Three-parkicle scaltering amplitudes from lallice QCD
 Fernando Romero-López
 University of Valencia

fernando.romero@uv.es
HADRON, 29th July

Outline

1. Introduction
2. Finike-Volume spectrum
3. Three particles in finite volume
4. Applications to lattice QCD
5. Summary and Outlook

Introduction

Quantum Chromodynamics

Quantum chromodynamics is conceptually simple. Its realization
in nature, however, is usually very complex.

Frank Wilczek

Quantum Chromodynamics

Quantum chromodynamics is conceptually simple. Its realization
in nature, however, is usually very complex.

Frank Wilczek

$$
\mathscr{L}_{Q C D}=\sum_{i}^{N_{f}} \bar{q}_{i}\left(D_{\mu} \gamma^{\mu}+m_{i}\right) q_{i}+\frac{1}{4} G_{\mu \nu}^{a} G_{a}^{\mu \nu}
$$

$$
\begin{aligned}
& \text { Quantum Chromodynamics } \\
& \text { Quantum chromodynamics is } \\
& \text { conceptually simple. Its realization } \\
& \text { in nature, however, is usually } \\
& \text { very complex. } \\
& \mathscr{L}_{Q C D}=\sum_{i}^{N_{f}} \bar{q}_{i}\left(D_{\mu} \gamma^{\mu}+m_{i}\right) q_{i}+\frac{1}{4} G_{\mu \nu}^{a} G_{a}^{\mu \nu} \\
& \text { Charmonium Spectrum (PDG) }
\end{aligned}
$$

QCD on the Latbice

O Lattice QCD is a first-principles numerical approach to the strong interaction

QCD on the Latbice

O Lattice QCD is a first-principles numerical approach to the strong interaction

$$
\langle\mathcal{O}(t) \mathcal{O}(0)\rangle=\frac{1}{\mathscr{L}} \int D \psi D \bar{\psi} D A \mathcal{O}(t) \mathcal{O}(0) e^{-S_{E}\left(\psi, \bar{\psi}, \mathcal{A}_{\mu}\right)}
$$

QCD on the Latbice

O Lattice QCD is a first-principles numerical approach to the strong interaction

$$
\langle\mathcal{O}(t) \mathcal{O}(0)\rangle=\frac{1}{\mathscr{Z}} \int D \psi D \bar{\psi} D A \mathcal{O}(t) \mathcal{O}(0) e^{-S_{E}\left(\psi, \bar{\psi}, A_{\mu}\right)}
$$

QCD

O Lattice QCD is a first-principles numerical approach to the strong interaction

$$
\langle\mathcal{O}(t) \mathcal{O}(0)\rangle=\frac{1}{\mathscr{E}} \int D \psi D \bar{\psi} D A \mathcal{O}(t) \mathcal{O}(0) e^{-\mathcal{K}_{E}\left(\psi, \bar{\psi}, A_{\mu}\right)}
$$

O It is systematically improvable: finite volume, discretization effects

QCD on the Lattice

O Lattice QCD is a first-principles numerical approach to the strong interaction

$$
\langle\mathcal{O}(t) \mathcal{O}(0)\rangle=\frac{1}{\mathscr{Z}} \int D \psi D \bar{\psi} D A \mathcal{O}(t) \mathcal{O}(0) e^{-S_{E}\left(\psi, \bar{\psi}, A_{\mu}\right)}
$$

O It is systematically improvable: finite volume, discretization effects

Can we obtain scattering amplitudes from Euclidean correlation functions?

Scattering on the lattice

O The Lüscher method is a well-established approach for two-particle scattering on the lattice. See plenary by D. Wilson, Today

O The Lüscher method is a well-established approach for two-particle scattering on the lattice. See plenary by D. Wilson, Today

Volume Dependence of the Energy Spectrum in Massive Quantum Field Theories
II. Scattering States
M. Lüscher

Theory Division, Deutsches Elektronen-Synchrotron DESY, D-2000 Hamburg 52, Federal Republic of Germany

scaltering on the Lablice

O The Lüscher method is a well-established approach for two-particle scattering on the lattice.

```
See plenary by D. Wilson, Today
```

Volume Dependence of the Energy Spectrum in Massive Quantum Field Theories
II. Scattering States
M. Lüscher

Theory Division, Deutsches Elektronen-Synchrotron DESY, D-2000 Hamburg 52, Federal Republic of Germany

$$
\begin{gathered}
\text { Ewo-particle } \\
\text { quantizakion condition } \\
\operatorname{det}\left[\mathscr{R}_{2}+F_{2}^{-1}\right]=0
\end{gathered}
$$

scabtering

O The Lüscher method is a well-established approach for two-particle scattering on the lattice.

