Hadron structure at small-x via unintegrated gluon densities

Michael Fucilla

Università della Calabria & INFN-gruppo collegato di Cosenza

Outline

Outline

Balitsky-Fadin-Kuraev-Lipatov (BFKL) resummation

- * Leading-Logarithm-Approximation (LLA): $(\alpha_s \ln s)^n$

Unintegrated gluon densities

- ***** Definition $\mathscr{F}(x, \vec{k}), \quad f_{\varrho}(x, \vec{k})$
- * Evolution equation as a function of $\ln(s/Q^2) = \ln(1/x)$

 $\partial \mathcal{F}$ $\partial \ln(1/2)$

* Next-to-Leading-Logarithm-Approximation (NLLA): $\alpha_s(\alpha_s \ln s)^n$

$$(x,Q^2) = \int \frac{d^2 \vec{k}}{\pi \vec{k}^2} \mathcal{F}(x,\vec{k})\theta(Q^2 - \vec{k}^2)$$

$$\frac{1}{x} = \mathscr{F} \otimes \mathscr{K}$$

Deep inelastic scattering

***** Total cross section

$$\sigma_{\lambda}(x,Q^2) = \frac{\mathscr{G}}{(2\pi)^4} \int \frac{d^2 \vec{k}_1}{\vec{k}_1^2} \int \frac{d^2 \vec{k}_2}{\vec{k}_2^2} \Phi_{\lambda}(\vec{k}_1) F(x,\vec{k}_1,\vec{k}_2) \Phi_{\lambda}(\vec{k}_1,\vec{k}_2) \Phi_{\lambda}$$

$$F(x, \overrightarrow{k}_1, \overrightarrow{k}_2) = \sum_{n=0}^{\infty} \int_{-\infty}^{\infty} d\nu \left(\frac{\overrightarrow{k}_1^2}{\overrightarrow{k}_2^2}\right)^{i\nu} \frac{e^{in(\theta_1 - \theta_2)}}{2\pi |\overrightarrow{k}_1| |\overrightarrow{k}_2|} e^{\overline{\alpha}_s \chi_n(\mu_2)}$$

***** Growth at small-*x*

$$F \sim \frac{x^{-\omega_0}}{\sqrt{\ln(1/x)}} \qquad \qquad \omega_0 = 4\bar{\alpha}_s \ln 2$$

IR-safe colorless $\{\Phi^{i \rightarrow 0}\}$ (Fadin-Martin theorem) [V.S. Fadin, A.D. Martin (1999)]

- - \diamond

$$(x, \overrightarrow{k}_1, \overrightarrow{k}_2) \Phi_p(\overrightarrow{k}_2) = \frac{\mathscr{G}}{(2\pi)^4} \int \frac{d^2 \overrightarrow{k}_1}{\overrightarrow{k}_1^4} \Phi_{\lambda}(\overrightarrow{k}_1) \mathscr{F}(x, \overrightarrow{k}_1)$$

$$\frac{d^2 \vec{k_2}}{\vec{k_2}} \Phi_p(\vec{k_2}) F(x, \vec{k_1}, \vec{k_2})$$

• example: virtual photoabsorption in high-energy factorization

$$\sigma_{\text{tot}}(\gamma^* p \to X) \propto \Im m_s \{ \mathcal{A}(\gamma^* p \to \gamma^* p) \} \equiv \Phi_{\gamma^* \to \gamma^*} \circledast \mathcal{F}$$

 $\diamond \ \mathcal{F}(x, \kappa^2)$ is the **unintegrated gluon distribution** (**UGD**) in the proton

- ***** Small-*x* and large k_t
- * Speaks the language of Reggeized gluon
- Inclusive or exclusive processes
- ***** Double-log-approximation (DLA): $\alpha_s \ln(Q^2/Q_0^2) \ln(1/x)$

- ***** Small-*x* and large k_t
- * Speaks the language of Reggeized gluon
- Inclusive or exclusive processes
- ***** Double-log-approximation (DLA): $\alpha_s \ln(Q^2/Q_0^2) \ln(1/x)$

