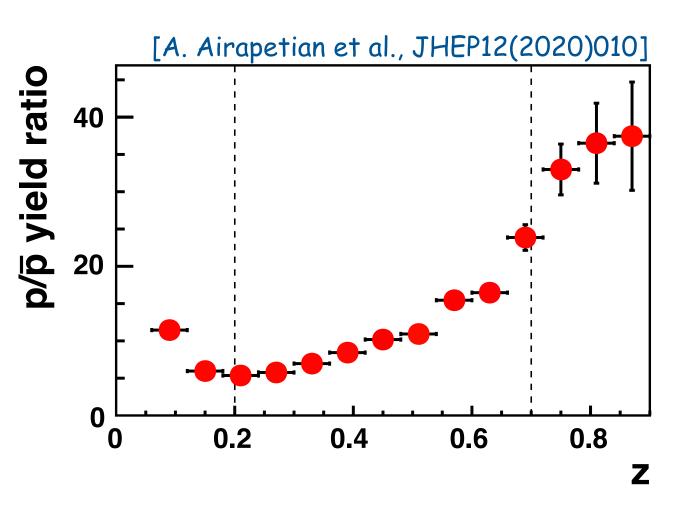
	U	ho	${ m T}$
U	f_1		h_1^{\perp}
$oxed{L}$		g_{1L}	h_{1L}^{\perp}
T	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

Sivers amplitudes pions vs. (anti)protons



similar-magnitude asymmetries for (anti)protons and pions

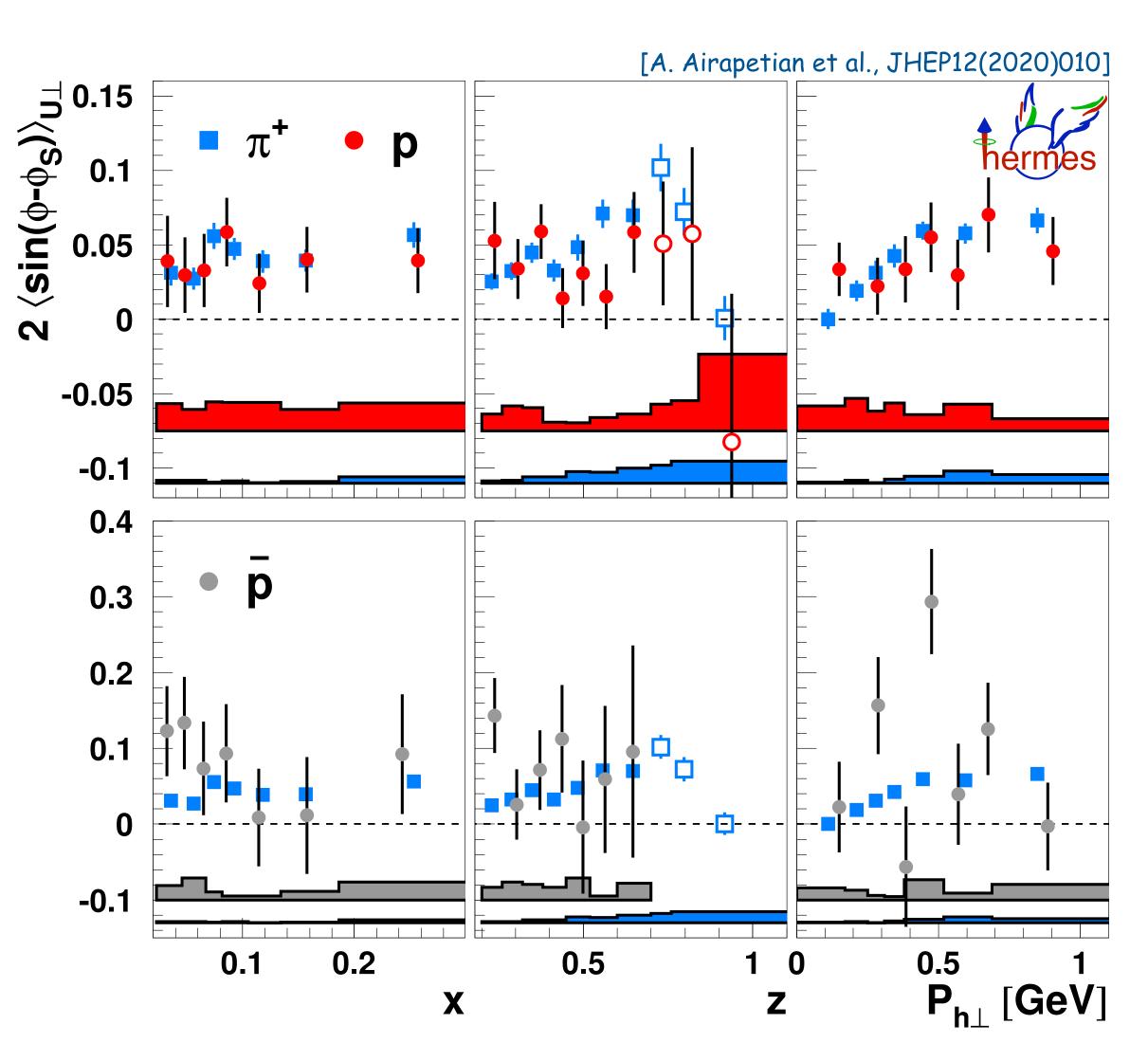
-consequence of u-quark dominance in both cases?