See plenary by D. Wilson, Today

Volume Dependence of the Energy Spectrum in Massive Quantum Field Theories
II. Scattering States
M. Lüscher

Theory Division, Deutsches Elektronen-Synchrotron DESY, D-2000 Hamburg 52, Federal Republic of Germany

$$
\begin{gathered}
\text { Ewo-particle } \\
\text { quantization condition } \\
\operatorname{det}\left[\mathscr{R}_{2}+F_{2}^{-1}\right]=0
\end{gathered}
$$

$I=2 \pi \pi$ scaltering

Scattering on the lallice

O The Lüscher method is a well-established approach for two-particle scattering on the lattice.

```
See plenary by D. Wilson, Today
```

$I=2 \pi \pi$ scaltering

Volume Dependence of the Energy Spectrum in Massive Quantum Field Theories
II. Scattering States
M. Lüscher

Theory Division, Deutsches Elektronen-Synchroti Republic of Germany

Why Chree particles?

Why three particles?

Phenomenologically relevant resonances
$N(1440) \rightarrow \Delta \pi \rightarrow N \pi \pi$

Why Ehree

Phenomenologically relevant resonances

$$
N(1440) \rightarrow \Delta \pi \rightarrow N \pi \pi
$$

Resonance	$I_{\pi \pi \pi}$	J^{P}
$\omega(782)$	0	1^{-}
$h_{1}(1170)$	0	1^{+}
$\omega_{3}(1670)$	0	3^{-}
$\pi(1300)$	1	0^{-}
$a_{1}(1260)$	1	1^{+}
$\pi_{1}(1400)$	1	1^{-}
$\pi_{2}(1670)$	1	2^{-}
$a_{2}(1320)$	1	2^{+}
$a_{4}(1970)$	1	4^{+}
(with $\geq 3 \pi$ decay modes)		

Why Ehree

Phenomenologically relevant resonances

$$
N(1440) \rightarrow \Delta \pi \rightarrow N \pi \pi
$$

O Many-body nuclear physics, 3N force

Resonance	$I_{\pi \pi \pi}$	J^{P}
$\omega(782)$	0	1^{-}
$h_{1}(1170)$	0	1^{+}
$\omega_{3}(1670)$	0	3^{-}
$\pi(1300)$	1	0^{-}
$a_{1}(1260)$	1	1^{+}
$\pi_{1}(1400)$	1	1^{-}
$\pi_{2}(1670)$	1	2^{-}
$a_{2}(1320)$	1	2^{+}
$a_{4}(1970)$	1	4^{+}
(with $\geq 3 \pi$ decay modes)		

Why three

Phenomenologically relevant resonances

$$
N(1440) \rightarrow \Delta \pi \rightarrow N \pi \pi
$$Many-body nuclear physics, 3N force

O CP violation in D and K decays

$$
K \rightarrow 3 \pi, \quad D \rightarrow 4 \pi
$$

Resonance	$I_{\pi \pi \pi}$	J^{P}
$\omega(782)$	0	1^{-}
$h_{1}(1170)$	0	1^{+}
$\omega_{3}(1670)$	0	3^{-}
$\pi(1300)$	1	0^{-}
$a_{1}(1260)$	1	1^{+}
$\pi_{1}(1400)$	1	1^{-}
$\pi_{2}(1670)$	1	2^{-}
$a_{2}(1320)$	1	2^{+}
$a_{4}(1970)$	1	4^{+}
(with $\geq 3 \pi$ decay modes)		

Finibe-volume specerum

Finite-Volume spectrum

Finibe-Volume specerum

Free scalar particles in finite volume with periodic BC

$\vec{p}=\frac{2 \pi}{L}\left(n_{x}, n_{y}, n_{z}\right)$
Two particles: $E=2 \sqrt{m^{2}+\frac{4 \pi^{2}}{L^{2}} \vec{n}^{2}}$

Free scalar particles in finite volume with periodic BC

$$
\vec{p}=\frac{2 \pi}{L}\left(n_{x}, n_{y}, n_{z}\right)
$$

Two particles: $E=2 \sqrt{m^{2}+\frac{4 \pi^{2}}{L^{2}} \vec{n}^{2}}$

Free scalar particles in finite volume with periodic BC

$$
\vec{p}=\frac{2 \pi}{L}\left(n_{x}, n_{y}, n_{z}\right)
$$

Two particles: $E=2 \sqrt{m^{2}+\frac{4 \pi^{2}}{L^{2}} \vec{n}^{2}}$

Ground state bo leading order

$$
E_{2}-2 m=\langle\phi(\overrightarrow{0}) \phi(\overrightarrow{0})| \mathbf{H}_{I}|\phi(\overrightarrow{0}) \phi(\overrightarrow{0})\rangle
$$

