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It is systematically improvable: finite volume, discretization effects

lattice spacing

a

Uμ = eiaAμ
gauge 
links

Lattice QCD is a first-principles numerical approach to the strong interaction

⟨𝒪(t)𝒪(0)⟩ =
1
𝒵 ∫ DψDψ̄DA 𝒪(t)𝒪(0)e−SE(ψ,ψ̄,Aμ)

Can we obtain scattering amplitudes  
from Euclidean correlation functions?

Euclidean 
action 
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The Lüscher method is a well-established approach for two-particle scattering on the lattice.

Mπ=139 MeV

fit to experiment

[Fischer, Kostrzewa, Liu, FRL, Ueding, Urbach (ETMC) ] 

I=2 ππ scattering
See plenary by D. Wilson, Today

det [𝒦2+F−1
2 ] = 0

two-particle  
quantization condition

However, most resonances decay 

to more than two hadrons
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Phenomenologically relevant resonances

N(1440) → Δπ → Nππ

(with 3π decay modes)≥

Many-body nuclear physics, 3N force

K → 3π, D → 4π
CP violation in D and K decays 
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9

  Free scalar particles in finite volume 
with periodic BC

⃗p =
2π
L

(nx, ny, nz)

Two particles: E = 2 m2 +
4π2

L2
⃗n 2

Interactions change the spectrum!

The energy shift is related to the scattering amplitude

Ground state to leading order

E2 − 2m = ⟨ϕ( ⃗0 )ϕ( ⃗0 ) |HI |ϕ( ⃗0 )ϕ( ⃗0 )⟩

E2 − 2m =
ℳ2(E = 2m)

8m2L3
+ O(L−4)

[Huang, Yang, 1958]

In general a problem of  

Quantum Field Theory  

in finite volume
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C(t) = ⟨𝒪(t)𝒪(0)⟩ = ∑
n

⟨0 |𝒪(0) |n⟩
2
e−Ent

The Spectrum

E0

E1

E2

E3

Current techniques allow the  
determination of  many energy levels!
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They depend also on two-to-two interactions.

• But any separation between “two-particle” and “three-particle” effects is not well-defined

Three-particle scattering amplitudes can be divergent for specific kinematics.

can go 
on-shell

Qualitatively more complicated than the two-particle case!

ℳ3 = + + +⋯

However, the three-particle spectrum depends on S-matrix elements! [Polejaeva, Rusetsky]
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• Finite-Volume Unitarity (FVU)

• Generic Relativistic Field Theory (RFT)

Also [Blanton, Briceño, Hansen, Jackura, FRL, Szczepaniak, Sharpe]

Higher partial waves 
Nondegenerate and nonidentical scalars 
Two-to-three transitions 
Three-particle decays 
Analysis of  lattice QCD data

Nondegenerate (DDK systems) 
Perturbative expansions for three pions and excited states 
Three-particle decays 
Relativistic kinematics can be included

Chiral extrapolations 
Analysis of  lattice QCD data 
Study of  resonant channels: a1(1260)

• Non-Relativistic EFT (NREFT)

Also [Döring, Geng, Hammer, Mai, Meißner, Müller, Pang, FRL, Rusetsky, Wu]

All three formalisms should be equivalent.  

Explicitly shown for FVU and RFT! 

[Blanton, Sharpe]
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15

The determination of  three-particle scattering amplitudes on the lattice is a two-step process! 

  The scheme dependence is removed by solving integral equations. Step 2: 

Step 1: 

  Finite-volume spectrum as solutions of  the “quantization condition”. 

  The two- and three-particle spectra are used to determine an intermediate quantity 

  This quantity is scheme-dependent and unphysical

det [M(E, L)]
E=En

= 0

𝒦df,3 , H0 , C0
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E0

E1

E2

E3

2π and 3π 
Spectrum 

1.  and    parametrize interactions. 

They can be obtained from the spectrum

𝒦2 𝒦df,3

2. Solve integral equations to obtain 
the physical three-to-three amplitude

𝒦2, 𝒦df,3

Physical 3->3  
amplitude

ℳ3
Integral 
equations

Solved in [Briceño et al], [Hansen et al.], [Jackura et al.]

det [𝒦2 + F−1
2 ] = 0

2π 

det [𝒦df,3 + F−1
3 ] = 0

3π 
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NREFTRFT
[Döring et al][Romero-López et al]

Choose “toy” interactions: 
a0 , 𝒦df,3 . . .