possibly, onset of target fragmentation only at lower z

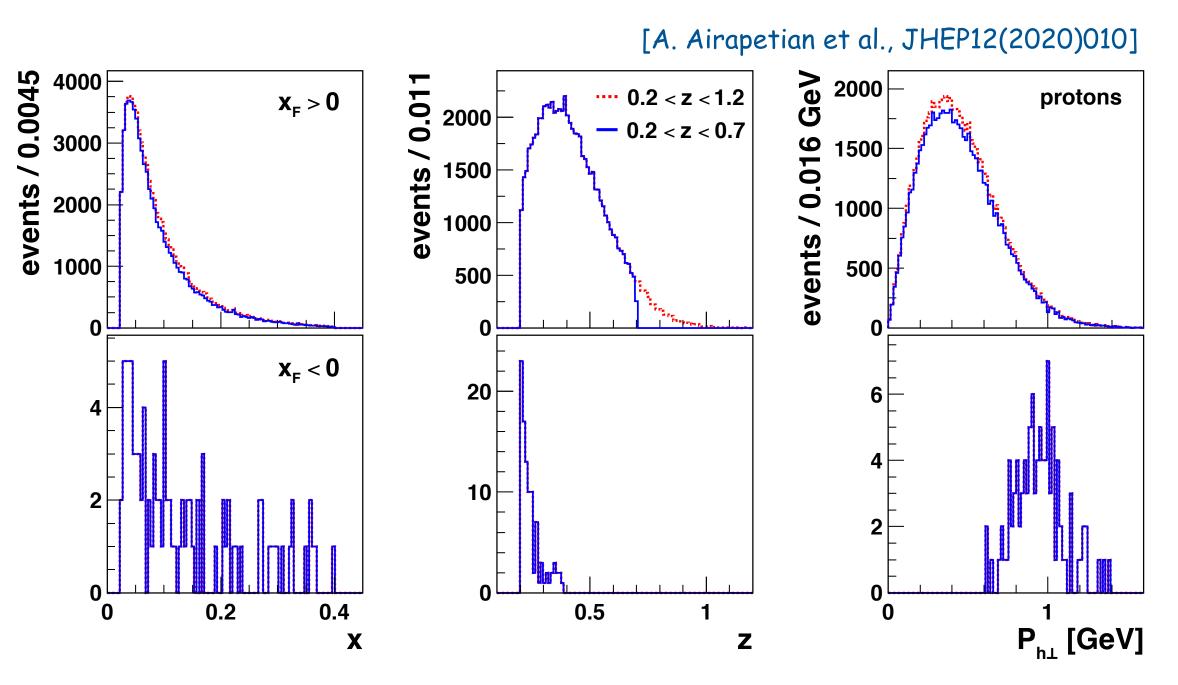
	U	${ m L}$	Τ
U	f_1		h_1^\perp
$oxed{L}$		g_{1L}	h_{1L}^{\perp}
T	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

Sivers amplitudes pions vs. (anti)protons



similar-magnitude asymmetries for (anti)protons and pions

-consequence of u-quark dominance in both cases?

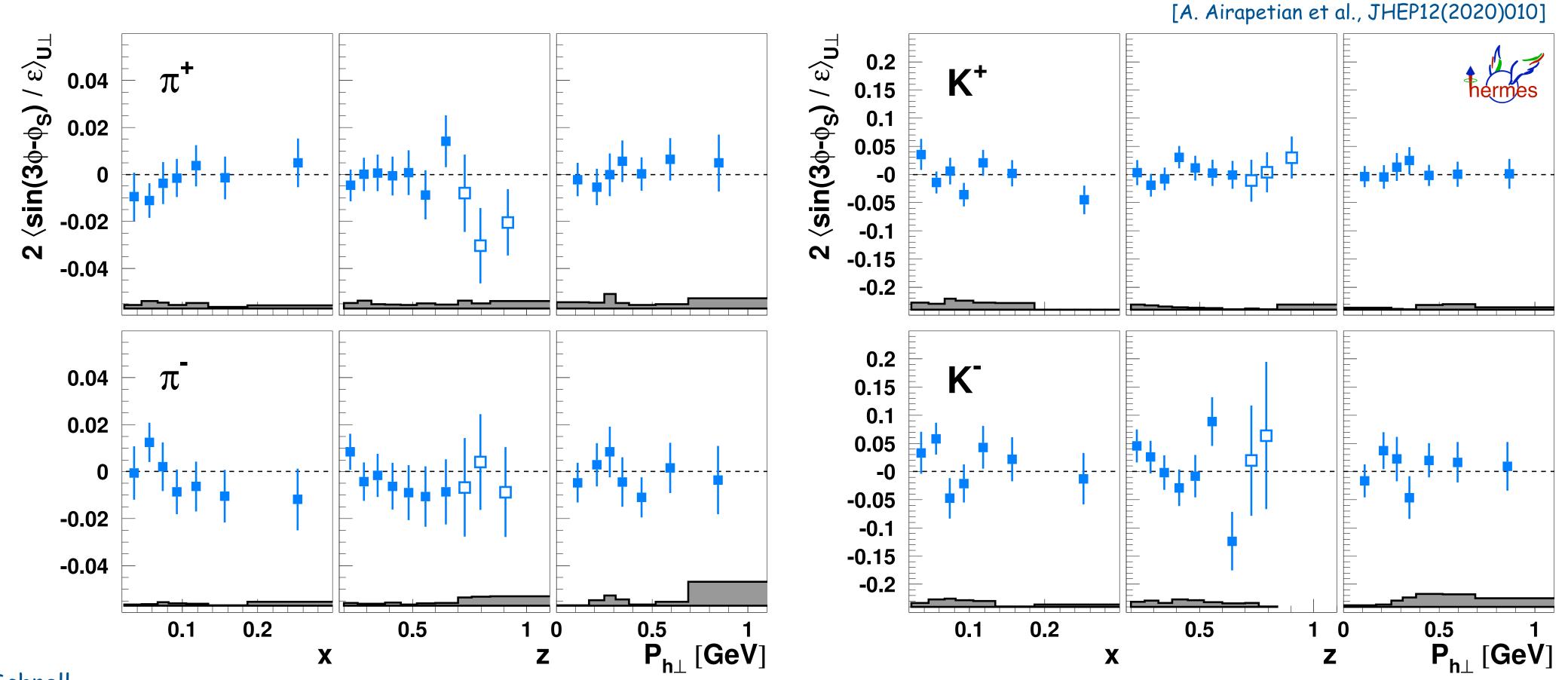


possibly, onset of target fragmentation only at lower z

	U	L	${f T}$	
U	f_1		h_1^{\perp}	
L		g_{1L}	h_{1L}^{\perp}	
T	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp	