Free scalar particles in finite volume with periodic BC

Ground state to leading order

$$
\begin{aligned}
& E_{2}-2 m=\langle\phi(\overrightarrow{0}) \phi(\overrightarrow{0})| \mathbf{H}_{I}|\phi(\overrightarrow{0}) \phi(\overrightarrow{0})\rangle \\
& E_{2}-2 m=\frac{\mathscr{M}_{2}(E=2 m)}{8 m^{2} L^{3}}+O\left(L^{-4}\right)
\end{aligned}
$$

$$
\vec{p}=\frac{2 \pi}{L}\left(n_{x}, n_{y}, n_{z}\right)
$$

Two particles: $E=2 \sqrt{m^{2}+\frac{4 \pi^{2}}{L^{2}} \vec{n}^{2}}$

Free scalar particles in finite volume with periodic BC

$$
\vec{p}=\frac{2 \pi}{L}\left(n_{x}, n_{y}, n_{z}\right)
$$

Two particles: $E=2 \sqrt{m^{2}+\frac{4 \pi^{2}}{L^{2}} \vec{n}^{2}}$

Ground state to leading order

$$
\begin{aligned}
& E_{2}-2 m=\langle\phi(\overrightarrow{0}) \phi(\overrightarrow{0})| \mathbf{H}_{\mathrm{I}}|\phi(\overrightarrow{0}) \phi(\overrightarrow{0})\rangle \\
& E_{2}-2 m=\frac{\mathscr{M}_{2}(E=2 m)}{8 m^{2} L^{3}}+O\left(L^{-4}\right)
\end{aligned}
$$

The energy shift is related to the scattering amplitude

Finice-Volume Spectrum

Free scalar particles in finite volume with periodic BC

In general a problem of
Quantum Field Theory
Interactions change the spectrum!

$$
\vec{p}=\frac{2 \pi}{L}\left(n_{x}, n_{y}, n_{z}\right)
$$

Two particles: $E=2 \sqrt{m^{2}+\frac{4 \pi^{2}}{L^{2}} \vec{n}^{2}}$
The energy shift is related to the scattering amplitudeThe energy levels of the theory are measured from Euclidean correlation functions

O The energy levels of the theory are measured from Euclidean correlation functions

$$
\left.C(t)=\langle\mathcal{O}(t) \mathcal{O}(0)\rangle=\sum_{n}|\langle 0| \mathcal{O}(0)| n\right\rangle\left.\right|^{2} e^{-E_{n} t}
$$

The spectrum
The energy levels of the theory are measured from Euclidean correlation functions

$$
\left.C(t)=\langle\mathcal{O}(t) \mathcal{O}(0)\rangle=\sum_{n}|\langle 0| \mathcal{O}(0)| n\right\rangle\left.\right|^{2} e^{-E_{n} t}
$$

The spectrum

Current techniques allow the determination of many energy levels!

$3 \pi+$ energy levels

$3 \pi+$ energy levels

$3 \pi t$ energy levels

Three particles in finite volume

Three-particle amplibudes

Qualitatively more complicated than the two-particle case!

Three-parkicle amplibudes

Qualitatively more complicated than the two-particle case!

Three-particle scattering amplitudes can be divergent for specific kinematics.

Three-parkicle amplibudes

Qualitatively more complicated than the two-particle case!

Three-particle scattering amplitudes can be divergent for specific kinematics.They depend also on two-to-two interactions.
But any separation between "two-particle" and "three-particle" effects is not well-defined

Three-parkicle ampliEudes

Qualitatively more complicated than the two-particle case!

Three-particle scattering amplitudes can be divergent for specific kinematics.They depend also on two-to-two interactions.But any separation between "two-particle" and "three-particle" effects is not well-definedHowever, the three-particle spectrum depends on S-matrix elements! [Polejaeva, Rusetsky]

Three-particle formalism(s)

 formalism(s)Generic Relativistic Field Theory (RFT)
Relativistic, model-independent, three-particle quantization condition Maxwell T. Hansen ${ }^{1, *}$ and Stephen R. Sharpe ${ }^{1, \dagger}$

Also [Blanton, Briceño, Hansen, Jackura, FRL, Szczepaniak, Sharpe]

Three-parkicle

Generic Relativistic Field Theory (RFT)

Non-Relativistic EFT (NREFT)

 Relativistic, model-independent, three-particle quantization condition Maxwell T. Hansen ${ }^{1, *}$ and Stephen R. Sharpe ${ }^{1, \dagger}$Also [Blanton, Briceño, Hansen, Jackura, FRL, Szczepaniak, Sharpe]

Three-particle quantization condition in a finite volume:

1. The role of the three-particle force

Hans-Werner Hammer ${ }^{a}$, Jin-Yi Pang ${ }^{b}$ and Akaki Rusetsky ${ }^{b}$
Also [Döring, Geng, Hammer, Mai, Meißner, Müller, Pang, FRL, Rusetsky, Wu]

Three-parkicle formalism(s)

- Generic Relativistic Field Theory (RFT)

Non-Relativistic EFT (NREFT)

 Relativistic, model-independent, three-particle quantization condition Maxwell T. Hansen ${ }^{1, *}$ and Stephen R. Sharpe ${ }^{1, \dagger}$Also [Blanton, Briceño, Hansen, Jackura, FRL, Szczepaniak, Sharpe]

Three-particle quantization condition in a finite volume:

1. The role of the three-particle force

Hans-Werner Hammer ${ }^{a}$, Jin-Yi Pang ${ }^{b}$ and Akaki Rusetsky ${ }^{b}$
Also [Döring, Geng, Hammer, Mai, Meißner, Müller, Pang, FRL, Rusetsky, Wu]

Finite-Volume Unitarity (FVU)