BFKL DGLAP

Unitarity violation and diffusion

* Violation of the Martin-Froissart buond: σ_1

* Diffusion to the infrared: $l_{\parallel}e^{-k\sqrt{\Delta Y/2}} \lesssim k_{\parallel}$

$$\sigma_{\text{tot}} \le \frac{\pi \Delta^2}{2m_\pi^2} \ln^2 s$$

$$\lesssim l_{\perp} e^{k \sqrt{\Delta Y/2}}$$

- ***** Small-*x* and large k_t
- * Speaks the language of Reggeized gluon
- Inclusive or exclusive processes
- ***** Double-log-approximation (DLA): $\alpha_s \ln(Q^2/Q_0^2) \ln(1/x)$

BFKL DGLAP

Unitarity violation and diffusion

* Violation of the Martin-Froissart buond:

* Diffusion to the infrared: $l_{\perp}e^{-k\sqrt{\Delta Y/2}} \leq k_{\perp}$

$$\sigma_{\text{tot}} \leq \frac{\pi \Delta^2}{2m_{\pi}^2} \ln^2 s$$
Non-linear evolution
$$k_{\perp} \leq l_{\perp} e^{k\sqrt{\Delta Y/2}}$$

BK/JIMWLK domain

- Small-*x* and large k_t *
- * Speaks the language of Reggeized gluon
- Inclusive or exclusive processes *
- * Double-log-approximation (DLA): $\alpha_s \ln(Q^2/Q_0^2) \ln(1/x)$

BFKL DGLAP

Unitarity violation and diffusion

Violation of the Martin-Froissart buond: $\sigma_{\text{tot}} \leq \frac{\pi \Delta}{2m_{\pi}^2} \ln^2 s$ *

* Diffusion to the infrared: $l_{\perp}e^{-k\sqrt{\Delta Y/2}} \leq k_{\perp} \leq l_{\perp}e^{k\sqrt{\Delta Y/2}}$

Hybrid or pure factorization?

Forward emissions

- * Asymmetric config. \leftrightarrow fast parton + small-x gluon
- * Hybrid **high-energy/collinear** factorization

- * *Distinctive signals* of small-*x* dynamics **expected**
- Phenomenology:
 forward jet, Drell-Yan, Higgs or vector meson

Hybrid or pure factorization?

Forward emissions

- * Asymmetric config. \leftrightarrow fast parton + small-x gluon
- Hybrid high-energy/collinear factorization

- * *Distinctive signals* of small-*x* dynamics **expected**
- Phenomenology:
 forward jet, Drell-Yan, Higgs or vector meson

Central emissions

- ***** *Gluon induced* \leftrightarrow small-*x* gluons
- * Pure **high-energy** factorization

- ***** Small-*x* dynamics to **enhance** f.o. description
- Phenomenology:
 central jet, Higgs or vector meson

Outline

Amplitude twist-expansion

A =

* Amplitude factorization achived by a Taylor expansion of the hard part

ρ -meson leptoproduction

[I. V. Anikin, D. Yu. Ivanov, B. Pire, L. Szymanowski and S. Wallon(2011)]

$$\int d^4l \ Tr[H(l)\Phi(l)] + \int d^4l_1 \int d^4l_2 \ Tr[H_{\mu}(l_1, l_2)\Phi^{\mu}(l_1, l_2)] + \dots$$

Longitudinal case: $\gamma_L \rightarrow \rho_L$

- ***** Starts the leading twist (twist two)
- Known up to next-to-leading order
- ***** LO expression

$$\Phi_{\gamma_L \to \rho_L}(k, Q, \mu^2) = 2B \frac{\sqrt{N_c^2 - 1}}{QN_c} \int_0^1 dy \varphi_1(y; \mu^2)$$

Transverse case: $\gamma_T \rightarrow \rho_T$

- * Starts at the next-to-leading twist (twist three)
- * Known up to leading order