Pretzelosity

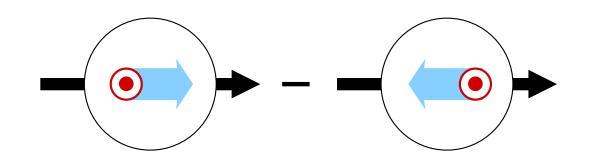
- chiral-odd > needs Collins FF (or similar)
- ¹H, ²H & ³He data consistently small
- cancelations? pretzelosity=zero? or just the additional suppression by two powers of $P_{h\perp}$



Gunar Schnell

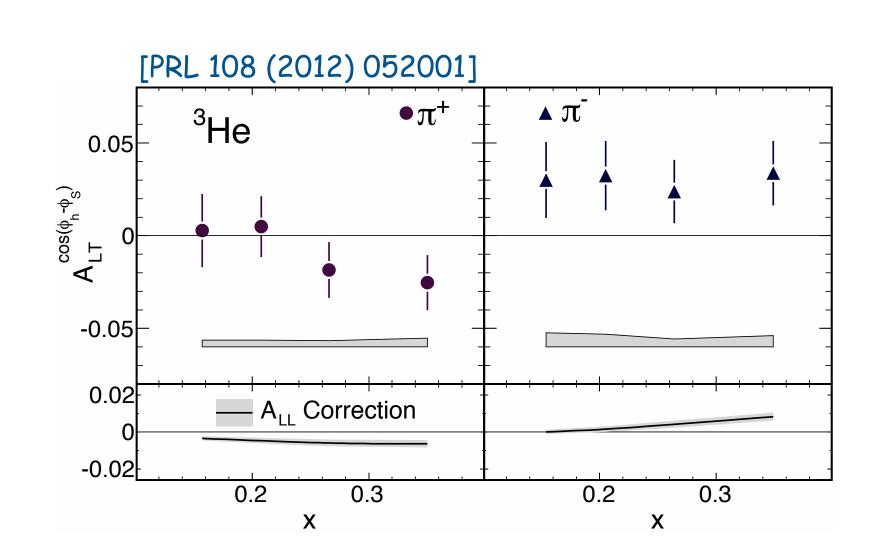
HADRON 2021

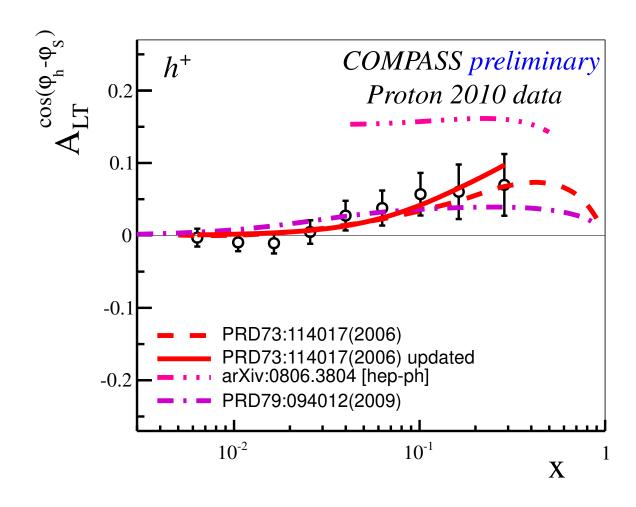
	U	L	\mathbf{T}
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
T	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