Three-body Unitarity in the Finite Volume

$$
\text { M. Mai' }{ }^{1, *} \text { and M. Döring }{ }^{1,2, \dagger}
$$

Generic Relativistic Field Theory (RFT)

B Higher partial waves

* Nondegenerate and nonidentical scalars
(Two-to-three transitions
- Three-particle decays
* Analysis of lattice QCD data

Non-Relativistic EFT (NREFT)

- Nondegenerate (DDK systems)
* Perturbative expansions for three pions and excited states

B Three-particle decays

- Relativistic kinematics can be included

Relativistic, model-independent, three-particle quantization condition

$$
\text { Maxwell T. Hansen }{ }^{1, *} \text { and Stephen R. Sharpe }{ }^{1, \dagger}
$$

Also [Blanton, Briceño, Hansen, Jackura, FRL, Szczepaniak, Sharpe]

Three-particle quantization condition in a finite volume:

1. The role of the three-particle force

Hans-Werner Hammer ${ }^{a}$, Jin-Yi Pang ${ }^{b}$ and Akaki Rusetsky ${ }^{b}$
Also [Döring, Geng, Hammer, Mai, Meißner, Müller, Pang, FRL, Rusetsky, Wu]

Three-body Unitarity in the Finite Volume
M. $\mathrm{Mai}^{1, *}$ and M. Döring ${ }^{1,2, \dagger}$

* Chiral extrapolations
- Analysis of lattice QCD data
* Study of resonant channels: a_{1} (1260)

Three-parkicle formalism(s)

Generic Relativistic Field Theory (RFT)

Three-parkicle formalism(s)

O The determination of three-particle scattering amplitudes on the lattice is a two-step process!

Three-particle formalism(s)

The determination of three-particle scattering amplitudes on the lattice is a two-step process!Finite-volume spectrum as solutions of the "quantization condition".

$$
\left.\operatorname{det}[M(E, L)]\right|_{E=E_{n}}=0
$$

The two- and three-particle spectra are used to determine an intermediate quantity

$$
\mathscr{K}_{d f, 3}, \quad H_{0}, \quad C_{0}
$$

This quantity is scheme-dependent and unphysical

Three-particle formalism(s)

O The determination of three-particle scattering amplitudes on the lattice is a two-step process!

Step 1:

Finite-volume spectrum as solutions of the "quantization condition".

$$
\left.\operatorname{det}[M(E, L)]\right|_{E=E_{n}}=0
$$

* The two- and three-particle spectra are used to determine an intermediate quantity

$$
\mathscr{K}_{d f, 3}, \quad H_{0}, \quad C_{0}
$$

* This quantity is scheme-dependent and unphysical

Slep 2: The scheme dependence is removed by solving integral equations.

1. \mathscr{K}_{2} and $\mathscr{K}_{d f, 3}$ parametrize interactions. They can be obtained from the spectrum
$\uparrow \begin{gathered}\begin{array}{c}2 \pi \text { and } 3 \pi \\ \text { Spectrum }\end{array} \\ \square \\ \square \\ = \\ E_{3} \\ E_{1} \\ - \\ E_{0}\end{gathered}$
2. \mathscr{K}_{2} and $\mathscr{K}_{\text {dff, }}$ parametrize interactions. They can be obtained from the spectrum

3. \mathscr{K}_{2} and $\mathscr{K}_{d f, 3}$ parametrize interactions. They can be obtained from the spectrum

$$
\begin{aligned}
& 2 \pi \text { and } 3 \pi \\
& \uparrow^{\text {Spectrum }} E_{2} 2 \pi \operatorname{det}\left[\mathscr{K}_{2}+F_{2}^{-1}\right]=0 \\
& \operatorname{det}\left[\mathscr{K}_{d f, 3}+F_{3}^{-1}\right]=0
\end{aligned}
$$

1. \mathscr{K}_{2} and $\mathscr{K}_{\text {dff, }}$ parametrize interactions. They can be obtained from the spectrum

2. \mathscr{K}_{2} and $\mathscr{K}_{d f, 3}$ parametrize interactions. They can be obtained from the spectrum

3. Solve integral equations to obtain the physical three-to-three amplitude

Solved in [Briceño et al], [Hansen et al.], [Jackura et al.]

1. \mathscr{K}_{2} and $\mathscr{K}_{\text {dff, }}$ parametrize interactions. They can be obtained from the spectrum

Numerical implementations

Choose "toy" interactions:
$a_{0}, \mathscr{K}_{d f, 3} \ldots$

Generate spectrum from quantization condition

Numerical implementations

Choose "toy" interactions:

$$
a_{0}, \mathscr{K}_{d f, 3} \ldots
$$

$\operatorname{det}[M(E, L)]=0$

Generate spectrum from

 quantization condition

Three-particle decays $(K->3 \pi)$

O Decay processes get distorted in finite volume [Lellouch,Lüscher]

Three-particle decays ($k \rightarrow 3 \pi$)

Decay processes get distorted in finite volume [Lellouch,Lüscher]

Three-particle
Decay processes get distorted in finite volume [Lellouch,Lüscher]

Three-particle
Decay processes get distorted in finite volume [Lellouch,Lüscher]

