The Weak Charge of the Proton

Wouter Deconinck, University of Manitoba

July 29, 2021 HADRON 2021, Mexico City

Glashow–Weinberg–Salam theory of weak interaction

- Gauge symmetry: $SU(2)_L \times U(1)_Y$
- Gauge couplings: g for $SU(2)_L$, g' for $U(1)_Y$
- Left-handed leptons in doublets, right-handed in singlets
- Fundamental symmetry of left and right helicity broken

Parity symmetry is violated

- Weak interaction violates parity
- Electromagnetic interaction satisfies parity
- Use parity-violation to measure electroweak parameters

Credit: Chris Parkes, CP Violation at LHCb

Glashow–Weinberg–Salam theory of weak interaction

- Gauge symmetry: $SU(2)_L \times U(1)_Y$
- Gauge couplings: g for $SU(2)_L$, g' for $U(1)_Y$
- Left-handed leptons in doublets, right-handed in singlets
- Fundamental symmetry of left and right helicity broken

Electroweak symmetry breaking: $B_\mu, W^i_\mu
ightarrow A_\mu, Z^0_\mu, W^\pm_\mu$

$$\sin^2 heta_W = rac{{g'}^2}{g^2 + {g'}^2} = 0.23129 \pm 0.00005 \, ({
m at} \, M_Z)^1 pprox rac{1}{4}$$

$$\begin{array}{lll} A_{\mu} & = & \cos \theta_{W} \cdot B_{\mu} + \sin \theta_{W} \cdot W_{\mu}^{3} & (\text{massless photon field}) \\ Z_{\mu}^{0} & = & - \sin \theta_{W} \cdot B_{\mu} + \cos \theta_{W} \cdot W_{\mu}^{3} & (M_{W} \approx 80.4 \, \text{GeV}, M_{Z} \approx 91.2 \, \text{GeV}) \end{array}$$

¹Review Particle Physics, J. Erler and A. Freitas, Chin. Phys. C, 40, 100001 (2016)

Glashow–Weinberg–Salam theory of weak interaction

- Gauge symmetry: $SU(2)_L \times U(1)_Y$
- Gauge couplings: g for $SU(2)_L$, g' for $U(1)_Y$
- Left-handed leptons in doublets, right-handed in singlets
- Fundamental symmetry of left and right helicity broken

Electroweak symmetry breaking: $B_{\mu}, W^i_{\mu} \rightarrow A_{\mu}, Z^0_{\mu}, W^{\pm}_{\mu}$

Credit: Flip Tanedo, Quantum Diaries

Glashow–Weinberg–Salam theory of weak interaction

- Gauge symmetry: $SU(2)_L \times U(1)_Y$
- Gauge couplings: g for $SU(2)_L$, g' for $U(1)_Y$
- Left-handed leptons in doublets, right-handed in singlets
- Fundamental symmetry of left and right helicity broken

Parity-violation neutral current

Several Electroweak Charges are Suppressed

Parity-violating electron scattering couplings

- Weak vector quark coupling: $C_{1q} = 2g_A^e g_V^q (\gamma^{\mu} \gamma^5 \text{ on } e \text{ vertex})$
- Weak axial quark coupling: $C_{2q} = 2g_V^e g_A^q (\gamma^\mu \gamma^5 \text{ on } q \text{ vertex})$

Particle	Electric charge	Weak vector charge $(\sin^2 heta_W pprox rac{1}{4})$
u	$+\frac{2}{3}$	$-2C_{1u} = +1 - \frac{8}{3}\sin^2\theta_W \approx +\frac{1}{3}$
d	$-\frac{1}{3}$	$-2C_{1d} = -1 + \frac{4}{3}\sin^2\theta_W \approx -\frac{2}{3}$
p(uud)	+1	$Q^p_W = 1 - 4 \sin^2 heta_W pprox 0$
n(udd)	0	$Q_W^n = -1$
е	-1	$Q_W^e = -2g_A^e g_V^e = -1 + 4\sin^2\theta_W \approx 0$

Weak vector charges of the proton and electron approximately zero Accidental suppression of the weak vector charges in Standard Model makes them relatively more sensitive to new physics

