

Molecular interpretation of the LHCb P_c states from an analysis of $J/\psi p$ spectrum

Meng-Lin Du

IFIC, University of Valencia HISKP, Universität Bonn

In collaboration with V. Baru, F.-K. Guo, C. Hanhart, U.-G. Meißner, J. A. Oller, and Q. Wang

Based on PRL124(2020)072001 and arXiv: 2102.07159 (2021)

19th International Conference on Hadron Spectroscopy and Structure

Penta-Quark States

Pentaquark

 \hookrightarrow Compact object formed from q and \bar{q}

Hadronic-Molecule

 \hookrightarrow Extended object made of Baryon and Meson

- ► $\Lambda(1405)$
 - $\hookrightarrow \bar{K}N$ predicted by Dalitz and Tuan, 1959 PRL2,425
 - $\hookrightarrow \Lambda(1405) \to \Sigma \pi$ observed by Alston et al., PRL6,698
- ► "θ(1540)"

predicted by Diakonov et al., 1997 $(Z(1530)^+)$ ZPA359, 305

- \hookrightarrow NOT supported by many high statistics experiments
- ► N^* and Λ^* with hidden charm Wu et al., PRL 105, 232001 (2011) \hookrightarrow and many more works...

Charmonium-pentaquark states (I)

Observation of exotic structures (P_c) in $\Lambda^0_b \to J/\psi p K^-$

LHCb, PRL 115, 072001 (2015)

3/21

Charmonium-pentaquark states (II)

m_J/wp [GeV]/ 21

Charmonium-pentaguark (theoretical)

► Compact pentaguark

Cheng et al., PRD100(2019)054002

Ali et al., JHEP1910(2019)256

 $P_c(4312), P_c(4440), P_c(4457): J^P = 3/2^-, 1/2^-, 3/2^-$

► Compact diquark model

$3/2^{-}$	4240 ± 29
$3/2^{+}$	4440 ± 35
$5/2^{+}$	4457 ± 35

- \triangleright P_c s as double triangle cusps

Nakamura, PRD103(2020)L111503

 $\begin{array}{ll} & P_c(4312): \text{ virtual state} \\ & K\text{-matrix: } J/\psi p - \Sigma_c \bar{D} - \Sigma_c \bar{D}^* \end{array}$ Fernández-Ramírez et al., PRL123(2019)092001 Kuang et al., EPJC80(2020)433 Kuang et al., EPJC80(2020)433

- $\hookrightarrow P_c$ s have same J^P . $P_c(4312)$: $\Sigma_c \overline{D}$, $P_c(4457)$: ? cusp effect
- Molecule (HQSS)

Liu et al., PRL122,242001 (2019)

	Molecule	J^P	M (MeV)		Molecule	J^P	M (MeV)
Α	$\bar{D}\Sigma_c$	$\frac{1}{2}$ -	4311.8 - 4313.0	В	$\bar{D}\Sigma_c$	$\frac{1}{2}$ -	4306.3 - 4307.7
Α	$\bar{D}\Sigma_c^*$	$\frac{3}{2}$ -	4376.1 - 4377.0	В	$\bar{D}\Sigma_c^*$	$\frac{3}{2}$ -	4370.5 - 4371.7
Α	$\bar{D}^*\Sigma_c$	$\frac{1}{2}$ -	4440.3^{*}	В	$\bar{D}^*\Sigma_c$	$\frac{1}{2}$ -	4457.3^{*}
A	$\bar{D}^*\Sigma_c$	$\frac{3}{2}$ -	4457.3^{*}	B	$\bar{D}^* \Sigma_c$	$\frac{3}{2}$ -	4440.3^{*}
Α	$\bar{D}^* \Sigma_c^*$	$\frac{1}{2}$ -	4500.2 - 4501.0	В	$\bar{D}^* \Sigma_c^*$	$\frac{1}{2}$ -	4523.2 - 4523.6
A	$\bar{D}^* \Sigma_c^*$	$\frac{3}{2}$ -	4510.6 - 4510.8	B	$\bar{D}^* \Sigma_c^*$	$\frac{3}{2}$ -	4516.5 - 4516.6
A	$\bar{D}^* \Sigma_c^*$	$\frac{5}{2}$ -	4523.3 - 4523.6	B	$\bar{D}^* \Sigma_c^*$	$\frac{5}{2}$ -	4500.2 - 4501.0

and many more works...

quantum numbers? line shape? the existence of $P_c(4380)$?

