

Results from low energy e⁺e⁻ facilities of Budker Institute of Nuclear Physics

Evgeny Kozyrev on behalf of Budker Institute of Nuclear Physics e.a.kozyrev@inp.nsk.su

19th International Conference on Hadron Spectroscopy and Structure in memoriam Simon Eidelman, 2021

Novosibirsk Budker Institute of Nuclear Physics ~ 12000 km

I was appreciated to be invited by Simon Eidelman to give this talk

Outline

- 1. Physics program
- 2. Collider VEPP-2000. Detectors CMD-3 and SND
- 3. Collider VEPP-4M. Detector KEDR
- 4. Recent results from the CMD-3
- 5. Recent results from the SND

(more detailed overview can be found in **Victor Zhabin**'s talk on the Tuesday session "Hadron decays, production and interactions-2" <u>https://indico.nucleares.unam.mx/event/1541/session/20/contribution/155/material/sli</u> <u>des/0.pdf</u>)

- 6. Recent result from the KEDR
- 7. Summary

Physics program, R measurement

▼ VEPP-2000: direct exclusive measurement of σ (e+e- → hadrons). Only one working this days on scanning below 2 GeV with world-best luminosity (1 GeV excluded – where KLOE outperfom everybody).

BESIII, KEDR - direct scan from 2 GeV to 5 (11) GeV.

Physics program, R measurement

Indication: the sum of exclusive measurements disagrees with pQCD as well as with inclusive data

 More precise data is needed

There is still unmeasured exclusive processes, ex., $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\pi^0\pi^0\pi^0$

Physics program

▼ The measurement of cross sections e^+e^- -> hadrons exclusively (VEPP-2000) and inclusively (VEPP-4M). The total hadronic cross section is calculated as a sum of exclusive cross sections.

 The measurement of two photon cross sections and transition form factors of mesons

 $(e^+e^- \rightarrow X\gamma, e^+e^- \rightarrow e^+e^- X, e^+e^- \rightarrow X\gamma \rightarrow Xe^+e^-)$

The study of two photons direct production of C-even resonance (e^+e^- ->X).

 Amplitude analysis, a study of internal dynamics of the process of hadronization.

Measurement of parameters of vector states ($J^{PC} = 1^{--}$) $\rho(770)$, $\omega(778)$, $\phi(1020)^{\circ}$ and its excited states.

- **v** Rare decays, $\varphi \rightarrow \pi + \pi -$, $\omega \rightarrow \pi^0 \mu + \mu \dots$
- Precise measurement of masses of mesons J/ψ , $\psi(2S)$, $\psi(3770)$, D^0 , D^{\pm} , Y(ns) and τ -lepton.

• Precise measurement of total, leptonic and exclusive hadronic widths of charmonium J/ψ , $\psi(2S)$, $\psi(3770)$ and other states.

Collider VEPP-2000

	Parameters at 1 GeV			
	Design	Achieved		
Circumference	24.388 m			
Beam energy, MeV	150-1000	160-1005		
N of bunches	1 imes 1			
N of particles / bunch	$1 imes 10^{11}$	$0.9 imes 10^{11}$		
Luminosity, cm ⁻² s ⁻¹	$1 imes 10^{32}$	$0.5 imes 10^{32}$		

- Round beams concept
- 13 T solenoids for FF
- $E_{\rm beam}$ controled by Compton back scat. ($\sigma_{\sqrt{s}} = 0.1\,{\rm MeV}$)

Beam energy measurement system

The beam energy is measured using the Compton backscattering of the laser photons on the electron beam. The measurement accuracy is about 30-50 keV.

Spherical Neutral Detector (SND) and Cryogenic Magnetic Detector-3 (CMD-3)

Luminosity collection history

Integrated luminosity collected at VEPP-2000 collider with CMD-3 detector

Collider VEPP-4M and KEDR detector

Beam energy measurement:

- Resonant depolarization method Instant measurement accuracy 1 keV Energy interpolation accuracy 10-30 keV
- Infrared light Compton backscattering Monitoring with accuracy 100 keV

Beam energy Number of bunches Luminosity at 1.5 GeV Luminosity at 5.0 GeV

1 - 6 GeV 2 x 2 2 • 10³⁰ cm⁻² s⁻¹ 2 • 10³¹ cm⁻² s⁻¹

- 1. Vacuum chamber
- 2. Vertex detector
- 3. Drift chamber
- 4. Threshold aerogel counters
- 5. ToF counters
- 6. Liquid krypton calorimeter
- 7. Superconducting coil
- 8. Magnet yoke
- 9. Muon tubes
- 10. CsI calorimeter
- 11. Compensating s/c solenoid4