Several Electroweak Charges are Suppressed

Parity-violating electron scattering couplings

- Weak vector quark coupling: $C_{1q} = 2g_A^e g_V^q (\gamma^{\mu} \gamma^5 \text{ on } e \text{ vertex})$
- Weak axial quark coupling: $C_{2q} = 2g_V^e g_A^q (\gamma^\mu \gamma^5 \text{ on } q \text{ vertex})$

Particle	Electric charge	Weak vector charge $(\sin^2 heta_W pprox rac{1}{4})$
u	$+\frac{2}{3}$	$-2C_{1u} = +1 - \frac{8}{3}\sin^2\theta_W \approx +\frac{1}{3}$
d	$-\frac{1}{3}$	$-2C_{1d} = -1 + \frac{4}{3}\sin^2\theta_W \approx -\frac{2}{3}$
p(uud)	+1	$Q^{p}_{W}=1-4\sin^{2} heta_{W}pprox 0$
n(udd)	0	$Q_W^n = -1$
е	-1	$Q_W^e = -2g_A^e g_V^e = -1 + 4\sin^2\theta_W \approx 0$

Weak vector charge of the neutron is large

Dominance of neutron over proton weak charge means that parityviolating scattering is sensitive to neutron distributions

Several Electroweak Charges are Suppressed

Parity-violating electron scattering couplings

- Weak vector quark coupling: $C_{1q} = 2g_A^e g_V^q (\gamma^{\mu} \gamma^5 \text{ on } e \text{ vertex})$
- Weak axial quark coupling: $C_{2q} = 2g_V^e g_A^q (\gamma^\mu \gamma^5 \text{ on } q \text{ vertex})$

Particle	Electric charge	Weak axial charge $(\sin^2 heta_W pprox rac{1}{4})$
u	$+\frac{2}{3}$	$-2C_{2u} = -1 + 4\sin^2\theta_W \approx 0$
d	$-\frac{1}{3}$	$-2C_{2d} = +1 - 4\sin^2 heta_W pprox 0$

Weak axial charges of quarks approximately zero

Accidental suppression of the weak axial charges in deep-inelastic scattering of quarks

$$\frac{\Delta \sin^2 \theta_W}{\sin^2 \theta_W} = \frac{1 - 4 \sin^2 \theta_W}{4 \sin^2 \theta_W} \frac{\Delta observable}{observable}$$

Weak Mixing Angle Runs With Energy Scale

(Width of curve indicates theoretical uncertainty in MS.)

Flipping Electron Spin to Access Electroweak Observables

- Parity transformation: Inversion of spatial vectors $ec{x}
 ightarrow -ec{x}$
- Tests using parity-violating electron scattering
 - Polarized electrons (spin \vec{S}) on unpolarized target
 - We could invert $\vec{r} \to -\vec{r}$, $\vec{p} \to -\vec{p}$, and keep $\vec{S} = \vec{S}$,

Parity-violating asymmetry A_{PV} between \pm helicity scattering yields

Flipping Electron Spin to Access Electroweak Observables

- Parity transformation: Inversion of spatial vectors $ec{x}
 ightarrow -ec{x}$
- Tests using parity-violating electron scattering
 - Polarized electrons (spin \vec{S}) on unpolarized target
 - We could invert $\vec{r} \to -\vec{r}$, $\vec{p} \to -\vec{p}$, and keep $\vec{S} = \vec{S}$, but instead we leave \vec{r} , \vec{p} unchanged and flip the spin \vec{S}

Parity-violating asymmetry A_{PV} between \pm helicity scattering yields

Parity-Violating Asymmetries are Typically Small

Asymmetry between + and - incoming electron helicity

$$A_{PV} = \frac{\sigma_{+} - \sigma_{-}}{\sigma_{+} + \sigma_{-}} \quad \text{with} \quad \sigma = \left| \begin{array}{c} e & e' \\ \hline \gamma \\ q & q' \end{array} + \begin{array}{c} e & e' \\ \hline \gamma \\ q & q' \end{array} + \begin{array}{c} e & e' \\ \hline \gamma \\ q & q' \end{array} \right|^{2}$$