EFT approach at low energies: $\Sigma_c^{(*)} \bar{D}^{(*)} (\Lambda_c \bar{D}^{(*)})$

Lippmann-Schwinger Equation:

EFT approach at low energies: $\Sigma_c^{(*)} \bar{D}^{(*)} (\Lambda_c \bar{D}^{(*)})$

Lippmann-Schwinger Equation:

Green function: $\Gamma(\Sigma_c^* \to \Lambda_c \pi) = 15.0$ MeV ~ $\Gamma(P_c)$

$$G_{\beta}(E,\mathbf{q}) = \frac{m_{\Sigma_{c}^{(*)}}m_{D^{(*)}}}{E_{\Sigma_{c}^{(*)}}(\mathbf{q})E_{D^{(*)}}(\mathbf{q})} \frac{1}{E_{\Sigma_{c}^{(*)}}(\mathbf{q}) + E_{D^{(*)}}(\mathbf{q}) - E - \frac{\tilde{\Sigma}_{R}^{(*)}(s)}{2E_{\Sigma_{c}^{(*)}}(\mathbf{q})}},$$

$$\hookrightarrow$$
 The self-energy: $\tilde{\Sigma}_{R}^{(*)}(s) \sim ig^{2} \frac{p^{3}}{\sqrt{s}}$

EFT approach at low energies: $\Sigma_c^{(*)} \bar{D}^{(*)} (\Lambda_c \bar{D}^{(*)})$

Lippmann-Schwinger Equation:

 $\Lambda_b^0 \to K^- J/\psi p$

 $\begin{array}{l} \blacksquare m_{J/\psi p} \sim 4440 \ \mathrm{MeV} \\ \hookrightarrow |\mathbf{p}| \sim 810 \ \mathrm{MeV} \\ \hookrightarrow J/\psi p(S), \ J/\psi p(D) \end{array}$

 $\Lambda_h^0 \to K^- J/\psi p$

 $\begin{array}{l} \blacksquare m_{J/\psi p} \sim 4440 \ \mathrm{MeV} \\ \hookrightarrow |\mathbf{p}| \sim 810 \ \mathrm{MeV} \\ \hookrightarrow J/\psi p(S), \ J/\psi p(D) \end{array}$

 $\Lambda_b^0 \to K^- J/\psi p$

 $\begin{array}{l} \text{IS} \ m_{J/\psi p} \sim 4440 \ \text{MeV} \\ \hookrightarrow |\mathbf{p}| \sim 810 \ \text{MeV} \\ \hookrightarrow J/\psi p(S), \ J/\psi p(D) \end{array}$

■ Weak production: \hookrightarrow S-wave $\Sigma_c^{(*)} \overline{D}^{(*)}$ \hookrightarrow 7 parameters: P_{α}^J

R

channels

$$\begin{cases} \frac{\Sigma_c^{(*)}\bar{D}^{(*)}(S/D)}{J/\psi p(S/D), \eta_c p(S/D)} \to \alpha, \beta, \gamma \\ \to i, j, k \end{cases}$$

R

$$U_{\alpha}^{J}(E,p) = P_{\alpha}^{J}(E,p) - \sum_{\beta} \int \frac{d\mathbf{q}^{3}}{(2\pi)^{3}} V_{\alpha\beta}^{J}(E,p,q) G_{\beta}(E,q) U_{\beta}^{J}(q),$$
$$U_{i}^{J}(E,p) = \sum_{\beta} \int \frac{d\mathbf{q}^{3}}{(2\pi)^{3}} \mathcal{V}_{\beta i} G_{\beta}(E,q) U_{\beta}^{J}(q).$$

- ☞ <u>Fit schemes:</u>
- Scheme I: pure contact potential w/o $\Lambda_c \bar{D}^{(*)}$
- Scheme II: Scheme I + OPE + <u>S-D counter term</u> w/o $\Lambda_c \overline{D}^{(*)}$ \hookrightarrow coupled channel
- Scheme III: contact + OPE + S-D counter terms w/ $\Lambda_c \bar{D}^{(*)}$

$\frac{\text{Scheme I: pure contact potential w/o } \Lambda_c \bar{D}^{(*)}}{\text{Solution A}}$

 $\Lambda > \Lambda_{\rm soft} \sim \sqrt{2\mu\delta} \sim 0.7 \,\,{\rm GeV}$

Cutoff-independent for both solution A and B $\sum \bar{D}^* = P(4440) = P(4457)$

$$\begin{array}{cccc} \Sigma_c D^+ & P_c(4440) & P_c(4457) \\ \text{Fit A} & \frac{1}{2}^- & \frac{3}{2}^- \\ \text{Fit B} & \frac{3}{2}^- & \frac{1}{2}^- \end{array}$$

