Three marticle scattering amplitudes from Lattice QCD

Fernando Romero-López University of Valencia

fernando.romero@uv.es

HADRON, 29th July

Introduction Finite-Volume Spectrum Three particles in finite volume Applications to lattice QCD Summary and Outlook

Quantum chromodynamics is conceptually simple. Its realization in nature, however, is usually very complex.

Frank Wilczek

4 /29

 $\mathscr{L}_{QCD} = \sum_{i}^{N_f} \bar{q}_i \left(D_{\mu} \gamma^{\mu} + m_i \right) q_i + \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a$

4 /29

$\left< \mathcal{O}(t) \mathcal{O}(0) \right> = \frac{1}{\mathcal{Z}} \left[D\psi D\bar{\psi} DA \mathcal{O}(t) \mathcal{O}(0) e^{-S_E(\psi,\bar{\psi},A_\mu)} \right]$

$\left< \mathcal{O}(t) \mathcal{O}(0) \right> = \frac{1}{\mathcal{Z}} \int D\psi D\bar{\psi} DA \, \mathcal{O}(t) \mathcal{O}(0) e^{-S_E(\psi,\bar{\psi},A_\mu)}$ Euclidea

Euclidean action

$$\left< \mathcal{O}(t) \mathcal{O}(0) \right> = \frac{1}{\mathcal{Z}} \int D\psi D\bar{\psi} DA \, \mathcal{O}(t) \mathcal{O}(t)$$

It is systematically improvable: finite volume, discretization effects 0

$$\left< \mathcal{O}(t) \mathcal{O}(0) \right> = \frac{1}{\mathcal{Z}} \int D\psi D\bar{\psi} DA \, \mathcal{O}(t) \mathcal{O}(t) \mathcal{O}(t) = \frac{1}{\mathcal{Z}} \int D\psi D\bar{\psi} DA \, \mathcal{O}(t) \mathcal{O}(t) \mathcal{O}(t) = \frac{1}{\mathcal{Z}} \int D\psi D\bar{\psi} DA \, \mathcal{O}(t) \mathcal{O}(t) \mathcal{O}(t) = \frac{1}{\mathcal{Z}} \int D\psi D\bar{\psi} DA \, \mathcal{O}(t) \mathcal{O}(t) \mathcal{O}(t) = \frac{1}{\mathcal{Z}} \int D\psi D\bar{\psi} DA \, \mathcal{O}(t) \mathcal{O}(t) \mathcal{O}(t) = \frac{1}{\mathcal{Z}} \int D\psi D\bar{\psi} DA \, \mathcal{O}(t) \mathcal{O}(t) \mathcal{O}(t) = \frac{1}{\mathcal{Z}} \int D\psi D\bar{\psi} DA \, \mathcal{O}(t) \mathcal{O}(t) \mathcal{O}(t) = \frac{1}{\mathcal{Z}} \int D\psi D\bar{\psi} DA \, \mathcal{O}(t) \mathcal{O}(t) \mathcal{O}(t) = \frac{1}{\mathcal{Z}} \int D\psi D\bar{\psi} DA \, \mathcal{O}(t) \mathcal{O}(t) \mathcal{O}(t) = \frac{1}{\mathcal{Z}} \int D\psi D\bar{\psi} DA \, \mathcal{O}(t) \mathcal{O}(t) \mathcal{O}(t) = \frac{1}{\mathcal{Z}} \int D\psi D\bar{\psi} DA \, \mathcal{O}(t) \mathcal{O}(t) \mathcal{O}(t) \mathcal{O}(t) = \frac{1}{\mathcal{Z}} \int D\psi D\bar{\psi} DA \, \mathcal{O}(t) \mathcal{O}(t) \mathcal{O}(t) = \frac{1}{\mathcal{Z}} \int D\psi D\bar{\psi} DA \, \mathcal{O}(t) \mathcal{O}(t) \mathcal{O}(t) = \frac{1}{\mathcal{Z}} \int D\psi D\bar{\psi} DA \, \mathcal{O}(t) \mathcal{O}(t) \mathcal{O}(t) = \frac{1}{\mathcal{Z}} \int D\psi D\bar{\psi} DA \, \mathcal{O}(t) \mathcal{O}(t) \mathcal{O}(t) = \frac{1}{\mathcal{Z}} \int D\psi D\bar{\psi} DA \, \mathcal{O}(t) \mathcal{O}(t) \mathcal{O}(t) = \frac{1}{\mathcal{Z}} \int D\psi D\bar{\psi} DA \, \mathcal{O}(t) \mathcal{O}(t) = \frac{1}{\mathcal{Z}} \int D\psi D\bar{\psi} DA \, \mathcal{O}(t) \mathcal{O}(t) = \frac{1}{\mathcal{Z}} \int D\psi D\bar{\psi} DA \, \mathcal{O}(t) \mathcal{O}(t) = \frac{1}{\mathcal{Z}} \int D\psi D\bar{\psi} DA \, \mathcal{O}(t) \mathcal{O}(t) = \frac{1}{\mathcal{Z}} \int D\psi D\bar{\psi} DA \, \mathcal{O}(t) \mathcal{O}(t) = \frac{1}{\mathcal{Z}} \int D\psi D\bar{\psi} DA \, \mathcal{O}(t) \mathcal{O}(t) = \frac{1}{\mathcal{Z}} \int D\psi D\bar{\psi} DA \, \mathcal{O}(t) = \frac{1}{\mathcal$$