Interference of exchange of photon (\mathcal{P} -even) and weak boson (\mathcal{P} -odd)

$$\mathcal{M}^{EM} \propto \frac{1}{Q^2} \qquad \mathcal{M}^{NC}_{PV} \propto \frac{1}{M_Z^2 + Q^2}$$

$$A_{PV} = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-} \propto \frac{\mathcal{M}^{NC}_{PV}}{\mathcal{M}^{EM}} \propto \frac{Q^2}{M_Z^2} \propto G_F Q^2 \approx \mathcal{O}(\text{ppm, ppb}) \text{ when } Q^2 \ll M_Z^2$$

Strategy to Measure Parts-Per-Billion: Integration

- Each event individually detected, digitized and read-out
- Selection or rejection possible based on event characteristics
- 100 ns pulse separation limits rate to 10 MHz per detector segment; at least 1 day for 1 ppm precision

Integrating or current mode

- Very high event rates possible, as long as detectors are linear
- But no rejection of background events possible after the fact
- Q_{Weak} segment rates 800 MHz; MOLLER segment rates up to 2.5 GHz; P2 up to 0.5 THz

Parity-Violating Asymmetry to Access Electroweak Parameters

Electroweak measurements with protons (elastic scattering)

• Access to weak vector quark charges, measurements of $\sin^2 \theta_W$

Electroweak measurements with electrons (Møller scattering)

• Access to weak electron charge, measurements of $\sin^2\theta_W$

Electroweak measurements with quarks (deep-inelastic scattering)

• Access to weak axial quark charges, measurements of $\sin^2 \theta_W$, measurements of weak structure functions

Electroweak measurements with nuclei (elastic scattering)

• Access to neutron distributions, measurements of neutron skin thickness

Parity-Violating Asymmetry to Access Electroweak Parameters

Electroweak measurements with protons (elastic scattering)

• Access to weak vector quark charges, measurements of $\sin^2 \theta_W$

Electroweak measurements with electrons (Møller scattering)

• Access to weak electron charge, measurements of $\sin^2\theta_W$

Electroweak measurements with quarks (deep-inelastic scattering)

• Access to weak axial quark charges, measurements of $\sin^2 \theta_W$, measurements of weak structure functions

Electroweak measurements with nuclei (elastic scattering)

• Access to neutron distributions, measurements of neutron skin thickness

Electroweak measurements with protons (elastic scattering)

$$A_{PV}(p) = \frac{-G_F Q^2}{4\pi\alpha\sqrt{2}} \left[\frac{\epsilon G_E G_E^Z + \tau G_M G_M^Z - (1 - 4\sin^2\theta_W)\epsilon' G_M G_A^Z}{\epsilon(G_E)^2 + \tau(G_M)^2} \right]$$

In the forward elastic limit $Q^2 \rightarrow 0$, $\theta \rightarrow 0$ (plane wave):

$$A_{PV}(p) \xrightarrow{Q^2 \to 0} \frac{-G_F Q^2}{4\pi \alpha \sqrt{2}} \left[Q_W^p + Q^2 \cdot B(Q^2) \right] \propto Q_W^p \text{ when } Q^2 \text{ small}$$

Weak charge is intercept at $Q^2
ightarrow 0$ of normalized asymmetry $A_{PV}(p)/A_0$

$$A_{PV}(p)/A_0 \xrightarrow{Q^2 \to 0} Q_W^p \xrightarrow{LO} -1 + 4\sin^2 \theta_W$$

Qweak Experiment

- First experiment with direct access to proton's weak charge
- Experiment collected data between 2010 and 2012 with toroidal spectrometer and integrating quartz detectors

First determination based on subset of data

 First measurement was published in 2013 based on commissioning data¹ (4% compared to the independent full data set)

Precision final results are now published

- Precision measurement of weak charge in Nature² in 2018
- Agrees with the Standard Model; exclusion limits for new physics

¹First Determination of the Weak Charge of the Proton, Phys. Rev. Lett. 111, 141803 (2013)
 ²Precision Measurement of the Weak Charge of the Proton, Nature 557, p207-211 (2018)