CMD-3 published results

Measured cross section by CMD-3

Published:

e+e- →ppbar Phys.Lett. B759 (2016) 634-640 Phys.Lett. B740 (2015) 273-277 n'(958) $2(\pi + \pi -)$ Phys.Lett. B768 (2017) 345-350 Phys.Lett. B723 (2013) 82-89 $3(\pi + \pi -)$ Phys.Lett. B773 (2017) 150-158 ωη, ηπ+π-πΟ $3(\pi + \pi -)\pi 0$ Phys.Lett.B 792 (2019) 419-423 Phys.Lett. B760 (2016) 314-319 KSKL Phys.Lett. B779 (2018) 64-71 K + K -K + K - π + π - Phys.Lett. B756 (2016) 153-160 K+K-n Phys.Lett. B 798 (2019) 134946 KSKs π + π - Phys.Lett. B804 (2020) 135380 Journal of HEP, 2020, 2020(1), 112 ηπ+π-

Under active analysis:

```
e+e- →π+π-γ,

ηγ, πΟγ,

π+π-π0π0, 2(π+π-),

2(π+π-)π0, 2(π+π-π0)

K+K-, KSKL - at higher energies

K+K-π0, KSKLπ0,KSKLη,

nnbar,

π<sup>0</sup>e+e-, ηe+e-

.....
```

Near finished result:

```
e+e- \rightarrow \pi+\pi-D^{0*}
K<sub>S</sub>K+\pi-\omega\pi+\pi-
```

Analysis of a channel takes full person-years: higher systematic requirement, more effects more years 16

...

••

R(s) at nucleon antinucleon threshold

VEPP-2000: unique ability for detailed scan of ppbar and nnbar threshold.

- observed the sharp change of $e^+e^- \rightarrow p\bar{p}$, $3(\pi^+\pi^-)$, $K^+K^-\pi^+\pi^-$
- width is ~1 MeV consistent with energy resolution
- puzzle why there is no change in $e^+e^- \rightarrow 2(\pi^+\pi^-)$?
- We plan to do comprehensive study of this energy range

Study of internal dynamics at CMD-3

∖ intermediate state	1	1	1	1	1-	1+	1++	1++	0+	0+	0-+
final state (fs)	ρ',ω',φ'	ρ(770)	ω(782)	φ(1020)	K*(890)	K1(1270)	a1(1260)	f1(1285)	f0(980)	a0(980)	η, η'(958)
π+π-	fs	fs	fs	fs							
π+π-πΟ	fs	2π	fs	fs							fs
π+π-πΟπΟ	fs	π±π0, π+π-	π+π-π0				π-π0π0	fs	πΟπΟ		
π+π-π+π-	fs	π+π-					π-π+π-	fs	π+π-		
5π	fs	2π	3π								fs , π+π-π0
6π	fs	π±π0, π+π-					3π				π+π-π0
7π	fs		3π								π+π-π0
8π	fs										
K+K-, KSKL	fs	fs	fs	fs							
2Κπ0, 2Κη	fs			2K	Κπ						
2Κ2π	fs	2π		2K	Κπ	Κ2π			2π		
2K3π	fs	2π			Κπ			2Κπ	2K	2K	
nucleon bar nucleon	fs										
πγ, ηγ, η'γ	fs	fs	fs	fs							
πee, nee, n'ee	fs	fs	fs	fs							
πΟπΟγ, πΟηγ	fs		πΟγ	fs					πΟπΟ	πΟη	
π+π-η	fs	fs, 2π		fs				fs			fs
π+π-πΟη	fs	π+π-	π+π-π0	π+π-π0						πΟη	
μ+μ-π0, μ+μ-η, 4πη, 2π2η	fs										

The table is not comprehensive!