Three-particle
 decays $(K>3 \pi)$

Decay processes get distorted in finite volume [Lellouch,Lüscher]

O From the lattice, one can get the one-to-three finite-volume matrix element:

$$
\left\langle E_{n}, \boldsymbol{P}, \Lambda \mu, L\right| \mathcal{H}_{W}(0)|K, \boldsymbol{P}, L\rangle .
$$

Three-particle decays ($k \rightarrow 3 \pi$)

Decay processes get distorted in finite volume [Lellouch,Lüscher]

O From the lattice, one can get the one-to-three finite-volume matrix element:

$$
\left\langle E_{n}, \boldsymbol{P}, \Lambda \mu, L\right| \mathcal{H}_{W}(0)|K, \boldsymbol{P}, L\rangle .
$$

O How to relate that to the physical infinite-volume decay amplitude?

$$
T_{K 3 \pi}=\langle 3 \pi, \text { out }| \mathcal{H}_{W}(0)|K, \boldsymbol{P}\rangle
$$

Three-particle decays ($K->3 \pi$)

Decay processes get distorted in finite volume [Lellouch,Lüscher]

From the lattice, one can get the one-to-three finite-volume matrix element:

$$
\left\langle E_{n}, \boldsymbol{P}, \Lambda \mu, L\right| \mathcal{H}_{W}(0)|K, \boldsymbol{P}, L\rangle
$$How to relate that to the physical infinite-volume decay amplitude?

NREFT in [Müller, Rusetsky] RFT in [Hansen, FRL, Sharpe]

$$
T_{K 3 \pi}=\langle 3 \pi, \text { out }| \mathcal{H}_{W}(0)|K, \boldsymbol{P}\rangle
$$

Results for Ghree-meson amplitudes

Analyzing the spectrum

$I=3$ three-pion scattering amplitude from lattice QCD
Tyler D. Blanton, ${ }^{1, *}$ Fernando Romero-López, ${ }^{2, \dagger}$ and Stephen R. Sharpe ${ }^{1, \dagger} \ddagger$
${ }^{1}$ Physics Department, University of Washington, Seattle, WA 98195-1560, USA
${ }^{2}$ Instituto de Física Corpuscular, Universitat de València and CSIC, 46980 Paterna, Spain (Dated: February 4, 2020)

First analysis of the full finite-volume spectrum of $2 \pi^{+}$and $3 \pi^{+}$!
[see also earlier work using the ground state by Mai et al., and Beane et al.]

O Parametrize K-matrices with only s-wave interactions:

$$
\begin{gathered}
\frac{q}{M} \cot \delta_{0}=\frac{\sqrt{s} M}{s-z_{2}^{2}}\left(B_{0}+B_{1} q^{2}+\cdots\right) \\
\mathscr{K}_{d f, 3}=\mathscr{K}_{d f, 3}^{i s o, 0}+\mathscr{K}_{d f, 3}^{i s o, 1}\left(\frac{s-9 M^{2}}{9 M^{2}}\right)
\end{gathered}
$$

O Parametrize K-matrices with only s-wave interactions:

Fit	B_{0}	B_{1}	z_{2}^{2} / M^{2}	$M^{2} \mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 0}$	$M^{2} \mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 1}$	$\chi^{2} /$ dof	$M a_{0}$	$M^{2} r a_{0}$
5	$-11.1(7)$	$-2.4(3)$	1 (fixed)	$550(330)$	$-280(290)$	$26.04 /(22-4)$	$0.090(5)$	$2.57(8)$

$\frac{q}{M} \cot \delta_{0}=\frac{\sqrt{s} M}{s-z_{2}^{2}}\left(B_{0}+B_{1} q^{2}+\cdots\right)$

$$
\mathscr{K}_{d f, 3}=\mathscr{K}_{d f, 3}^{i s o, 0}+\mathscr{K}_{d f, 3}^{i s o, 1}\left(\frac{s-9 M^{2}}{9 M^{2}}\right)
$$

Applying
 approach

O Parametrize K-matrices with only s-wave interactions:

$$
\frac{q}{M} \cot \delta_{0}=\frac{\sqrt{s} M}{s-z_{2}^{2}}\left(B_{0}+B_{1} q^{2}+\cdots\right)
$$

Fit	B_{0}	B_{1}	z_{2}^{2} / M^{2}	$M^{2} \mathcal{K}_{\mathrm{df}, 3}^{\text {iso }, 3}$	$M^{2} \mathcal{K}_{\mathrm{df}, 3}^{\text {iso }, 3}$	$\chi^{2} /$ dof	$M a_{0}$	$M^{2} r a_{0}$
5	$-11.1(7)$	$-2.4(3)$	1 (fixed)	$550(330)$	$-280(290)$	$26.04 /(22-4)$	$0.090(5)$	$2.57(8)$

$$
\mathscr{K}_{d f, 3}=\mathscr{K}_{d f, 3}^{i s o, 0}+\mathscr{K}_{d f, 3}^{i s o, 1}\left(\frac{s-9 M^{2}}{9 M^{2}}\right)
$$

1. 2σ evidence for $\mathscr{K}_{d f, 3} \neq 0$.