It is systematically improvable: finite volume, discretization effects 0

Can we obtain scattering amplitudes from Euclidean correlation functions?

O The Lüscher method is a well-established approach for two-particle scattering on the lattice.

See plenary by D. Wilson, Today

0 The Lüscher method is a well-established approach for two-particle scattering on the lattice.

See plenary by D. Wilson, Today

Volume Dependence of the Energy Spectrum in Massive Quantum Field Theories

II. Scattering States

M. Lüscher

Theory Division, Deutsches Elektronen-Synchrotron DESY, D-2000 Hamburg 52, Federal Republic of Germany

The Lüscher method is a well-established approach for two-particle scattering on the lattice. 0

See plenary by D. Wilson, Today

Volume Dependence of the Energy Spectrum in Massive Quantum Field Theories

II. Scattering States

M. Lüscher Theory Division, Deutsches Elektronen-Synchrotron DESY, D-2000 Hamburg 52, Federal Republic of Germany

> two-particle quantization condition

 $\det \left[\mathscr{K}_2 + F_2^{-1} \right] = 0$

O The Lüscher method is a well-established approach for two-particle scattering on the lattice.

See plenary by D. Wilson, Today

Volume Dependence of the Energy Spectrum in Massive Quantum Field Theories

II. Scattering States

M. Lüscher Theory Division, Deutsches Elektronen-Synchrotron DESY, D-2000 Hamburg 52, Federal Republic of Germany

> two-particle quantization condition

 $\det \left[\mathscr{K}_2 + F_2^{-1} \right] = 0$

O The Lüscher method is a well-established approach for two-particle scattering on the lattice.

See plenary by D. Wilson, Today

Volume Dependence of the Energy Spectrum in Massive Quantum Field Theories

II. Scattering States

M. Lüscher Theory Division, Deutsches Elektronen-Synchrotr Republic of Germany

two-particle

 $\det \left[\mathscr{K}_2 + F_2^{-1} \right] = 0$

quantization condi

[Fischer, Kostrzewa, Liu, <u>FRL</u>, Ueding, Urbach (ETMC)]

Resonance	$I_{\pi\pi\pi}$	J^P
$\omega(782)$	0	1-
$h_1(1170)$	0	1+
$\omega_3(1670)$	0	3-
$\pi(1300)$	1	0-
$a_1(1260)$	1	1^{+}
$\pi_1(1400)$	1	1-
$\pi_2(1670)$	1	2^{-}
$a_2(1320)$	1	2^{+}
$a_4(1970)$	1	4^{+}

(with $\geq 3\pi$ decay modes)

Many-body nuclear physics, 3N force

Resonance	$I_{\pi\pi\pi}$	J^P
$\omega(782)$	0	1-
$h_1(1170)$	0	1+
$\omega_3(1670)$	0	3-
$\pi(1300)$	1	0-
$a_1(1260)$	1	1^{+}
$\pi_1(1400)$	1	1-
$\pi_2(1670)$	1	2^{-}
$a_2(1320)$	1	2^{+}
$a_4(1970)$	1	4^{+}

(with $\geq 3\pi$ decay modes)

O Many-body nuclear physics, 3N force

C CP violation in D and K decays

$$K \rightarrow 3\pi, D \rightarrow 4\pi$$

Resonance	$I_{\pi\pi\pi}$	J^P
$\omega(782)$	0	1-
$h_1(1170)$	0	1+
$\omega_3(1670)$	0	3-
$\pi(1300)$	1	0-
$a_1(1260)$	1	1^{+}
$\pi_1(1400)$	1	1-
$\pi_2(1670)$	1	2^{-}
$a_2(1320)$	1	2^{+}
$a_4(1970)$	1	4^{+}

(with $\geq 3\pi$ decay modes)

9 /29

$$\overrightarrow{p} = \frac{2\pi}{L}(n_x, n_y, n_z)$$

Two particles: E =

$$2\sqrt{m^2 + \frac{4\pi^2}{L^2}} \vec{n}^2$$

9 /29

$$\overrightarrow{p} = \frac{2\pi}{L}(n_x, n_y, n_z)$$

Two particles: E =

$$2\sqrt{m^2 + \frac{4\pi^2}{L^2}} \overrightarrow{n^2}$$

Interactions change the spectrum!

$$\overrightarrow{p} = \frac{2\pi}{L}(n_x, n_y, n_z)$$

Two particles: E =

$$2\sqrt{m^2 + \frac{4\pi^2}{L^2}} \overrightarrow{n^2}$$

Interactions change the spectrum!