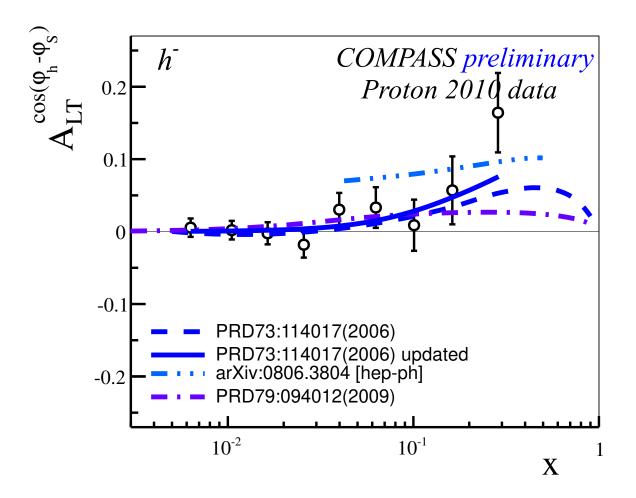


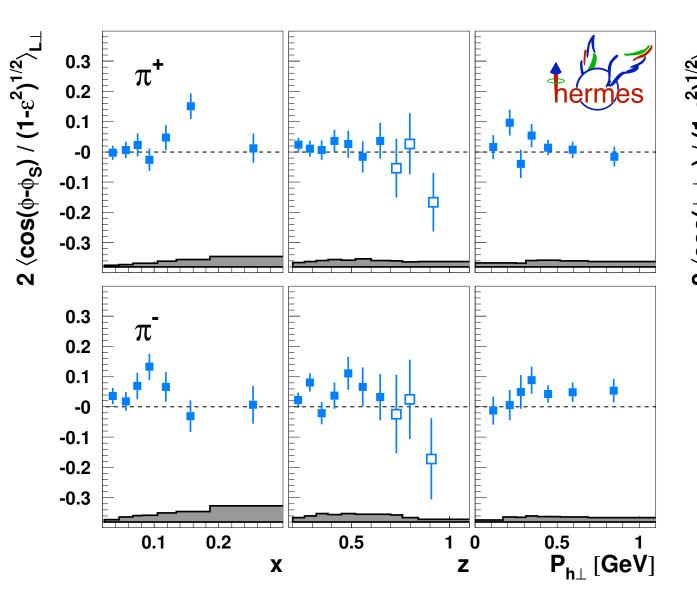
Worm-Gear II

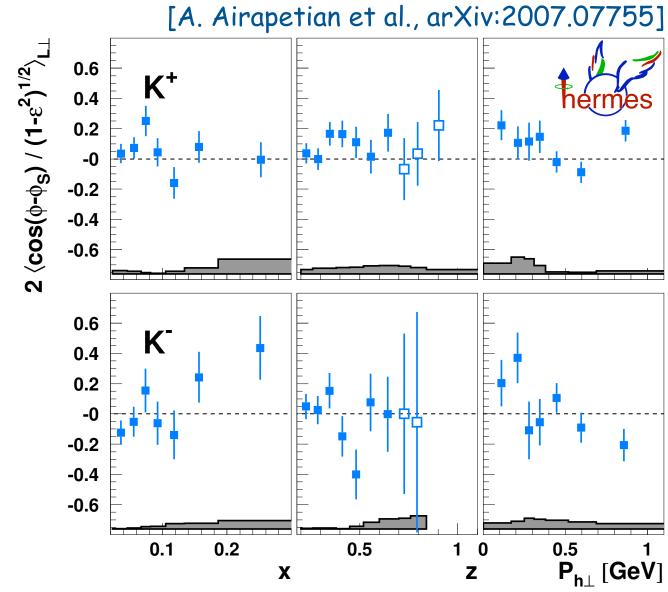
- chiral even, couples to D₁
- evidences from
 - ³He target at JLab
 - H target at COMPASS & HERMES