ρ -meson leptoproduction

 $\left(\frac{\alpha}{\alpha + y\bar{y}}\right) \qquad \qquad \alpha = \frac{k^2}{Q^2} , B = 2\pi\alpha_s \frac{e}{\sqrt{2}} f_\rho , \varphi_1 \to DA$

Electron-proton collision e + p —

★ Hera

 $2.5 \text{ GeV}^2 < Q^2 < 60 \text{ GeV}^2$

35 GeV < W < 180 GeV

- $e + p \longrightarrow e + \gamma^* + p \longrightarrow e + \rho + p$
 - **★** Exclusive reaction
 - ✤ High-energy regime

$$s \equiv W^2 \gg Q^2 \gg \Lambda^2 \longrightarrow \text{small } x = \frac{Q^2}{W^2}$$

- * Photon virtuality Q is the **hard scale**
- ✤ Process solved in helicity

★ Zeus

 $2 \text{ GeV}^2 < Q^2 < 60 \text{ GeV}^2$ 32 GeV < W < 180 GeV

- * $Im_{s} \{A(\gamma * p \rightarrow VP)\}$ dominates
- * $T_{00} \gg T_{11} \gg T_{10} \gg T_{01} \gg T_{-11}$
- Small-size dipole mechanism *

$$T_{\lambda_V \lambda_\gamma}(s, Q^2) = is \int \frac{d^2k}{(k^2)^2} \Phi^{\gamma^*(\lambda_\gamma) \to V(\lambda_V)}(k^2, Q^2) \mathcal{F}(x, k^2) , \quad x = \frac{Q^2}{s}$$

* $V = \rho, \phi$ via distribution amplitude (DAs): $\varphi(y) = \varphi^{WW}(y) + \varphi^{gen}(y)$

Wandzura-Wilczek (WW) approximation → genuine terms neglected

$$T_{11} = is \frac{2BC}{Q^2} \int \frac{d^2k}{(k^2)^2} \mathcal{F}(x,k^2) \int_0^1 \frac{dy}{(y\bar{y}+\tau)} \varphi_+^{WW}(y,\mu^2) \frac{\alpha(\alpha+2y\bar{y}+2\tau)}{(\alpha+y\bar{y}+\tau)^2} + o(\tau^2)$$

$$T_{00} = is \frac{4BC}{Q} \int \frac{d^2k}{(k^2)^2} \mathcal{F}(x,k^2) \int_0^1 dy \frac{\bar{y}y}{(y\bar{y}+\tau)} \varphi_+^{as}(y,\mu^2) \frac{\alpha}{(\alpha+y\bar{y}+\tau)}$$

$$=\frac{m_q^2}{Q^2}, \qquad C=\sqrt{4\pi\alpha_{em}}$$

 \mathcal{T}

Generalized massive formula: * $\tau = 0 \rightarrow$ no quark mass $\rightarrow \rho$ -production

Vector meson-DAs employed:

* $\varphi_{+}^{WW}(y,\mu^2) = (2y-1)\varphi_{1T}^{WW}(y,\mu^2) + \varphi_{AT}^{WW}(y,\mu^2)$

* $\tau \neq 0 \rightarrow$ with quark mass $\rightarrow \phi$ -production [A. D. Bolognino, A. Szczurek, W. Schafër]

* asymptotic $\varphi_1^{as}(y) \rightarrow a_2(\mu^2) = 0$

Models of unintegrated gluon density (UGD)

- *** ABIPSW:** x-independent model $\mathcal{F}(x,$
 - [I. V. Anikin et al. (2011)]
- * Toy model: gluon momentum derivativ
- $\mathcal{F}(x,k^2) = \mathcal{F}_{soft}(x,k^2) + \mathcal{F}_{hard}(x,k^2)$ **IN:** soft-hard model * I. P. Ivanov and N. N. Nikolaev (2002)
- *** HSS:** $\mathscr{F}(x,k^2) = \Phi_P \otimes \mathscr{G}_{BFKL}$
 - M. Hentschinski, A. Sabio Vera, C. Salas (2013)]
- **WMR:** angular ordering of gluon emissions *