 $\underline{E}_2 - 2m = \langle \phi(\overrightarrow{0})\phi(\overrightarrow{0}) | \mathbf{H}_{\mathbf{I}} | \phi(\overrightarrow{0})\phi(\overrightarrow{0}) \rangle$

$$\overrightarrow{p} = \frac{2\pi}{L}(n_x, n_y, n_z)$$

Two particles: E =

$$2\sqrt{m^2 + \frac{4\pi^2}{L^2}} \overrightarrow{n^2}$$

Interactions change the spectrum!

Ground state to leading order $\underline{E_2} - 2m = \langle \phi(\vec{0})\phi(\vec{0}) | \mathbf{H_I} | \phi(\vec{0})\phi(\vec{0}) \rangle$ $\frac{E_2 - 2m}{8m^2L^3} + O(L^{-4})$ [Huang, Yang, 1958]

$$\overrightarrow{p} = \frac{2\pi}{L}(n_x, n_y, n_z)$$

Two particles: E =

$$2\sqrt{m^2 + \frac{4\pi^2}{L^2}} \overrightarrow{n^2}$$

Interactions change the spectrum!

Ground state to leading order $E_2 - 2m = \langle \phi(\vec{0})\phi(\vec{0}) | \mathbf{H}_{\mathbf{I}} | \phi(\vec{0})\phi(\vec{0}) \rangle$ $E_2 - 2m = \frac{\mathscr{M}_2(E = 2m)}{8m^2 L^3} + O(L^{-4})$ [Huang, Yang, 1958]

The energy shift is related to the scattering amplitude

Interactions change the spectrum!

state to leading order $\mathbf{M} = \langle \phi(\vec{0})\phi(\vec{0}) | \mathbf{H}_{\mathbf{I}} | \phi(\vec{0})\phi(\vec{0}) \rangle$ $E_2 - 2m = \frac{\mathcal{M}_2(E = 2m)}{\Omega - 2\pi^3} + O(L^{-4})$

[Huang, Yang, 1958]

The energy shift is related to the scattering amplitude

O The energy levels of the theory are measured from Euclidean correlation functions

O The energy levels of the theory are measured from Euclidean correlation functions

 $C(t) = \langle \mathcal{O}(t) \mathcal{O}(0) \rangle =$

$$\sum_{n} \left| \langle 0 | \mathcal{O}(0) | n \rangle \right|^2 e^{-E_n t}$$

The energy levels of the theory are measured from Euclidean correlation functions 0

 $C(t) = \langle \mathcal{O}(t) \mathcal{O}(0) \rangle =$

$$\sum_{n} \left| \langle 0 | \mathcal{O}(0) | n \rangle \right|^2 e^{-E_n t}$$

Current techniques allow the determination of many energy levels!

[Blanton, Hanlon, Hörz, Morningstar, FRL, Sharpe]

11/29

O Three-particle scattering amplitudes can be divergent for specific kinematics.

- Three-particle scattering amplitudes can be divergent for specific kinematics.
- They depend also on two-to-two interactions.

But any separation between "two-particle" and "three-particle" effects is not well-defined

Three-particle scattering amplitudes can be divergent for specific kinematics.
 They depend also on two-to-two interactions.
 But any separation between "two-particle" and "three-particle" effects is not well-defined
 However, the three-particle spectrum depends on S-matrix elements! [Polejaeva, Rusetsky]

Three-particle formalism(s)

14/29

Relativistic, model-independent, three-particle quantization condition

Maxwell T. Hansen¹, * and Stephen R. Sharpe¹, †

Also [Blanton, Briceño, Hansen, Jackura, FRL, Szczepaniak, Sharpe]

Relativistic, model-independent, three-particle quantization condition

Maxwell T. Hansen^{1, *} and Stephen R. Sharpe^{1, †}

Also [Blanton, Briceño, Hansen, Jackura, FRL, Szczepaniak, Sharpe]

Three-particle quantization condition in a finite volume: 1. The role of the three-particle force