Generate spectrum from 
quantization condition

det [M(E, L)] = 0
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Three-particle decays (K->3π)

From the lattice, one can get the one-to-three finite-volume matrix element:

How to relate that to the physical infinite-volume decay amplitude? 

18

Decay processes get distorted in finite volume [Lellouch,Lüscher]

NREFT in [Müller, Rusetsky]

RFT in [Hansen, FRL, Sharpe]

See talk by S. Sharpe, Wednesday 28th
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Analyzing the spectrum

20

three-π+ energies

Mπ=200 MeV

[Hörz,Hanlon (2019, PRL)]

First analysis of  the full finite-volume  
spectrum of  2π+ and 3π+!

[see also earlier work using the ground state by Mai et al., and Beane et al.]
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3π+

Same spectrum has been analyzed  
by [Mai, Döring, Culver, Alexandru]
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[Fischer, Kostrzewa, Liu, FRL, Ueding, Urbach (ETMC) ] 

In a later article, the chiral dependence of   has been studied, including physical pions.𝒦df,3

Tension with ChPT remains

Mπ=139 MeV

Constant term seems well-behaved

Mπ=340 MeV

Alre
ady m

aking  

summary plots 

𝒦df,3 = 𝒦iso,0
df,3 + 𝒦iso,1

df,3 ( s − 9M2

9M2 )
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The FVU formalism has also been applied to three-pion systems

three-particle “contact” term

See talk by A. Alexandru, Wednesday 28th

[Brett et al.] 
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Applying the FVU approach (3π+)

23

Tension with ChPT?

The FVU formalism has also been applied to three-pion systems

three-particle “contact” term

See talk by A. Alexandru, Wednesday 28th

[Brett et al.] 



/29

Higher partial waves

24



/29

Higher partial waves

24

Threshold expansion in the three-particle sector:
[Blanton, FRL, Sharpe] 



/29

Higher partial waves

24

s-wave

Threshold expansion in the three-particle sector:
[Blanton, FRL, Sharpe] 



/29

Higher partial waves

24

s-wave d-wave

Threshold expansion in the three-particle sector:
[Blanton, FRL, Sharpe] 



/29

Higher partial waves

24

s-wave d-wave

Threshold expansion in the three-particle sector:
[Blanton, FRL, Sharpe] 

tij = (pi − kj)2



/29

Higher partial waves

24

s-wave d-wave

Threshold expansion in the three-particle sector:
[Blanton, FRL, Sharpe] 

[Blanton, Hanlon, Hörz, Morningstar, FRL, Sharpe]

See talk by A. Hanlon, Wednesday 28th
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Integral 
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Final step

Particle-Dimer phase shift [Jackura et al.] 

See talk by A. Jackura, Tuesday 27th
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𝒦2, 𝒦df,3

Physical 3->3  
amplitude

ℳ3
Integral 
equations

Final step
Dalitz plots from lattice QCD

M4
π |ℳ3 |2

[Hansen et al. (HadSpec) ] 

(3π+)

Mπ=391 MeV

See talk by M. Hansen, Wednesday 28th

Particle-Dimer phase shift [Jackura et al.] 

See talk by A. Jackura, Tuesday 27th
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𝒦2, Cℓℓ′ 

Physical 3->3  
amplitude

ℳ3
Integral 
equations

Final step
Pole position of a1(1260)

[Mai et al. (GWQCD)] 

Mπ=224 MeV

Experiment + EFT 

Pole position using 
lattice input 
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Summary

28

 Many recent formal developments for three-particle systems. 

• Three versions of  finite-volume formalism for identical particles. 

• Various generalizations for nonidentical scalar particles. 

• Formalism for three-body decays.

Applications to simple systems successfully undertaken  

• Some lattice studies of  three charged pions and kaons 

• It is possible to even study d-wave interactions [Blanton et al.] 

• Recent study in FVU formalism of  the  [Mai et al.]a1(1260)

The field is evolving very rapidly!
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1. Generalizing the formalism for generic two- and three- particle systems 
(e.g. nucleons, Roper)

2. Apply the formalism to more complex systems                                               

(e.g. …)ππK, h1(1170)

3. Study three-particle decays with the available framework.                       

(e.g. )K → 3π

4. Beyond three particles!

Thanks! 

Wednesday 28th
Tuesday 27th
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s-wave d-wave

Threshold expansion:
[Blanton, FRL, Sharpe] 