[G. Watt, A. D. Martin, M. G. Ryskin (2003)]

GBW: FT of dipole cross section *

[K. J. Golec-Biernat, M. Wüsthoff (1998)]

- **BCRT:** small-*x* improved unpolarized gluon TMD *
 - [A. Bacchetta, F.G. Celiberto, M. Radici, P. Taels (2020)] P

$$(\mathbf{GD})$$

$$(\mathbf{k}^2) = \frac{A}{(2\pi)^2 M^2} \left[\frac{k^2}{k^2 + M^2} \right]$$

$$(\mathbf{k}^2) = \mathcal{F}(x, k^2) = \frac{d(xg(x, k^2))}{d \ln k^2}$$

ρ -meson leptoproduction at HERA

$$\sigma_L(\gamma^* p \to V p) = \frac{1}{16\pi b(Q^2)} \frac{|T_{00}(s, Q^2)|^2}{W^2}$$

$$\sigma_T(\gamma^* p \to V p) = \frac{1}{16\pi b(Q^2)} \frac{|T_{11}(s, Q^2)|^2}{W^2}$$

* $b(Q^2)$ -slope for light vector mesons

$$b(Q^2) \approx \beta_0 - \beta_1 \ln \left[\frac{Q^2 + m_V^2}{m_{J/\Psi}^2} \right] + \frac{\beta_2}{Q^2 + m_V^2}$$

For ρ -meson:

 $\beta_0 = 6.5 \text{ GeV}^{-2}$, $\beta_1 = 1.2 \text{ GeV}^{-2}$, $\beta_2 = 1.1 \text{ GeV}^{-2}$

[A. D. Bolognino, F. G. Celiberto, D. Yu. Ivanov, A. Papa, A. Szczurek, W. Schafër]

ρ -meson leptoproduction at the EIC

$$\sigma_L(\gamma^* p \to V p) = \frac{1}{16\pi b(Q^2)} \frac{|T_{00}(s, Q^2)|^2}{W^2}$$

$$\sigma_T(\gamma^* p \to V p) = \frac{1}{16\pi b(Q^2)} \frac{|T_{11}(s, Q^2)|^2}{W^2}$$

* $b(Q^2)$ -slope for light vector mesons

$$b(Q^2) \approx \beta_0 - \beta_1 \ln \left[\frac{Q^2 + m_V^2}{m_{J/\Psi}^2} \right] + \frac{\beta_2}{Q^2 + m_V^2}$$

For ρ -meson:

 $\beta_0 = 6.5 \text{ GeV}^{-2}$, $\beta_1 = 1.2 \text{ GeV}^{-2}$, $\beta_2 = 1.1 \text{ GeV}^{-2}$

ρ -meson leptoproduction at HERA

$$\sigma_L(\gamma^* p \to V p) = \frac{1}{16\pi b(Q^2)} \frac{|T_{00}(s, Q^2)|^2}{W^2}$$

$$\sigma_T(\gamma^* p \to V p) = \frac{1}{16\pi b(Q^2)} \frac{|T_{11}(s, Q^2)|^2}{W^2}$$

* $b(Q^2)$ -slope for light vector mesons

$$b(Q^2) \approx \beta_0 - \beta_1 \ln \left[\frac{Q^2 + m_V^2}{m_{J/\Psi}^2}\right] + \frac{\beta_2}{Q^2 + m_V^2}$$

For ρ -meson:

 $\beta_0 = 6.5 \text{ GeV}^{-2}$, $\beta_1 = 1.2 \text{ GeV}^{-2}$, $\beta_2 = 1.1 \text{ GeV}^{-2}$

[A. D. Bolognino, F. G. Celiberto, D. Yu. Ivanov, A. Papa, A. Szczurek, W. Schafër]