O Parametrize K-matrices with only s-wave interactions:

$$
\begin{array}{cccccccc}
\text { Fit } & B_{0} & B_{1} & z_{2}^{2} / M^{2} & M^{2} \mathcal{K}_{\mathrm{dd}, 3}^{\mathrm{iso}, 3} & M^{2} \mathcal{K}_{\mathrm{dff}, 3}^{\mathrm{iso}, 1} & \chi^{2} / \text { dof } & M a_{0}
\end{array} M^{2} r a_{0}
$$

$$
\frac{q}{M} \cot \delta_{0}=\frac{\sqrt{s} M}{s-z_{2}^{2}}\left(B_{0}+B_{1} q^{2}+\cdots\right)
$$

$$
\mathscr{K}_{d f, 3}=\mathscr{K}_{d f, 3}^{i s o, 0}+\mathscr{K}_{d f, 3}^{i s o, 1}\left(\frac{s-9 M^{2}}{9 M^{2}}\right)
$$

1. 2σ evidence for $\mathscr{K}_{d f, 3} \neq 0$.
2. Some tension with ChPT.

Applying
 approach

O Parametrize K-matrices with only s-wave interactions:

$$
\begin{array}{ccccccccc}
\text { Fit } & B_{0} & B_{1} & z_{2}^{2} / M^{2} & M^{2} \mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 0} & M^{2} \mathcal{K}_{\mathrm{df}, 3,3}^{\text {iso }, 1} & \chi^{2} / \text { dof } & M a_{0} & M^{2} r a_{0} \\
\hline \hline 5 & -11.1(7) & -2.4(3) & 1 \text { (fixed) } & 550(330) & -280(290) & 26.04 /(22-4) & 0.090(5) & 2.57(8)
\end{array}
$$

$$
\frac{q}{M} \cot \delta_{0}=\frac{\sqrt{s} M}{s-z_{2}^{2}}\left(B_{0}+B_{1} q^{2}+\cdots\right)
$$

$$
\mathscr{K}_{d f, 3}=\mathscr{K}_{d f, 3}^{i s o, 0}+\mathscr{K}_{d f, 3}^{i s o, 1}\left(\frac{s-9 M^{2}}{9 M^{2}}\right)
$$

1. 2σ evidence for $\mathscr{K}_{d f, 3} \neq 0$.
2. Some tension with ChPT.

O In a later article, the chiral dependence of $\mathscr{K}_{d f, 3}$ has been studied, including physical pions. [Fischer, Kostrzewa, Liu, FRL, Ueding, Urbach (ETMC)]

$$
\mathscr{K}_{d f, 3}=\mathscr{K}_{d f, 3}^{i s o, 0}+\mathscr{K}_{d f, 3}^{i s o, 1}\left(\frac{s-9 M^{2}}{9 M^{2}}\right)
$$

(a) $\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iss}, 0}$

(b) $\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 1}$

O In a later article, the chiral dependence of $\mathscr{K}_{d f, 3}$ has been studied, including physical pions. [Fischer, Kostrzewa, Liu, FRL, Ueding, Urbach (ETMC)]

Constant kerm seems well-behaved

$$
\mathscr{K}_{d f, 3}=\mathscr{K}_{d f, 3}^{i s o, 0}+\mathscr{K}_{d f, 3}^{i s o, 1}\left(\frac{s-9 M^{2}}{9 M^{2}}\right)
$$

(a) $\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iss}, 0}$
(b) $\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 1}$

O In a later article, the chiral dependence of $\mathscr{K}_{d f, 3}$ has been studied, including physical pions. [Fischer, Kostrzewa, Liu, FRL, Ueding, Urbach (ETMC)]

Constant kerm seems well-behaved

$$
\mathscr{K}_{d f, 3}=\mathscr{K}_{d f, 3}^{i s o, 0}+\mathscr{K}_{d f, 3}^{i s o, 1}\left(\frac{s-9 M^{2}}{9 M^{2}}\right)
$$

(a) $\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iss}, 0}$
(b) $\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 1}$

O In a later article, the chiral dependence of $\mathscr{K}_{d f, 3}$ has been studied, including physical pions. [Fischer, Kostrzewa, Liu, FRL, Ueding, Urbach (ETMC)]

Constant kerm seems well-behaved

$$
\mathscr{K}_{d f, 3}=\mathscr{K}_{d f, 3}^{i s o, 0}+\mathscr{K}_{d f, 3}^{i s o, 1}\left(\frac{s-9 M^{2}}{9 M^{2}}\right)
$$

Applying the FVU approach ($3 \pi^{+}$)

O The FVU formalism has also been applied to three-pion systems
See talk by A. Alexandru, Wednesday 28th [Brett et al.]

Applying the FVU approach ($3 \pi^{+}$)

O The FVU formalism has also been applied to three-pion systems
See talk by A. Alexandru, Wednesday 28th [Brett et al.]