The study of $e^+e^- \to 4\pi$ at CMD-3

• Simultaneous unbinned amplitude analysis of 150 000 $\pi^+\pi^-\pi^0\pi^0$ events and 250 000 $\pi^+\pi^-\pi^+\pi^-$ events

 Amplitudes accounted for in the likelihood function:

- $\omega[1^{--}]\pi^0[0^{++}]$ (only $\pi^+\pi^-2\pi^0$)
- $a_1(1260)[1^+]\pi[0^-]$
- $\rho[1^{--}]f^0/\sigma[0^{++}]$
- $\rho f_2(1270)[2^{++}]$
- $\rho^+ \rho^-$ (only $\pi^+ \pi^- 2\pi^0$)
- $h_1(1170)[1^{+-}]\pi^0$ (only $\pi^+\pi^-2\pi^0$)

The study of $e^+e^- \rightarrow \pi^+\pi^-$ at CMD-3 Analysis strategy

- **v** 2 tracks with $1 \le \Theta \le \pi 1$
- Separation of $e/\mu/\pi/cosmic$
- Two independent approaches:
 - Separation by momenta
- Separation by energy depositions
- Binned likelihood minimization:

$$-\ln L = -\sum_{ ext{bins}} n_i \ln \left[\sum_{\substack{X=ee,\ \mu\mu, \pi\pi,\ ext{bg}}} N_X f_X(p^+, p^-)
ight] + \sum_X N_X$$

The study of $e^+e^- \to \pi^+\pi^-$ at CMD-3

Separation by **momentum** • take e^+e^- , $\mu^+\mu^-$, $\pi^+\pi^-$ and $\pi^+\pi^-\pi^0$ PDFs from MC generators smeared by the detector resolution.

cosmic PDF from data

Separation by **energy deposition** in LXe

- No need for PDFs from MC
- Energy deposition includes
 FSR
- Fit data by analytical functions

The analysis on its final stages. Additional local consistency checks should be fulfilled. The aim systematic uncertainty is 0.5 %.

The study of $e^+e^- \to \pi^+\pi^-$ at SND

The analysis is based on 4.7 pb⁻¹
 data recorded in 2013 (1/10 full data set in rho-meson region)

Systematic uncertainty ~ 0.8 %

BDT was trained by full information of shower profile in three layer calorimeter

Source	< 0.6 GeV	0.6 - 0.9 GeV
Trigger	0.5	0.5
Selection criteria	0.6	0.6
$e/\pi/\mu$ separation	0.5	0.1
Nucl. interaction	0.2	0.2
Theory	0.2	0.2
Total	0.9	0.8 23

Comparison with the shape of fit

 Contribution to anomalous magnetic moment of muon
 Cold Cold

0.53 < √s < 0.88 GeV

	a _µ ×10 ¹⁰	/σ _{fit} -1
SND @ VEPP-2000	409.79 ± 1.44 ± 3.87	0 _{exp}
SND @ VEPP-2M	406.47 ± 1.74 ± 5.28	
BABAR	413.58 ± 2.04 ± 2.29	
KLOE	403.39 ± 0.72 ± 2.50	-

SND result is consistent with BABAR and KLOE

The study of $e^+e^- \rightarrow nnbar below 2 GeV$ at SND Differential cross section: $\frac{d\sigma}{d\Omega} = \frac{\alpha^2 \beta C}{4s} \left[\left| G_M(s) \right|^2 (1 + \cos^2 \theta) + \frac{1}{\tau} \left| G_E(s) \right|^2 \sin^2 \theta \right]$ $\beta = \sqrt{1 - 4m_N^2/s}, \quad \tau = \frac{s}{4m_N^2}$ Z • G_E and G_M are electric and magnetic form factors, $|G_F| = |G_M|$ at the reaction threshold GN 2000 The total cross section: $\sigma_0(s) = \frac{4\pi \alpha^2 \beta C}{3s} \left[\left| G_M(s) \right|^2 + \frac{1}{\tau} \left| G_E(s) \right|^2 \right]$ GE 1000 The |G_F|/|G_M| ratio can be obtained using cos0 distribution. 0 -0.5 0 0.5

 $\cos\theta^{25}$

The study of $e^+e^- \rightarrow nnbar below 2 GeV$ at SND

Features of the $e^+e^- \rightarrow nnbar$ events in SND

 nucleon is rather slow. This leads to large time-of-flight.

 energy deposition of n is very low and it is not reconstructed.

 antineutron annihilates in calorimeter with large energy deposition.

Main selection requirements:

- No charged central tracks
- Muon system veto
- No cosmic tracks in calorimeter
- Large unbalanced momentum in calorimeter (P > 0.4Ebeam)
- EMC energy : Etot > Ebeam

The study of $e^+e^- \rightarrow$ nnbar below 2 GeV at SND

The number of signal events was obtained by the fit to distribution of event time measurement (calorimeter trigger time before 2017, flash ADC after 2018)

- MC detection efficiency ~ 0.2
- ▼ S/N~1

20

- ▼ IL ~ 70 pb⁻¹
- N_{signal} ~ 12000

The study of $e^+e^- \rightarrow nnbar below 2 GeV$ at SND

The study of $e^+e^- \rightarrow K+K-\pi^0$ at SND

• The cross sections for the processes $e^{+}e^{-} \rightarrow K^{*}K^{\pm} \rightarrow K^{+}K^{-}\pi^{0}$ and $e^{+}e^{-} \rightarrow \phi\pi^{0} \rightarrow K^{+}K^{-}\pi^{0}$ are measured separately.