Hans-Werner Hammer^a, Jin-Yi Pang^b and Akaki Rusetsky^b Also [Döring, Geng, Hammer, Mai, Meißner, Müller, Pang, <u>FRL</u>, Rusetsky, Wu]

Non-Relativistic EFT (NREFT)

Finite-Volume Unitarity (FVU)

Relativistic, model-independent, three-particle quantization condition Maxwell T. Hansen^{1,*} and Stephen R. Sharpe^{1,†}

Also [Blanton, Briceño, Hansen, Jackura, FRL, Szczepaniak, Sharpe]

Three-particle quantization condition in a finite volume: 1. The role of the three-particle force

Hans-Werner Hammer^a, Jin-Yi Pang^b and Akaki Rusetsky^b Also [Döring, Geng, Hammer, Mai, Meißner, Müller, Pang, <u>FRL</u>, Rusetsky, Wu]

Three-body Unitarity in the Finite Volume

M. Mai^{1, *} and M. Döring^{1, 2, †}

- **Higher partial waves**
- Nondegenerate and nonidentical scalars
- **Two-to-three transitions**
- **Three-particle decays**
- Analysis of lattice QCD data

Non-Relativistic EFT (NREFT)

- Nondegenerate (DDK systems)
- Perturbative expansions for three pions and excited states
- **Three-particle decays**
- **Relativistic kinematics can be included**

Finite-Volume Unitarity (FVU)

- **Chiral extrapolations**
- Analysis of lattice QCD data
- Study of resonant channels: $a_1(1260)$

Relativistic, model-independent, three-particle quantization condition

Maxwell T. Hansen^{1, *} and Stephen R. Sharpe^{1, †}

Also [Blanton, Briceño, Hansen, Jackura, <u>FRL</u>, Szczepaniak, Sharpe]

Three-particle quantization condition in a finite volume: 1. The role of the three-particle force

Hans-Werner Hammer^a, Jin-Yi Pang^b and Akaki Rusetsky^b

Also [Döring, Geng, Hammer, Mai, Meißner, Müller, Pang, FRL, Rusetsky, Wu]

Three-body Unitarity in the Finite Volume

M. Mai^{1, *} and M. Döring^{1, 2, †}

- **Higher partial waves**
- Nondegenerate and nonidentical scalars
- **Two-to-three transitions**
- **Three-particle decays**
- Analysis of lattice QCD data

Non-Relativistic EFT (NR

- Nondegenerate (DDR
- Perturbative expansio
- **Three-particle decays**
- **Relativistic kinematics**

Finite-Volume Unitarity (F

- **Chiral extrapolations**
- Analysis of lattice QCD data
- Study of resonant channels: $a_1(1260)$

Three-particle formalism(s)

Relativistic, model-independent, three-particle quantization condition

T. Hansen¹, * and Stephen R. Sharpe¹, \dagger

Hansen, Jackura, <u>FRL</u>, Szczepaniak, Sharpe]

ation condition in a finite volume: of the three-particle force

All three formalisms should be equivalent. Hans-Werner Hammer^a, Jin-Yi Pang^b and Akaki Rusetsky^b

Explicitly shown for FVU and RFT! [Blanton, Sharpe] Also [Döring, Geng, Hammer, Mai, Meißner, Müller, Pang, FRL, Rusetsky, Wu]

Three-body Unitarity in the Finite Volume

M. Mai^{1, *} and M. Döring^{1, 2, †}

O The determination of three-particle scattering amplitudes on the lattice is a two-step process!

$$\left[M(E,L)\right]\Big|_{E=E_n} = 0$$

$$_{3}, H_{0}, C_{0}$$

$$\left[M(E,L)\right]\Big|_{E=E_n} = 0$$

The RET Formalism

Solve integral equations to obtain the physical three-to-three amplitude

Solved in [Briceño et al], [Hansen et al.], [Jackura et al.]

The RET Formalism

Physical 3->3 amplitude $\mathcal{K}_2, \mathcal{K}_{df.3}$ Integral equations

 $a_0, \mathcal{K}_{df,3} \dots$

• From the lattice, one can get the one-to-three finite-volume matrix element:

 $\langle E_n, \boldsymbol{P}, \Lambda \mu, L | \mathcal{H}_W(0) | K, \boldsymbol{P}, L \rangle$.

• From the lattice, one can get the one-to-three finite-volume matrix element:

 $\langle E_n, \boldsymbol{P}, \Lambda \mu, L \rangle$

How to relate that to the physical infinite-volume decay amplitude? 0

$$T_{K3\pi} = \langle 3\pi, \operatorname{out} | \mathcal{H}_W(0) | K, \boldsymbol{P} \rangle$$
,

$$|\mathcal{H}_W(0)|K, \boldsymbol{P}, L
angle$$
 .