The Q_{Weak} Experiment

Schematic overview

- Elastic electron scattering on protons in liquid hydrogen target
- Magnetic field to bend the scattered electrons by energy
- Collimator system to select elastic events only
- Lower energy inelastic events bent away from the detectors

The Weak Charge of the Proton

¹*The Qweak Apparatus, NIM A 781, 105 (2015)*

The Weak Charge of the Proton

Pushing the envelope of intensity (more detected electrons)

- Higher beam current (180 μ A versus usually < 100 μ A)
- Longer cryo-target (35 cm versus 20 cm, 2.5 kW in 20 K LH2)
- Higher event rates up to 800 MHz (integrating mode)
- Typical luminosity of $1.7 imes 10^{39}\,{
 m cm^{-2}\,s^{-1}}$, $\int {\cal L} dt = 1\,{
 m ab^{-1}}$

Pushing the envelope of precision (better measurements)

- Electron beam polarimetry precision of 1% at $1\,\text{GeV}$
- Helicity-correlated asymmetries at ppb level (beam position at nm level)
- Precise determination of Q^2 since $A_{PV} \propto Q^2$
- Isolate elastic scattering from background processes (f_i, A_i)
 - This is why we must measure various background asymmetries

Intercept of A_{PV} at $Q^2 \rightarrow 0$ gives weak charge ($Q^2 = 0.025 \, \text{GeV}^2$)

$$\overline{A_{PV}}=rac{A_{PV}}{A_0}=Q_W^p+Q^2\cdot B(Q^2, heta=0) \hspace{0.5cm} ext{with} \hspace{0.5cm} A_0=-rac{G_FQ^2}{4\pi lpha \sqrt{2}}$$

Global fit¹ of all parity-violating electron scattering with full data set²

- Fit of parity-violating asymmetry data on H, D, $^4\text{He},~Q^2<0.63\,\text{GeV}^2$
- Free parameters were C_{1u} , C_{1d} , strange charge radius ρ_s and magnetic moment μ_s ($G_{E,M}^s \propto G_D$), and isovector axial form factor $G_A^{Z,T=1}$
- $Q_W^p(PVES) = 0.0719 \pm 0.0045$, $\sin^2 \theta_W(Q^2) = 0.2382 \pm 0.0011$

•
$$\rho_s = 0.19 \pm 0.11$$
, $\mu_s = -0.18 \pm 0.15$, $G_A^{Z,T=1} = -0.67 \pm 0.33$

- After combination with atomic parity-violation on Cs:
 - $C_{1u} = -0.1874 \pm 0.0022$
 - $C_{1d} = 0.3389 \pm 0.0025$

¹R. Young, R. Carlini, A.W. Thomas, J. Roche, Phys. Rev. Lett. 99, 122003 (2007) ²Precision Measurement of the Weak Charge of the Proton, Nature 558 (2018)

Sensitivity to New Physics

Effective four-point interactions of some higher mass scale¹

$$\mathcal{L}_{e-q}^{PV} = -\frac{G_F}{\sqrt{2}} \overline{e} \gamma_{\mu} \gamma_5 e \sum_q C_{1q} \overline{q} \gamma^{\mu} q + \frac{g^2}{\Lambda^2} \overline{e} \gamma_{\mu} \gamma_5 e \sum_q h_q^V \overline{q} \gamma^{\mu} q$$

Limits on new physics energy scale when uncertainty ΔQ^p_W

$$\frac{\Lambda}{g} = \frac{1}{2} \left(\sqrt{2} G_F \Delta Q_W^p \right)^{-1/2}$$

Assuming that we have an arbitrary flavor dependence of the new physics:

$$h_V^u = \cos \theta_h \quad h_V^d = \sin \theta_h$$

¹J. Erler, A. Kurylov, M. Ramsey-Musolf, PRD 68, 016006 (2003)