 $\phi(1680)$ gives the main contribution to the $e^+e^- \rightarrow K^{*\pm}K^{\pm}$ cross section

The $e^+e^- \rightarrow \phi(1020)\pi^0$ cross section can not be described by $\rho(1450)$ and $\rho(1700)$. It can be fitted with inclusion of an unknown resonance with m=1585±15 MeV and Γ =75±30 MeV ₂₉

Precise measurement of R between 1.84 and 3.72 GeV at the KEDR detector J/ψ $\psi(2S)$ 10 10 In first approximation: $R = \frac{\sigma(e^-e^+ \rightarrow {\rm hadrons})}{\sigma(e^-e^+ \rightarrow \mu^-\mu^+)} \; \approx \;$ \boldsymbol{R} 10 $R(s) \simeq 3 \sum e_a^2$ 10 2 \sqrt{s} [GeV] Ldt, pb^{-1} R(s) is used to determine: Unc., % \sqrt{s} , GeV N_{points} Ref. • $\alpha_s(s)$ V.V. Anashin. Phys.Lett. B 770 1.84 - 3.05 13 0.66 \leq 3.9 total • $(g_{\mu}-2)/2$ (2017) 174 • $\alpha(M_7^2)$ (≈2.4 syst.) $\circ m_Q$ V.V. Anashin. Phys.Lett. B 788 1.3 3.08 - 3.72 9 \leq 2.6 total (2019) 42 (≈1.9 syst.)

Precise measurement of R between 1.84 and 3.72 GeV at the KEDR detector

 This result provides the most precise information about R in this energy range

 The result is consistent with the pQCD predictions within their errors

 The result allows to reduce light quarks contribution to the uncertainty of c quark mass from 2 MeV down to 1 MeV

Next coming results from the KEDR detector

- R measurement between 4.5 and 7.0 GeV
 - ▲ Integrated luminosity 13.7 pb⁻¹
 - ▲ 17 energy points
 - ▲ Expected total uncertainty is about 3 % (systematic uncertainty about 2.5%)

Next coming results from the KEDR detector

- D-mesons masses measurement
 - This knowledge affects understanding of the (X(3872)) nature

- New analysis with increased
- Process $e^+e^- \rightarrow \psi(3770) \rightarrow DDbar$
- $D \to K \pi + \pi + (Br = 9.38 \pm 0.16\%)$

▲
$$D^{\circ} \rightarrow K^{-} \pi^{+}$$
 (Br = 3.95 ± 0.03%)

M(D+) = 1869.53±0.49±0.20 MeV (Phys.Lett.B 686 (2010) 84) Uncertainties estimate for new analysis with increased statistics: 153 keV (stat) 117 keV (syst.) M(D0) = 1865.300±0.330±0.230 MeV (Phys.Lett.B 686 (2010) 84) 140 keV (stat)

Summary

VEPP-2000

▼ The VEPP-2000 collider delivered about 370 pb⁻¹ of integrated luminosity in the energy range 0.32 - 2.01 GeV to the SND and CMD-3 detectors from 2010 to 2021. Today VEPP-2000 is only one working on direct scanning of the region for measurement of exclusive $\sigma(e^+e^- \rightarrow hadrons)$.

• The VEPP-2000 results will help to reduce error of the hadronic contribution to vacuum polarisation and it is independent cross-check of ISR data, future Lattice, space-like.

The $e^+e^- \rightarrow \pi^+\pi^-$ and $e^+e^- \rightarrow$ nnbar (preliminary) cross sections are measured with systematic uncertainty better then 1% and 10% respectively. Publication of a large number of precise measurements are expected soon.

⇒ We have goal to collect O(1) 1/fb at VEPP-2000 in 5 years, which should provide new precise results on the hadron production.

VEPP-4M

The most precise measurement of R was made between 1.84 and 3.72 GeV at the KEDR detector.

 Analysis of data in the energy range between 4.56 and 6.96 GeV was started, expected accuracy is less than 3%. New measuring of D-meson masses is ongoing with aim to increase accuracy by 2 times compared to previous measurement

back up

Precise measurement of R between 1.84 and 3.72 GeV at the KEDR detector

36