Higher parkial waves

 wavesThreshold expansion in the three-particle sector:
[Blanton, FRL, Sharpe]

$$
\mathcal{K}_{\mathrm{df}, 3}=\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 0}+\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 1} \Delta+\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 2} \Delta^{2}+\mathcal{K}_{A} \Delta_{A}+\mathcal{K}_{B} \Delta_{B}
$$

Threshold expansion in the three-particle sector:
[Blanton, ERL, Sharpe]

$$
\begin{gathered}
\mathcal{K}_{\mathrm{df}, 3}=\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 0}+\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 1} \Delta+\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 2} \Delta^{2}+\mathcal{K}_{A} \Delta_{A}+\mathcal{K}_{B} \Delta_{B} \\
\Delta \equiv \frac{s-9 m^{2}}{9 m^{2}}
\end{gathered}
$$

Threshold expansion in the three-particle sector:
[Blanton, ERL, Sharpe]

$$
\begin{gathered}
\text { S-wave d-wave } \\
\mathcal{K}_{\mathrm{df}, 3}=\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 0}+\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 1} \Delta+\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 2} \Delta^{2}+\mathcal{K}_{A} \Delta_{A}+\mathcal{K}_{B} \Delta_{B} \\
\Delta \equiv \frac{s-9 m^{2}}{9 m^{2}}
\end{gathered}
$$

Threshold expansion in the three-particle sector:
[Blanton, ERL, Sharpe]

$$
\begin{aligned}
& \text { s-wave } \\
& \mathcal{K}_{\mathrm{df}, 3}=\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 0}+\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 1} \Delta+\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 2} \Delta^{2}+\mathcal{K}_{A} \Delta_{A}+\mathcal{K}_{B} \Delta_{B} \\
& \Delta \equiv \frac{s-9 m^{2}}{9 m^{2}} \\
& \Delta_{B}=\sum_{i, j=1}^{3} t_{i j}^{2}-\Delta^{2}, \\
& t_{i j}=\left(p_{i}-k_{j}\right)^{2}
\end{aligned}
$$

Higher parkial waves

Threshold expansion in the three-particle sector:
[Blanton, FRL, Sharpe]

$$
\begin{array}{r}
\text { S-wave } \\
\mathcal{K}_{\mathrm{df}, 3}=\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 0}+\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 1} \Delta+\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 2} \Delta^{2}+\mathcal{K}_{A} \Delta_{A}+\mathcal{K}_{B} \Delta_{B} \\
\Delta \equiv \frac{s-9 m^{2}}{9 m^{2}} \\
\Delta_{B}=\sum_{i, j=1}^{3} t_{i j}^{2}-\Delta^{2} \\
t_{i j}=\left(p_{i}-k_{j}\right)^{2}
\end{array}
$$

See talk by A. Hanlon, Wednesday 28th

[Blanton, Hanlon, Hörz, Morningstar, FRL, Sharpe]

Integral equations (RFT

Final step
$\mathscr{K}_{2}, \mathscr{K}_{d f, 3}$

Physical 3->3 amplitude

$$
\begin{aligned}
& \text { Inlegral } \\
& \text { equations }
\end{aligned}
$$

Integral equations

Final step
$\mathscr{K}_{2}, \mathscr{K}_{d f, 3}$

Physical 3->3 amplitude
\mathscr{M}_{3}

Parkicle-Dimer phase shift [Jackura et al.]

Integral equations

Final step

$$
\mathscr{K}_{2}, \mathscr{K}_{d f, 3}
$$

Physical 3->3 amplitude

Parkicle-Dimer phase shift [Jackura et al.]

[Hansen et al. (HadSpec)]
See talk by M. Hansen, Wednesday 28th

Integral equations

Final step

$\mathscr{K}_{2}, C_{\ell \ell}$

Physical 3->3 amplitude

Integral equations

Summary \& Oublook
summary

The field is evolving very rapidly!

The field is evolving very rapidly!

O Many recent formal developments for three-particle systems.

- Three versions of finite-volume formalism for identical particles.
- Various generalizations for nonidentical scalar particles.

Formalism for three-body decays.

The field is evolving very rapidly!

O Many recent formal developments for three-particle systems.

- Three versions of finite-volume formalism for identical particles.
- Various generalizations for nonidentical scalar particles.
- Formalism for three-body decays.

O Applications to simple systems successfully undertaken

- Some lattice studies of three charged pions and kaons
- It is possible to even study d-wave interactions [Blanton et al.]

Recent study in FVU formalism of the $a_{1}(1260)$ [Mai et al.]

Oublook

Oublook

1. Generalizing the formalism for generic two- and three-particle systems (e.g. nucleons, Roper)

Ourlook

1. Generalizing the formalism for generic two- and three-particle systems (e.g. nucleons, Roper)
2. Apply the formalism to more complex systems (e.g. $\left.\pi \pi K, h_{1}(1170) . ..\right)$

Oullook

1. Generalizing the formalism for generic two- and three-particle systems (e.g. nucleons, Roper)
2. Apply the formalism to more complex systems (e.g. $\left.\pi \pi K, h_{1}(1170) . ..\right)$
3. Study three-particle decays with the available framework.

$$
\text { (e.g. } K \rightarrow 3 \pi \text {) }
$$

Oublook

1. Generalizing the formalism for generic two- and three-particle systems (e.g. nucleons, Roper)
2. Apply the formalism to more complex systems
(e.g. $\left.\pi \pi K, h_{1}(1170) . ..\right)$
3. Study three-particle decays with the available framework.
(e.g. $K \rightarrow 3 \pi$)
4. Beyond three particles!