• From the lattice, one can get the one-to-three finite-volume matrix element:

 $\langle E_n, \boldsymbol{P}, \Lambda \mu, L \rangle$

O How to relate that to the physical infinite-volume decay amplitude?

$$T_{K3\pi} = \langle 3\pi, c \rangle$$

$$|\mathcal{H}_W(0)|K, \boldsymbol{P}, L
angle$$
 .

 $\operatorname{out} | \mathcal{H}_W(0) | K, \boldsymbol{P} \rangle$,

NREFT in [Müller, Rusetsky] RFT in [Hansen, <u>FRL</u>, Sharpe]

See talk by S. Sharpe, Wednesday 28th

Tyler D. Blanton,^{1, *} Fernando Romero-López,^{2, †} and Stephen R. Sharpe^{1, ‡} ¹Physics Department, University of Washington, Seattle, WA 98195-1560, USA ²Instituto de Física Corpuscular, Universitat de València and CSIC, 46980 Paterna, Spain

[see also earlier work using the ground state by Mai et al., and Beane et al.]

$$\frac{q}{M}\cot\delta_0 = \frac{\sqrt{sM}}{s - z_2^2} \left(B_0 + B_1 q^2 + \cdots\right)$$
$$\mathcal{K}_{df,3} = \mathcal{K}_{df,3}^{iso,0} + \mathcal{K}_{df,3}^{iso,1} \left(\frac{s - 9M^2}{9M^2}\right)$$

 $\frac{q}{M}\cot\delta_0 = \frac{\sqrt{sM}}{s - z_2^2} \left(B_0 + B_1 q^2 + \cdots\right)$

$$\frac{q}{M}\cot\delta_0 = \frac{\sqrt{sM}}{s - z_2^2} \left(B_0 + B_1 q^2 + \cdots\right)$$
$$\mathcal{K}_{df,3} = \mathcal{K}_{df,3}^{iso,0} + \mathcal{K}_{df,3}^{iso,1} \left(\frac{s - 9M^2}{9M^2}\right)$$

1. 2 σ evidence for $\mathscr{K}_{df,3} \neq 0$.

$$\frac{q}{M}\cot\delta_0 = \frac{\sqrt{sM}}{s - z_2^2} \left(B_0 + B_1 q^2 + \cdots\right)$$
$$\mathscr{K}_{df,3} = \mathscr{K}_{df,3}^{iso,0} + \mathscr{K}_{df,3}^{iso,1} \left(\frac{s - 9M^2}{9M^2}\right)$$

1. 2σ evidence for $\mathcal{K}_{df,3} \neq 0$.

Some tension with ChPT.

O Parametrize K-matrices with only s-wave interactions:

$$\frac{q}{M}\cot\delta_0 = \frac{\sqrt{sM}}{s - z_2^2} \left(B_0 + B_1 q^2 + \cdots\right)$$
$$\mathcal{K}_{df,3} = \frac{\mathcal{K}_{iso,0}^{iso,0}}{df,3} + \frac{\mathcal{K}_{iso,1}^{iso,1}}{df,3} \left(\frac{s - 9M^2}{9M^2}\right)$$

1. 2 σ evidence for $\mathscr{K}_{df,3} \neq 0$.

Some tension with ChPT.

Same spectrum has been analyzed by [Mai, Döring, Culver, Alexandru]

0 [Fischer, Kostrzewa, Liu, <u>FRL</u>, Ueding, Urbach (ETMC)]

In a later article, the chiral dependence of $\mathscr{K}_{df,3}$ has been studied, including physical pions.

$$\mathcal{K}_{df,3} = \mathcal{K}_{df,3}^{iso,0} + \mathcal{K}_{df,3}^{iso,1}\left(\frac{s - 9M^2}{9M^2}\right)$$

• In a later article, the chiral dependence of $\mathscr{K}_{df,3}$ has been studied, including physical pions. [Fischer, Kostrzewa, Liu, <u>FRL</u>, Ueding, Urbach (ETMC)]

Constant term seems well-behaved

$$\mathcal{K}_{df,3} = \mathcal{K}_{df,3}^{iso,0} + \mathcal{K}_{df,3}^{iso,1}\left(\frac{s - 9M^2}{9M^2}\right)$$

O In a later article, the chiral dependence of $\mathscr{K}_{df,3}$ has been studied, including physical pions. [Fischer, Kostrzewa, Liu, <u>FRL</u>, Ueding, Urbach (ETMC)]

Constant term seems well-behaved

$$\mathcal{K}_{df,3} = \mathcal{K}_{df,3}^{iso,0} + \mathcal{K}_{df,3}^{iso,1} \left(\frac{s - 9M^2}{9M^2}\right)$$