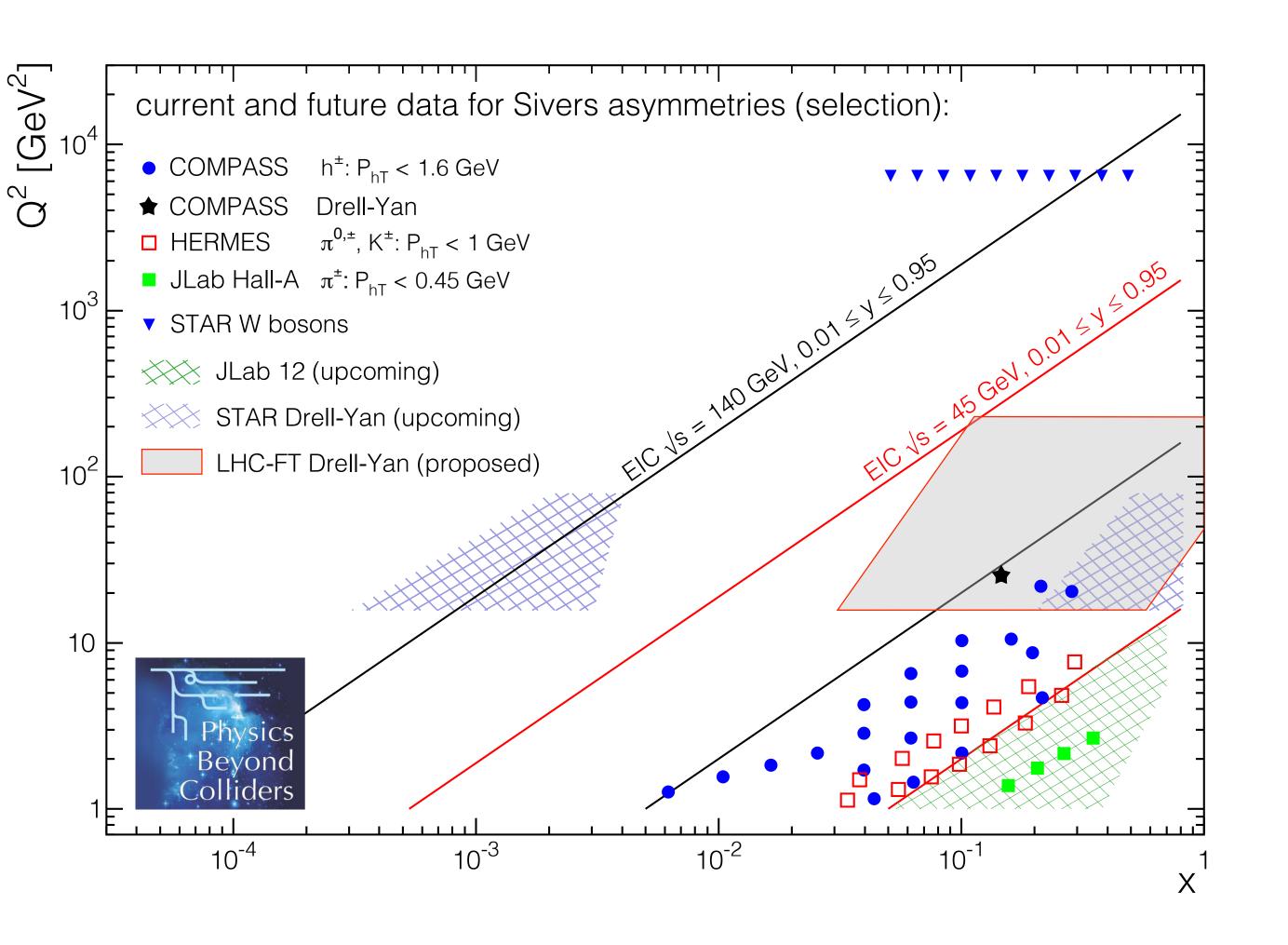








2d kinematic phase space



2d kinematic phase space

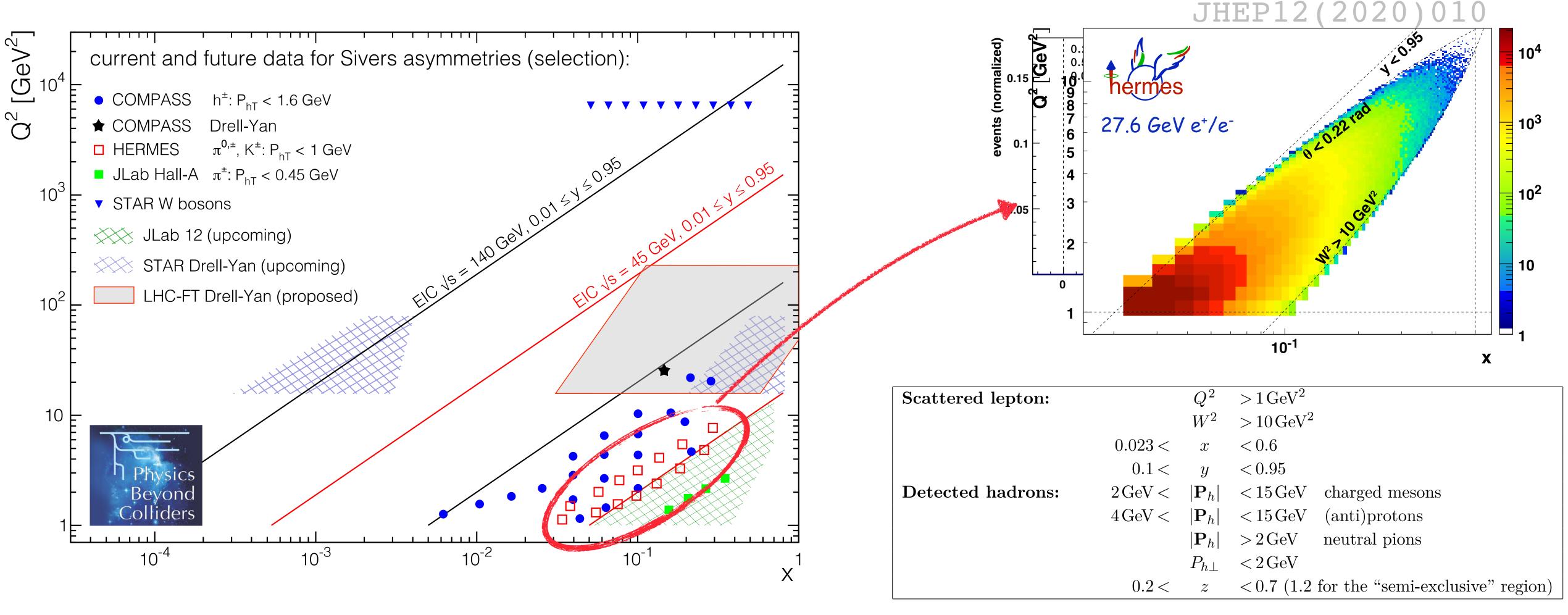
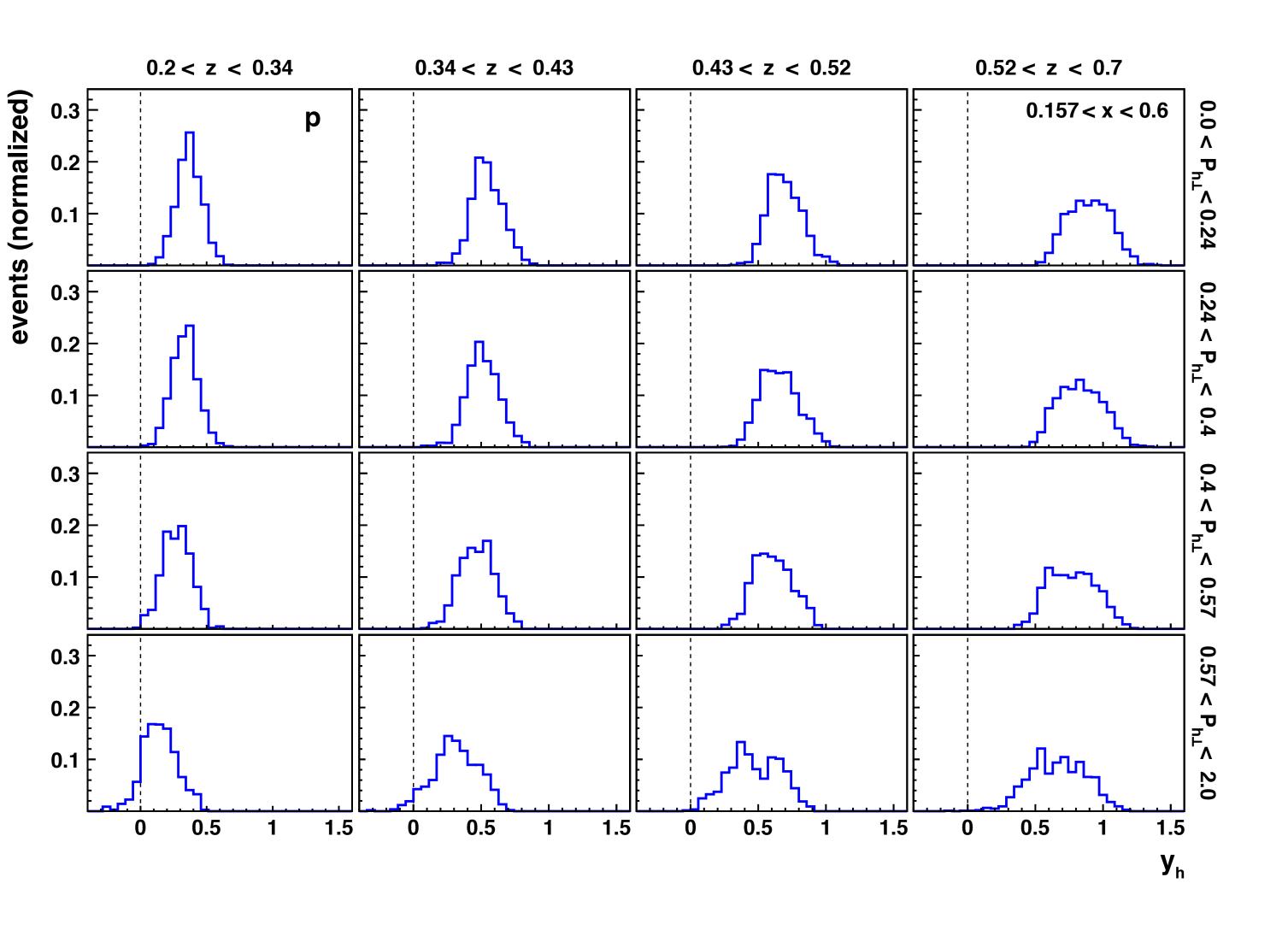