Sensitivity to New Physics

Background treatment in integrating experiments

- Measured asymmetry A_{msr} corrected for all background contributions
 - with their own parity-violating asymmetry A_i (ppm-level)
 - and their dilution in the measured asymmetry f_i (%-level)

$$A_{PV} = R_{total} \frac{\frac{A_{msr}}{P} - \sum f_i A_i}{1 - \sum f_i}$$

Example of a background: Aluminum target walls

- Dominant correction to the asymmetry: background from scattering of the thin aluminum entrance and exit windows of the hydrogen target
 - Dilution $f_1 \approx 2.5\%$: directly measured with empty target, slightly different for run1 and run2
 - Effective Al alloy asymmetry $A_1 = 1515 \pm 77$ ppb: directly measured with thick "dummy" target of identical alloy as hydrogen target windows

Measurements on Al Alloy Allow for Physics Results Too

Parity-Violating Asymmetry $A_{PV}(^{27}AI)$

- Extraction of neutron distribution radius R_n in aluminum
 - Precision of 4% on A_{PV} of pure ²⁷Al translates to 2% on R_n
 - $R_n(^{27}AI)$ helps benchmark theory important for nuclear astrophysics
- Part of larger program with CREX/PREX-II in Summer 2019

Parity-Conserving Transverse Asymmetries $B_n(^{27}AI)$, $B_n(C)$

- Surprisingly small Pb transverse asymmetry in PREX-I¹
- Qweak has several data sets which speak to this observable:
 - Elastic scattering on hydrogen: already presented
 - Elastic scattering on aluminum, carbon: new results
- Aluminum adds new data between carbon (where data agrees with A/Z scaling) and lead (where there is disagreement)

Potential to Elucidate the Behavior Between Carbon and Lead

- $B_n \propto AQ/Z$: Gorchtein, Horowitz, Phys. Rev. C77, 044606 (2008)
- HAPPEX, PREX: Abrahamyan et al., PRL 109, 192501 (2012)

Two Primary Challenges in these Ancillary Results

- Spectrometer not designed with narrow energy acceptance to separate elastic state from excited states in nuclei
- Target not made of pure aluminum but alloy instead (carbon is cleaner)

Spectrometer Energy Acceptance Approximately 150 MeV

- Non-elastic scattering processes dilute the asymmetry measurement
- Corrections required for nuclear excited states, GDR, ...

Correction for 20% ppm-level Non-Elastic Asymmetries

f_i: Background Fraction

$$f_i = \frac{y_i}{\sum_i y_i}$$

where y_i is the detector signal yield

- Using Geant4 Monte Carlo simulation to determine *y_i*
- Cross-section parameterization in simulation from empirical fit¹

Process	f[%]	$\partial f[\%]$	$\partial f/f$ [%]
Quasi	12.75	1.14	8.91
Inelastic	7.38	0.70	9.50

A_i: Background Asymmetry

- Quasi-elastic:
 - Theoretical support from C. Horowitz and Z. Lin
 - Initial calculation agrees well with "free nucleon" estimate

 $A_{\textit{QE}} = -0.34 \pm 0.34\,\text{ppm}$

- Inelastic:
 - Have statistics dominated $(\partial A/A = 71 \%)$ measurement of this asymmetry

 $A_{IN}=1.61\pm1.15\,\text{ppm}$

¹P. Bosted, V. Mamyan, arXiv:1203.2262v2

Aluminum Alloy Has About 10% Higher-Z Contaminants

Aluminum alloy elements [w%]

Element	Run 1	Run 2
Al	89.53	89.23
Zn	5.90	5.87
Mg	2.60	2.63
Cu	1.50	1.81
Cr	0.19	0.19
Fe	0.14	0.11
Si	0.08	0.09
Mn	0.04	0.04
Ti	0.02	0.03

Correction method

- Only most common isotopes of Zn, Mg, Cu, Cr, Fe, and Si
- Only elastic scattering from contaminants
- Modified luminosity calculation
 - Zn, Mg, Cu, Cr, Fe, Si: cross sections and asymmetries using distorted wave model¹
 - Mn, Ti: Born approximation cross section model with Fourier-Bessel form factor fits

¹C. Horowitz, Z. Lin, private communication

Measured Parity-Violating Asymmetry Agrees With Theory

Distorted wave calculation¹ prediction of 2.1 ppm at 1.16 GeV $A_{PV} = 1.927 \pm 0.173$ (tot.) [0.091(stat.) ± 0.148 (sys.)] ppm $\Delta A/A \approx 9\%$ (tot.)