ρ -meson leptoproduction at the EIC

$$\sigma_L(\gamma^* p \to V p) = \frac{1}{16\pi b(Q^2)} \frac{|T_{00}(s, Q^2)|^2}{W^2}$$

$$\sigma_T(\gamma^* p \to V p) = \frac{1}{16\pi b(Q^2)} \frac{|T_{11}(s, Q^2)|^2}{W^2}$$

* $b(Q^2)$ -slope for light vector mesons

$$b(Q^2) \approx \beta_0 - \beta_1 \ln \left[\frac{Q^2 + m_V^2}{m_{J/\Psi}^2} \right] + \frac{\beta_2}{Q^2 + m_V^2}$$

For ρ -meson:

 $\beta_0 = 6.5 \text{ GeV}^{-2}$, $\beta_1 = 1.2 \text{ GeV}^{-2}$, $\beta_2 = 1.1 \text{ GeV}^{-2}$

ρ -meson leptoproduction at HERA

$$\sigma_L(\gamma^* p \to V p) = \frac{1}{16\pi b(Q^2)} \frac{|T_{00}(s, Q^2)|^2}{W^2}$$

$$\sigma_T(\gamma^* p \to V p) = \frac{1}{16\pi b(Q^2)} \frac{|T_{11}(s, Q^2)|^2}{W^2}$$

* $b(Q^2)$ -slope for light vector mesons

$$b(Q^2) \approx \beta_0 - \beta_1 \ln \left[\frac{Q^2 + m_V^2}{m_{J/\Psi}^2} \right] + \frac{\beta_2}{Q^2 + m_V^2}$$

For ρ -meson:

 $\beta_0 = 6.5 \text{ GeV}^{-2}$, $\beta_1 = 1.2 \text{ GeV}^{-2}$, $\beta_2 = 1.1 \text{ GeV}^{-2}$

[A. D. Bolognino, F. G. Celiberto, D. Yu. Ivanov, A. Papa, A. Szczurek, W. Schafër]

ρ -meson leptoproduction at the EIC

$$\sigma_L(\gamma^* p \to V p) = \frac{1}{16\pi b(Q^2)} \frac{|T_{00}(s, Q^2)|^2}{W^2}$$

$$\sigma_T(\gamma^* p \to V p) = \frac{1}{16\pi b(Q^2)} \frac{|T_{11}(s, Q^2)|^2}{W^2}$$

* $b(Q^2)$ -slope for light vector mesons

$$b(Q^2) \approx \beta_0 - \beta_1 \ln \left[\frac{Q^2 + m_V^2}{m_{J/\Psi}^2}\right] + \frac{\beta_2}{Q^2 + m_V^2}$$

***** For ρ -meson:

 $\beta_0 = 6.5 \ \mathrm{GeV^{-2}}$, $\beta_1 = 1.2 \ \mathrm{GeV^{-2}}$, $\beta_2 = 1.1 \ \mathrm{GeV^{-2}}$

[A. D. Bolognino, F. G. Celiberto, D. Yu. Ivanov, A. Papa, A. Szczurek, W. Schafër]

Outline

Conclusions and summary

Vector meson leptoproduction is a suitable tool for the investigation of the UGD

- Impact factors for both longitudaly and transversly polarized ρ -meson are known *
- * Hera data are available and predictions for future studies at the EIC has been built

None of models is able to reproduce the entire HERA Q^2 -spectrum

- UGD model extraction from fits *
- Towards a unification of formalism

Unintegrated gluon densities are essential for the description of high-energy QCD

Towards a unification of formalisms

M. Nefedov's talk

F. Celiberto's talk

TMD evolution vs BFKL evolution

- [M. Hentschinski (2021)] M. Nefedov (2021) P
- [M. Hentschinski, A. Kusina, K. Kutak, M. Serino (2018)] P

Small-*x* **input to gluon TMDs**

[A. Bacchetta, F.G. Celiberto, M. Radici, P. Taels (2020)] P

Small-*x* **resummed collinear PDFs**

[R.D. Ball, V. Bertone, M. Bonvini, S. Marzani, J. Rojo, L. Rottoli (2018)]

Thanks for the attention!