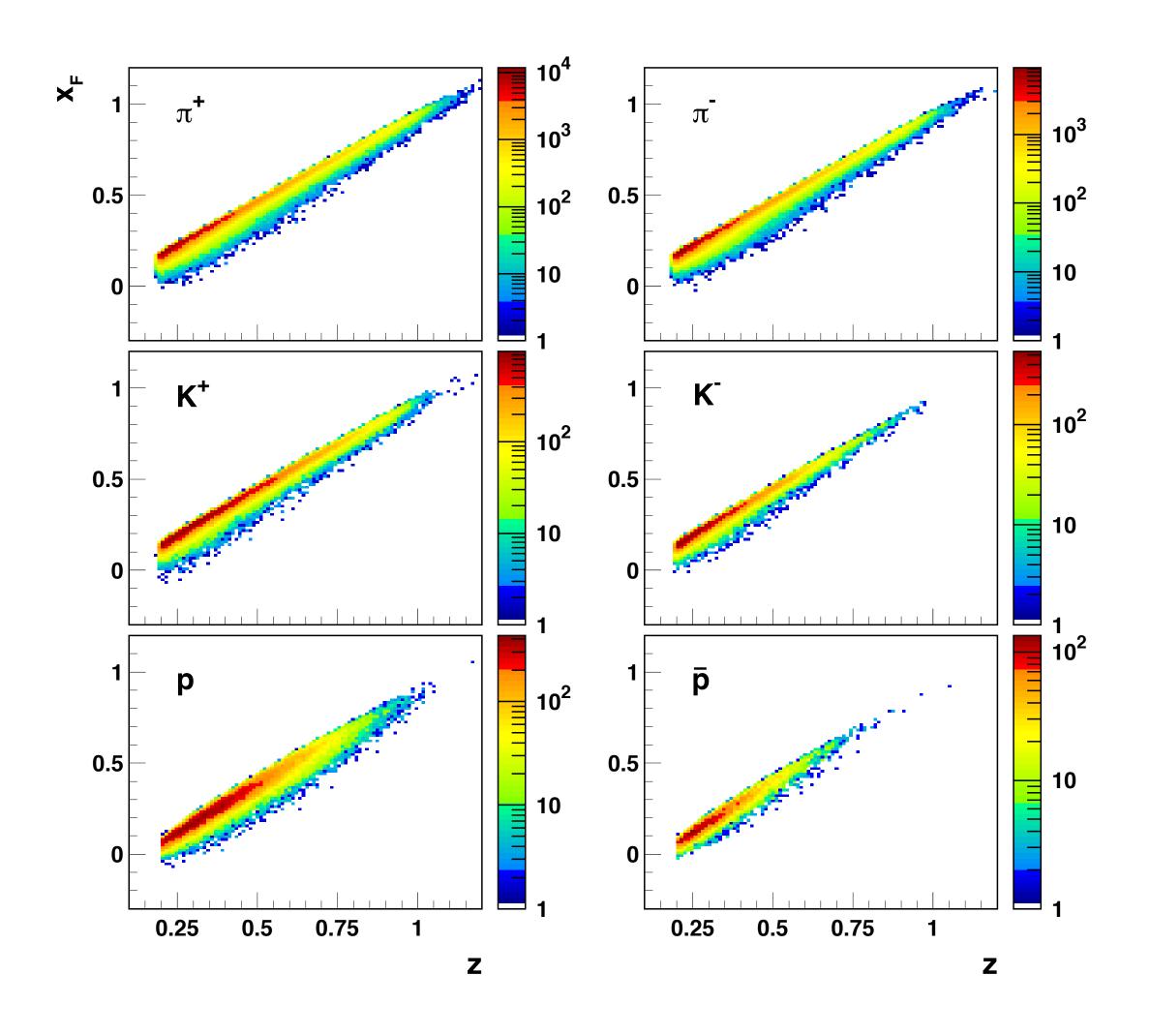
Table 3. Restrictions on selected kinematics variables. The upper limit on z of 1.2 applies only to the analysis of the z dependence.