0 [Fischer, Kostrzewa, Liu, <u>FRL</u>, Ueding, Urbach (ETMC)]

Constant term seems well-behaved

In a later article, the chiral dependence of $\mathscr{K}_{df,3}$ has been studied, including physical pions.

$$\mathcal{K}_{df,3} = \mathcal{K}_{df,3}^{iso,0} + \mathcal{K}_{df,3}^{iso,1} \left(\frac{s - 9M^2}{9M^2}\right)$$

The FVU formalism has also been applied to three-pion systems 0 [Brett et al.]

three-particle "contact" term

See talk by A. Alexandru, Wednesday 28th

The FVU formalism has also been applied to three-pion systems 0 [Brett et al.]

three-particle "contact" term

See talk by A. Alexandru, Wednesday 28th

[Blanton, <u>FRL</u>, Sharpe]

$$\mathcal{K}_{\mathrm{df},3} = \mathcal{K}_{\mathrm{df},3}^{\mathrm{iso},0} + \mathcal{K}_{\mathrm{df},3}^{\mathrm{iso},1}\Delta + \mathcal{K}_{\mathrm{df},3}^{\mathrm{iso},2}\Delta^2 + \mathcal{K}_A\Delta_A + \mathcal{K}_B\Delta_B,$$

[Blanton, <u>FRL</u>, Sharpe]

Swave

 $\mathcal{K}_{\mathrm{df},3} = \mathcal{K}_{\mathrm{df},3}^{\mathrm{iso},0} + \mathcal{K}_{\mathrm{df},3}^{\mathrm{iso},1}\Delta + \mathcal{K}_{\mathrm{df},3}^{\mathrm{iso},2}\Delta^2 + \mathcal{K}_A\Delta_A + \mathcal{K}_B\Delta_B,$ $\Delta \equiv \frac{s - 9m^2}{2}$

$$\Delta \equiv \frac{s - sm}{9m^2}$$

[Blanton, <u>FRL</u>, Sharpe]

d-wave s-wave $\mathcal{K}_{\mathrm{df},3} = \mathcal{K}_{\mathrm{df},3}^{\mathrm{iso},0} + \mathcal{K}_{\mathrm{df},3}^{\mathrm{iso},1}\Delta + \mathcal{K}_{\mathrm{df},3}^{\mathrm{iso},2}\Delta^2 + \mathcal{K}_A\Delta_A + \mathcal{K}_B\Delta_B,$ $\Delta \equiv \frac{s - 9m^2}{9m^2}$

[Blanton, FRL, Sharpe]

d-wave S-wave $\mathcal{K}_{\mathrm{df},3} = \mathcal{K}_{\mathrm{df},3}^{\mathrm{iso},0} + \mathcal{K}_{\mathrm{df},3}^{\mathrm{iso},1}\Delta + \mathcal{K}_{\mathrm{df},3}^{\mathrm{iso},2}\Delta^2 + \mathcal{K}_A\Delta_A + \mathcal{K}_B\Delta_B,$ $\Delta \equiv \frac{s - 9m^2}{9m^2}$ $\Delta_B = \sum_{i,j=1}^{5} t_{ij}^{2} - \Delta^2,$

 $t_{ij} = (p_i - k_j)^2$

[Blanton, <u>FRL</u>, Sharpe]

d-wave s-wave $\mathcal{K}_{\mathrm{df},3} = \mathcal{K}_{\mathrm{df},3}^{\mathrm{iso},0} + \mathcal{K}_{\mathrm{df},3}^{\mathrm{iso},1}\Delta + \mathcal{K}_{\mathrm{df},3}^{\mathrm{iso},2}\Delta^2 + \mathcal{K}_A\Delta_A + \mathcal{K}_B\Delta_B,$ $\Delta \equiv \frac{s - 9m^2}{9m^2}$ $\Delta_B = \sum_{i,j=1} t_{ij}^2 - \Delta^2,$

 $t_{ij} = (p_i - k_j)^2$

See talk by A. Hanlon, Wednesday 28th

[Blanton, Hanlon, Hörz, Morningstar, FRL, Sharpe]

Integral equations (RFT Contraction and marked in section in an animal the second second Final step Physical 3->3 amplitude M_{z} $\mathcal{K}_2, \mathcal{K}_{df,3}$ Integral equations ĸĸĸŎŢŦĸſĊĊſĸŖŊĊŎŎĔĸĸĊĊŶĊŦĔĿĿŢŶĊĹĬĬſĊĬĿĿĊŴŢĬŢſŎŢŦĸſĊĊŦŖŊĊŎĔŔĸĿĊŶŶĔŦĔĿĿŖ

Integral equations (RF Final slep Physical 3->3 amplitude $\mathcal{K}_2, \mathcal{K}_{df,3}$ M_{2} Integral equations

Particle-Dimer phase shift [Jackura et al.]