¹C. J. Horowitz Phys. Rev. C 89, 045503 (2014)

Determined Neutron Distribution Radius Agrees with Proton's

Extraction of R_n based on collection of nuclear models

- $R_n = 3.024 \pm 0.104 \, \text{fm}$ and $R_n R_p = 0.092 \pm 0.104 \, \text{fm}$
- Neutron 'skin' consistent with expected range 0.004–0.024 fm

Beam Normal Asymmetry is the Size of Azimuthal Variation

Beam normal single spin asymmetries B_n

- Measurement of $A_T(\phi)$ with transversely polarized beam (H or V)
- Parity-conserving T-odd transverse asymmetry of order ppm

$$A_T(\phi) = \frac{N^{\uparrow}(\phi) - N^{\downarrow}(\phi)}{N^{\uparrow}(\phi) + N^{\downarrow}(\phi)} = B_n S \sin(\phi - \phi_S) = B_n (P_V \cos \phi + P_H \sin \phi)$$

$$B_n = \frac{\sigma_{\uparrow} - \sigma_{\downarrow}}{\sigma_{\uparrow} + \sigma_{\downarrow}} = \frac{2\Im(T^{1\gamma*} \cdot AbsT^{2\gamma})}{|T^{1\gamma}|^2} \propto \frac{A \cdot Q}{Z} \approx \mathcal{O}(\alpha \frac{m}{E}) \approx ppm$$

Beam Normal Asymmetry is the Size of Azimuthal Variation

Aluminum azimuthal asymmetry for Hydrogen

Beam Normal Asymmetry on H is Consistent with Theory

Beam normal asymmetry for Hydrogen¹

¹Phys.Rev.Lett. 125 (2020) 11, 112502

Beam Normal Asymmetry on C is Consistent with PREX-I

$B_n({ m C}) = -10.68 \pm 0.90({ m stat}) \pm 0.57({ m syst})\,{ m ppm}$ in elastic scattering

- Target consists of 99% $^{12}\mathrm{C},$ no significant contaminations
- Correction for contribution from quasi-elastic scattering, but no attempts at separation of nuclear excited states and GDR
- $B_n(C)$ is a quantity that applies not to a purely elastic state

J^P	E [MeV]	weight [%]
0+	0	71.6 ± 7.9
2+	4.44	$\textbf{3.5}\pm\textbf{0.3}$
0+	7.65	10.3 ± 2.1
3-	9.64	11.6 ± 1.4
GDR	(24)	1.9 ± 0.4

• Scaling PREX-I to $E_b = 1.165 \text{ GeV}$ and $Q^2 = 0.0270 \pm 0.0079 \text{ GeV}^2$ leads to expected $B_n(C) = -10.8 \pm 0.3 \text{ ppm}$ (ground state)

Beam Normal Asymmetry on C is Consistent with Mainz

Consistent with both PREX-I¹ and 2018 Mainz² measurements

¹Abrahamyan et al., PRL 109, 192501 (2012) ²A. E<u>sser, Phys. Rev. Lett. 121, 022503 (2018)</u>

The Weak Charge of the Proton

Beam Normal Asymmetry on AI is More Complicated

Quasi-elastic scattering

- Free nucleon approximation and some heuristics related to isoscalar/isovector impact on sign of asymmetry
- More detailed quasi-elastic implementation per Horowitz, Phys. Rev. C 47, 826 (1992), which Z. Lin has adapted to ²⁷Al

Contaminants in Al alloy

- Similar approach as C. Horowitz, Phys. Rev. C89, 045503 (2014)
- Implementation into Q_{Weak} Monte Carlo to determine contributions

Nuclear excited states

- Fitted nuclear excited state form factors using MIT Bates data
 - R.S. Hicks, A. Hotta, J.B. Flanz, H. deVries, Phys. Rev. C21, 2177 (1980)
 - P.J Ryan, R.S. Hicks, A. Hotta, J. Dubach, G.A. Peterson, D.V. Webb, Phys. Rev. C27, 2515 (1983)