Outlook

1. Generalizing the formalism for generic two- and three-particle systems (e.g. nucleons, Roper)
2. Apply the formalism to more complex systems
(e.g. $\left.\pi \pi K, h_{1}(1170) . ..\right)$
3. Study three-particle decays with the available framework.

$$
\text { (e.g. } K \rightarrow 3 \pi \text {) }
$$

4. Beyond three particles!

Tuesday 27ch

19:00

Wednesday 28 th

Outlook

1. Generalizing the formalism for generic two- and three-particle systems (e.g. nucleons, Roper)
2. Apply the formalism to more complex systems (e.g. $\left.\pi \pi K, h_{1}(1170) . ..\right)$
3. Study three-particle decays with the available framework.
(e.g. $K \rightarrow 3 \pi$)
4. Beyond three particles!
Wednesday 28th

Tuesday 276h

	Multibody decay analyses tool: A phenomenological model for meson-meson
subamplitudes	

Three-pion scattering from lattice QCD	Maxwell HANSEN
Mexico City	18:15-18:40
Three pion and three kaon scattering from lattice QCD	Andrei ALEXANDRU
Mexico City	18:40-19:00
Beyond s-wave interactions of two- and three-meson systems with maximal isospin from lattice QCD	Dr. Andrew HANLON
Generalizing the Lellouch-Luscher formula to three-particle decays	Prof. Stephen SHARPE
Mexico City	$19: 20-19: 40$
Study of scalar meson production in three body $\$$ \$eta_c $\$$ decays at BABAR	Dr. Alessandro PILONI
Mexico City	$19: 40-20: 00$

Back-up

Higher partial waves

Higher partial

Threshold expansion: $\quad \mathcal{K}_{\mathrm{df}, 3}=\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 0}+\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 1} \Delta+\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 2} \Delta^{2}+\mathcal{K}_{A} \Delta_{A}+\mathcal{K}_{B} \Delta_{B}$, [Blanton, FRL, Sharpe]

Higher partial waves
 s-wave

Threshold expansion: $\quad \mathcal{K}_{\mathrm{df}, 3}=\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 0}+\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 1} \Delta+\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 2} \Delta^{2}+\mathcal{K}_{A} \Delta_{A}+\mathcal{K}_{B} \Delta_{B}$,
[Blanton, FRL, Sharpe]

$$
\Delta \equiv \frac{s-9 m^{2}}{9 m^{2}}
$$

Higher parkial
 s-wave d-wave

Threshold expansion: $\quad \mathcal{K}_{\mathrm{df}, 3}=\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 0}+\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 1} \Delta+\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 2} \Delta^{2}+\mathcal{K}_{A} \Delta_{A}+\mathcal{K}_{B} \Delta_{B}$,
[Blanton, FRL, Sharpe]

$$
\Delta \equiv \frac{s-9 m^{2}}{9 m^{2}}
$$

Hockrem watrial waves
 s-wave d-wave

Threshold expansion: $\quad \mathcal{K}_{\mathrm{df}, 3}=\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 0}+\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 1} \Delta+\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 2} \Delta^{2}+\mathcal{K}_{A} \Delta_{A}+\mathcal{K}_{B} \Delta_{B}$
[Blanton, FRL, Sharpe]

$$
\Delta \equiv \frac{s-9 m^{2}}{9 m^{2}}
$$

$$
\Delta_{B}=\sum_{i, j=1}^{3} \widetilde{t}_{i j}^{2}-\Delta^{2}
$$

Higher partial
 s-wave
 d-wave

Threshold expansion: $\quad \mathcal{K}_{\mathrm{df}, 3}=\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 0}+\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 3} \Delta+\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 2} \Delta^{2}+\mathcal{K}_{A} \Delta_{A}+\mathcal{K}_{B} \Delta_{B}$
[Blanton, FRL, Sharpe]

$$
\Delta \equiv \frac{s-9 m^{2}}{9 m^{2}}
$$

$$
\Delta_{B}=\sum_{i, j=1}^{3} \widetilde{t}_{i j}^{2}-\Delta^{2}
$$

Higher parkial waves
 s-wave
 d-wave

Threshold expansion: $\quad \mathcal{K}_{\mathrm{df}, 3}=\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 0}+\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 3} \Delta+\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 2} \Delta^{2}+\mathcal{K}_{A} \Delta_{A}+\mathcal{K}_{B} \Delta_{B}$
[Blanton, FRL, Sharpe]

$$
\Delta \equiv \frac{s-9 m^{2}}{9 m^{2}}
$$

$$
\Delta_{B}=\sum_{i, j=1}^{3} \widetilde{t}_{i j}^{2}-\Delta^{2},
$$

See talk by A. Hanlon, Wednesday 28th