Final slep $\mathscr{K}_2, \mathscr{K}_{df,3}$ M2 Integral equations

Integral equations Final step Physical 3->3 amplitude M_{2} $\mathcal{K}_2, C_{\ell\ell'}$ Integral equations

The field is evolving very rapidly!

The field is evolving very rapidly!

0

- Three versions of finite-volume formalism for identical particles.
- Various generalizations for nonidentical scalar particles.
- Formalism for three-body decays.

Many recent formal developments for three-particle systems.

The field is evolving very rapidly!

- O Many recent formal developments for three-particle systems.
 - Three versions of finite-volume formalism for identical particles.
 - Various generalizations for nonidentical scalar particles.
 - Formalism for three-body decays.
- O Applications to simple systems successfully undertaken
 - Some lattice studies of three charged pions and kaons
 - It is possible to even study d-wave interactions [Blanton et al.]
 - Recent study in FVU formalism of the $a_1(1260)$ [Mai et al.]

1. Generalizing the formalism for generic two- and three- particle systems (e.g. nucleons, Roper)

- 1 Generalizing the formalism for generic two- and three- particle systems (e.g. nucleons, Roper)
- 2. Apply the formalism to more complex systems (e.g. $\pi\pi K$, $h_1(1170)...$)

- 1 Generalizing the formalism for generic two- and three- particle systems (e.g. nucleons, Roper)
- 2. Apply the formalism to more complex systems (e.g. $\pi\pi K$, $h_1(1170)...$)
- Study three-particle decays with the available framework. (e.g. $K \rightarrow 3\pi$)

- Generalizing the formalism for generic two- and three- particle systems (e.g. nucleons, Roper)
- 2. Apply the formalism to more complex systems (e.g. $\pi\pi K$, $h_1(1170)...$)
- Study three-particle decays with the available framework. (e.g. $K \rightarrow 3\pi$)
- **4.** Beyond three particles!

- Generalizing the formalism for generic two- and three- particle systems (e.g. nucleons, Roper)
- 2. Apply the formalism to more complex systems (e.g. $\pi\pi K$, $h_1(1170)...$)
- Study three-particle decays with the available framework. (e.g. $K \rightarrow 3\pi$)
- **H**. Beyond three particles!

19:00	Multibody decay analyses tool: A phenomenological model for meson-meson subamplitudes	Dr. Patricia MAGALHAES
	Progress in relativistic three-hadron scattering from lattice QCD	Dr. Andrew JACKURA
	Mexico City	18:40 - 19:05
	Unitarity in hadronic three-body decay and application to physics beyond the Standard Model	Mr. Mehmet Hakan AKDAG
	The six-pion amplitude	Tomas HUSEK
	Mexico City	19:30 - 19:55

Wednesday 28th

	Three-pion scattering from lattice QCD	Maxwell HANSEN
	Mexico City	18:15 - 18:40
	Three pion and three kaon scattering from lattice QCD	Andrei ALEXANDRU
	Mexico City	18:40 - 19:00
19:00	Beyond s-wave interactions of two- and three-meson systems with maximal isospin from lattice QCD	Dr. Andrew HANLON
	Generalizing the Lellouch-Luscher formula to three-particle decays	Prof. Stephen SHARPE 📄
	Mexico City	19:20 - 19:40
	Study of scalar meson production in three body \$\eta_c\$ decays at BABAR	Dr. Alessandro PILLONI
	Mexico City	19:40 - 20:00

- Generalizing the formalism for generic two- and three- particle systems (e.g. nucleons, Roper)
- 2. Apply the formalism to more complex systems (e.g. $\pi\pi K$, $h_1(1170)...$)
- Study three-particle decays with the available framework. (e.g. $K \rightarrow 3\pi$)

19:00

4. Beyond three particles!

Multibody decay analyses tool: A phenomenological model for meson-meson subamplitudes	Dr. Patricia MAGALHAES
Progress in relativistic three-hadron scattering from lattice QCD	Dr. Andrew JACKURA
Mexico City	18:40 - 19:05
Unitarity in hadronic three-body decay and application to physics beyond the Standard Model	Mr. Mehmet Hakan AKDAG
The six-pion amplitude	Tomas HUSEK
Mexico City	19:30 - 19:55