Beam Normal Asymmetry on AI compared to Mainz Si

Consistent with Mainz¹ measurements

¹A. Esser et al., Phys. Lett. B 808, 135664 (2020)

The Weak Charge of the Proton

Beam Normal Asymmetry World Data vs. Atomic Mass

Beam Normal Asymmetry World Data vs. Momentum Transfer

Reduced Beam Normal Asymmetry vs. Momentum Transfer

Parity-Violating Asymmetry to Access Electroweak Parameters

Electroweak measurements with protons (elastic scattering)

• Access to weak vector quark charges, measurements of $\sin^2 \theta_W$

Electroweak measurements with electrons (Møller scattering)

• Access to weak electron charge, measurements of $\sin^2\theta_W$

Electroweak measurements with quarks (deep-inelastic scattering)

• Access to weak axial quark charges, measurements of $\sin^2 \theta_W$, measurements of weak structure functions

Electroweak measurements with nuclei (elastic scattering)

• Access to neutron distributions, measurements of neutron skin thickness

Parity-Violating Asymmetry to Access Electroweak Parameters

Electroweak measurements with protons (elastic scattering)

• Access to weak vector quark charges, measurements of $\sin^2 \theta_W$

Electroweak measurements with electrons (Møller scattering)

• Access to weak electron charge, measurements of $\sin^2\theta_W$

Electroweak measurements with quarks (deep-inelastic scattering)

• Access to weak axial quark charges, measurements of $\sin^2 \theta_W$, measurements of weak structure functions

Electroweak measurements with nuclei (elastic scattering)

• Access to neutron distributions, measurements of neutron skin thickness

P2: High Precision Measurement of Proton's Weak Charge

New Experiment: P2 Experiment in Mainz¹

- 155 MeV energy-recovery superconducting accelerator MESA
- Projected precision of $\sin^2 \theta_W$ to ± 0.0003 at $Q^2 = 0.0045 \, {\rm GeV^2}$
- Accelerator commissioning, experiment data taking, target for operations in 2023
- Electron polarimetry at 0.5% precision with atomic hydrogen Møller

¹Becker, D. et al. Eur. Phys. J. A (2018) 54: 208

The Weak Charge of the Proton

P2: High Precision Measurement of Proton's Weak Charge

Radiative corrections on weak charge

- $Q_W^p = (\rho_{NC} + \Delta_e)(1 4\sin^2\theta_W(0) + \Delta'_e) + \Box_{WW} + \Box_{ZZ} + \Box_{\gamma Z}$
- $\square_{\gamma Z}$: relatively large correction and uncertainty¹
- Improving measurements of Q_W^p benefits from smaller beam energies

¹M. Gorchtein, C. J. Horowitz, M. J. Ramsey-Musolf, Phys. Rev. C 84, 015502 (2011)

The Weak Charge of the Proton

Weak Mixing Angle Runs With Energy Scale

- Qweak Experiment
 - Weak charge imposes new lower limit on new physics
 - $A_{PV}(^{27}AI)$ agrees with theoretical calculations
 - $B_n(C)$ (including mixture of pure elastic and excitations) agrees with PREX-I and Mainz measurements and $A \cdot Q/Z$ scaling
 - $B_n(^{27}AI)$ adds beam-normal measurement between carbon and lead
- P2 Experiment
 - Proton's weak charge measurement in Mainz, Germany
 - Gearing up for commissioning and operations

Systematics Dominated by Inelastic Asymmetry Uncertainty

Statistical and Systematic Uncertainties

• Only A_{inelastic} is larger than the statistical (red) uncertainty.

Top five largest uncertainty contributions

Quantity	Error [ppm]
Statistics	0.090
A _{IN} : Inelastic Asym.	0.121
A _{QE} : Quasi-elastic Asym.	0.061
f _{QE} : Quasi-elastic Fraction	0.037
A _{Zn} : Zinc Asym.	0.031
A _{Mg} : Magnesium Asym.	0.030
:	÷
Combined (quadrature)	0.180