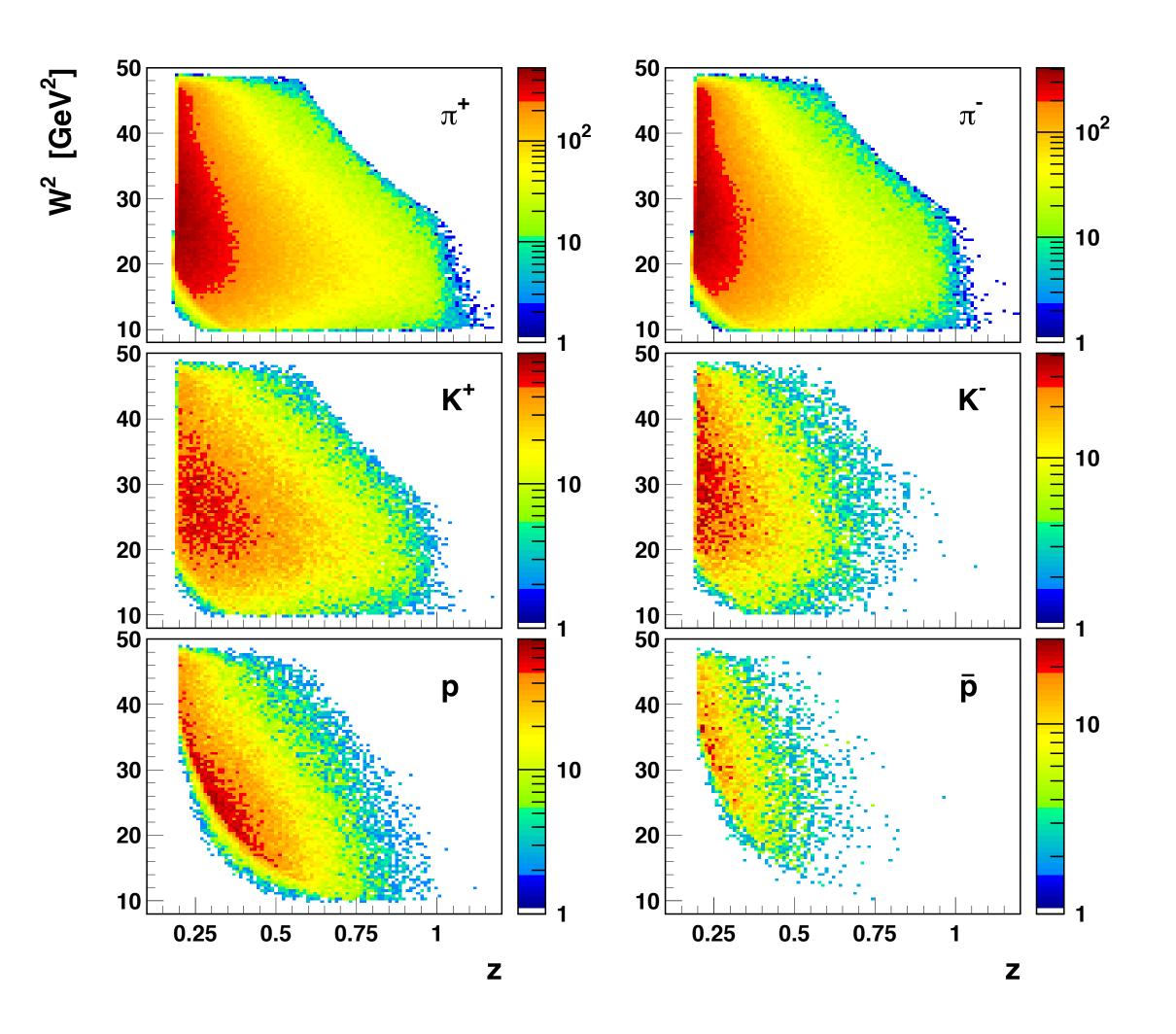
hadron production at HERMES



- forward-acceptance favors
 current fragmentation
- backward rapidity populates large- $P_{h\perp}$ region [as expected]
- rapidity distributions available for all kinematic bins (e.g., highest-x bin protons)