29/29

Wednesday 28th

	Three-pion scattering from lattice QCD	Maxwell HANSEN
	Mexico City	18:15 - 18:40
	Three pion and three kaon scattering from lattice QCD	Andrei ALEXANDRU
	Mexico City	18:40 - 19:00
9:00	Beyond s-wave interactions of two- and three-meson systems with maximal isospin from lattice QCD	Dr. Andrew HANLON
	Generalizing the Lellouch-Luscher formula to three-particle decays	Prof. Stephen SHARPE 🗎
	Mexico City	19:20 - 19:40
	Study of scalar meson production in three body \$\eta_c\$ decays at BABAR	Dr. Alessandro PILLONI
	Mexico City	19:40 - 20:00

Threshold expansion:

$\mathcal{K}_{\mathrm{df},3} = \mathcal{K}_{\mathrm{df},3}^{\mathrm{iso},0} + \mathcal{K}_{\mathrm{df},3}^{\mathrm{iso},1}\Delta + \mathcal{K}_{\mathrm{df},3}^{\mathrm{iso},2}\Delta^2 + \mathcal{K}_A\Delta_A + \mathcal{K}_B\Delta_B,$

[Blanton, <u>FRL</u>, Sharpe]

Threshold expansion:

$$\mathcal{K}_{\mathrm{df},3} = \mathcal{K}_{\mathrm{df},3}^{\mathrm{iso},0} + \mathcal{K}_{\mathrm{df},3}^{\mathrm{iso},1}\Delta + \mathcal{K}$$

[Blanton, <u>FRL</u>, Sharpe]

 $\Delta \equiv \frac{s - 9m^2}{9m^2}$

$\mathcal{K}^{\mathrm{iso},2}_{\mathrm{df},3}\Delta^2 + \mathcal{K}_A\Delta_A + \mathcal{K}_B\Delta_B,$

Threshold expansion:

$$\mathcal{K}_{\mathrm{df},3} = \mathcal{K}_{\mathrm{df},3}^{\mathrm{iso},0} + \mathcal{K}_{\mathrm{df},3}^{\mathrm{iso},1}\Delta + \mathcal{K}$$

[Blanton, <u>FRL</u>, Sharpe]

 $\Delta \equiv \frac{s - 9m^2}{9m^2}$

d-wave

 $\mathcal{K}^{\mathrm{iso},2}_{\mathrm{df},3}\Delta^2 + \mathcal{K}_A\Delta_A + \mathcal{K}_B\Delta_B \,,$

Threshold expansion:

$$\mathcal{K}_{\mathrm{df},3} = \mathcal{K}_{\mathrm{df},3}^{\mathrm{iso},0} + \mathcal{K}_{\mathrm{df},3}^{\mathrm{iso},1}\Delta + \mathcal{K}$$

[Blanton, <u>FRL</u>, Sharpe]

 $\Delta \equiv \frac{s - 9m^2}{9m^2}$

d-wave

 $\mathcal{K}^{\mathrm{iso},2}_{\mathrm{df},3}\Delta^2 + \mathcal{K}_A\Delta_A + \mathcal{K}_B\Delta_B$ $\Delta_B = \sum_{i,j=1}^{0} \widetilde{t}_{ij}^2 - \Delta^2,$

Threshold expansion:

$$\mathcal{K}_{\mathrm{df},3} = \mathcal{K}_{\mathrm{df},3}^{\mathrm{iso},0} + \mathcal{K}_{\mathrm{df},3}^{\mathrm{iso},1}\Delta + \mathcal{K}$$

[Blanton, <u>FRL</u>, Sharpe]

[Blanton, Hanlon, Hörz, Morningstar, FRL, Sharpe]

d-wave

 $\mathcal{K}^{\mathrm{iso},2}_{\mathrm{df},3}\Delta^2 + \mathcal{K}_A\Delta_A + \mathcal{K}_B\Delta_B$ $\Delta_B = \sum_{i,j=1}^{0} \widetilde{t}_{ij}^2 - \Delta^2,$

Higher partial waves

Threshold expansion:

$$\mathcal{K}_{\mathrm{df},3} = \mathcal{K}_{\mathrm{df},3}^{\mathrm{iso},0} + \mathcal{K}_{\mathrm{df},3}^{\mathrm{iso},1}\Delta + \mathcal{K}$$

[Blanton, <u>FRL</u>, Sharpe]

[Blanton, Hanlon, Hörz, Morningstar, FRL, Sharpe]

d-wave

$$\begin{split} \mathcal{K}_{\mathrm{df},3}^{\mathrm{iso},2} \Delta^2 + \mathcal{K}_A \Delta_A + \mathcal{K}_B \Delta_B \\ \Delta_B \ = \sum_{i,j=1}^3 \widetilde{t}_{ij}^2 - \Delta^2 \,, \end{split}$$