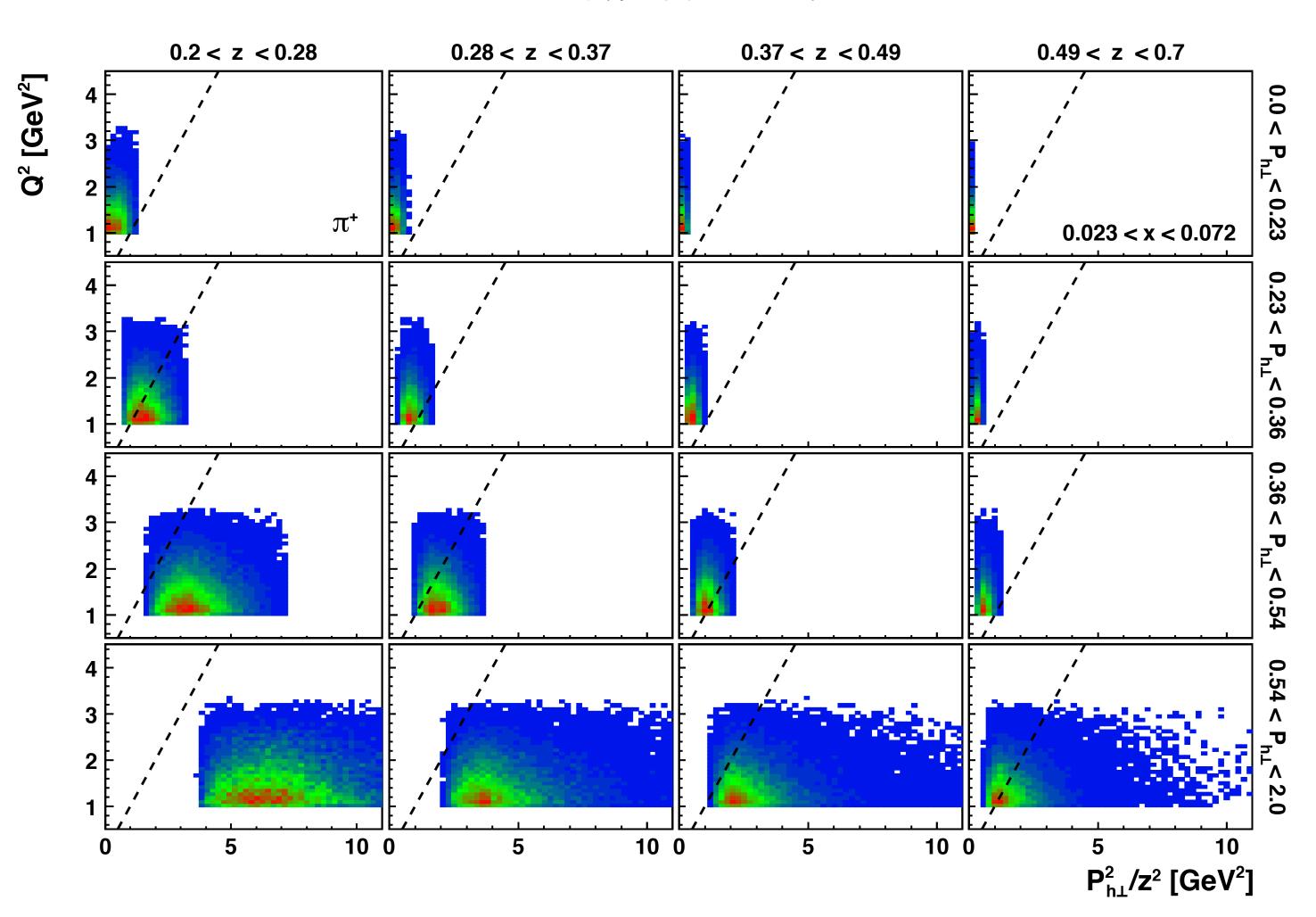
current vs. target fragmentation





TMD factorization: a 2-scale problem

lowest x bin

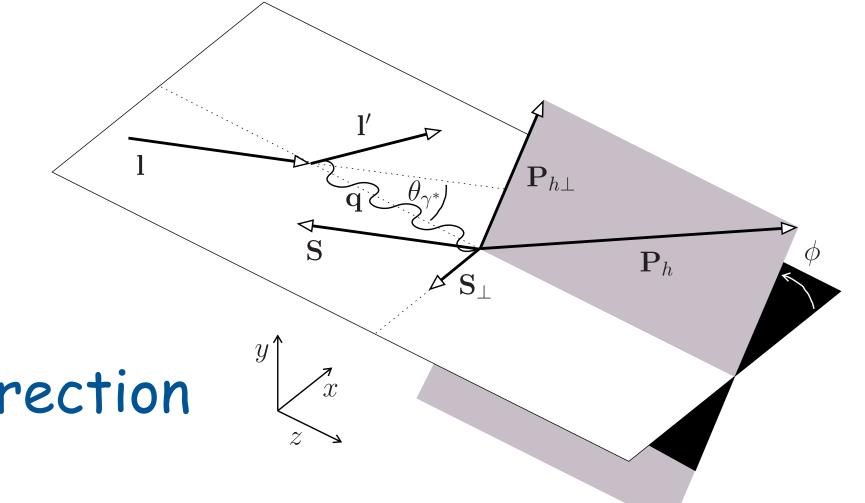


$$- - - Q^2 = P^2_{h\perp}/z^2$$

all other x-bins included in the Supplemental Material of JHEP12(2020)010

• theory done w.r.t. virtual-photon direction

experiments use targets polarized w.r.t. lepton-beam direction



- theory done w.r.t. virtual-photon direction
- experiments use targets polarized w.r.t. lepton-beam direction

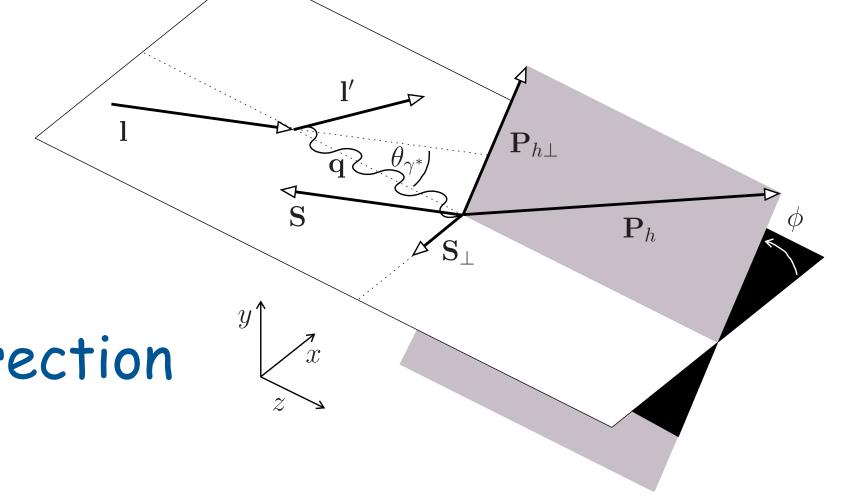
$$\begin{pmatrix} \left\langle \sin \phi \right\rangle_{UL}^{\mathsf{I}} \\ \left\langle \sin(\phi - \phi_S) \right\rangle_{UT}^{\mathsf{I}} \\ \left\langle \sin(\phi + \phi_S) \right\rangle_{UT}^{\mathsf{I}} \end{pmatrix} = \begin{pmatrix} \cos \theta_{\gamma^*} & -\sin \theta_{\gamma^*} \\ \frac{1}{2} \sin \theta_{\gamma^*} & \cos \theta_{\gamma^*} \\ \frac{1}{2} \sin \theta_{\gamma^*} & 0 \end{pmatrix} \begin{pmatrix} \left\langle \sin \phi \right\rangle_{UL}^{\mathsf{q}} \\ \left\langle \sin(\phi - \phi_S) \right\rangle_{UT}^{\mathsf{U}} \\ \left\langle \sin(\phi + \phi_S) \right\rangle_{UT}^{\mathsf{U}} \end{pmatrix}$$

 $\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$

- theory done w.r.t. virtual-photon direction
- experiments use targets polarized w.r.t. lepton-beam direction

$$\begin{pmatrix} \left\langle \sin \phi \right\rangle_{UL}^{\mathsf{I}} \\ \left\langle \sin(\phi - \phi_S) \right\rangle_{UT}^{\mathsf{I}} \\ \left\langle \sin(\phi + \phi_S) \right\rangle_{UT}^{\mathsf{I}} \end{pmatrix} = \begin{pmatrix} \cos \theta_{\gamma^*} & -\sin \theta_{\gamma^*} \\ \frac{1}{2} \sin \theta_{\gamma^*} & \cos \theta_{\gamma^*} \\ \frac{1}{2} \sin \theta_{\gamma^*} & 0 \end{pmatrix} \begin{pmatrix} \left\langle \sin \phi \right\rangle_{UL}^{\mathsf{q}} \\ \left\langle \sin(\phi - \phi_S) \right\rangle_{UT}^{\mathsf{U}} \\ \left\langle \sin(\phi + \phi_S) \right\rangle_{UT}^{\mathsf{U}} \end{pmatrix}$$

need data on same target for both polarization orientations!



- theory done w.r.t. virtual-photon direction
- experiments use targets polarized w.r.t. lepton-beam direction
- mixing of longitudinal and transverse polarization effects