■ No need for $\Lambda_c \bar{D}^{(*)}$

$\frac{\text{Scheme I: pure contact potential } w/o \Lambda_c \bar{D}^{(*)}}{\text{Solution A}}$

 $\Lambda_{\rm soft} \sim \sqrt{2\mu\delta} \sim 0.7 \; {\rm GeV}$

INF No need for $Λ_c \bar{D}^{(*)}$

10/21

Scheme I: Contact fits to three sets of LHCb data

Scheme I: pole positions

			Solution A		Solution B
	DC ([MeV])	J^P	Pole [MeV]	J^P	Pole [MeV]
$P_{c}(4312)$	$\Sigma_c \bar{D}$ (4321.6)	$\frac{1}{2}^{-}$	4314(1) - 4(1)i	$\frac{1}{2}^{-}$	4312(2) - 4(2)i
$P_{c}(4380)^{*}$	$\Sigma_c^* \bar{D}$ (4386.2)	$\frac{3}{2}$ -	4377(1) - 7(1)i	$\frac{3}{2}^{-}$	4375(2) - 6(1)i
$P_{c}(4440)$	$\Sigma_c \bar{D}^*$ (4462.1)	$\frac{1}{2}^{-}$	4440(1) - 9(2)i	$\frac{3}{2}^{-}$	4441(3) - 5(2)i
$P_{c}(4457)$	$\Sigma_c \bar{D}^*$ (4462.1)	$\frac{3}{2}^{-}$	4458(2) - 3(1)i	$\frac{1}{2}^{-}$	4462(4) - 5(3)i
P_c	$\Sigma_{c}^{*}\bar{D}^{*}$ (4526.7)	$\frac{1}{2}^{-}$	4498(2) - 9(3)i	$\frac{1}{2}^{-}$	4526(3) - 9(2)i
P_c	$\Sigma_{c}^{*}\bar{D}^{*}$ (4526.7)	$\frac{3}{2}^{-}$	4510(2) - 14(3)i	$\frac{3}{2}^{-}$	4521(2) - 12(3)i
P_c	$\Sigma_{c}^{*}\bar{D}^{*}$ (4526.7)	$\frac{5}{2}$ -	4525(2) - 9(3)i	$\frac{5}{2}^{-}$	4501(3) - 6(4)i

 $\mathbb{R} * \mathbb{NOT}$ the broad $P_c(4380)$ reported by LHCb in 2015

 \mathbb{R} Bound states with respect to the dominant channel (DC)

Solution $\Sigma_c^* \overline{D}^*$ states are not seen yet, production rate suppressed? → prompt production in the *pp* collision in the LHC

P. Ling, X.-H. Dai, MLD and Q. Wang, arXiv:2104.11133

Scheme I + OPE w/o $\Lambda_c \bar{D}^{(*)}$

Scheme I + OPE + CT for $\Lambda_c \bar{D}^{(*)}$

Solution A

Solution B

• $\Lambda_{\rm soft} \sim 900 {\rm MeV} \Lambda_c \bar{D}^{(*)}$

• Cut-off dependent

A=1.4 GeV

4500

4550

Solution A

Solution B

 $\Lambda_{\rm soft} \sim 0.7 \ {\rm GeV}$

 \blacksquare Cutoff-independent only for solution B

Scheme I vs Scheme II w/o $\Lambda_c \bar{D}^{(*)}$ $\Lambda_{\rm soft} \sim 0.7 \text{ GeV}$

Solution B

Solution B

 $\square \Lambda = 1.3 \text{ GeV}.$

INF Overdetermined.

Scheme III: CT + OPE + SD w/ $\Lambda_c \bar{D}^{(*)}$ $\Lambda_{soft} \sim 0.9 \text{ GeV}$

Solution B

 $\square J/\psi p$ data alone are not enough to constrain $\Lambda_c \bar{D}^{(*)}$ interactions.

Summary & Outlook

 $\mathbbmss{Solving Lippmann-Schwinger equation with respect to$

- Unitarity, three-body cut \hookrightarrow width of $\Sigma_c^{(*)}$
- ► Coupled-channels

 \hookrightarrow cut-off independence: OPE \rightarrow SD counter term

► Heavy quark spin symmetry $\hookrightarrow 7 \Sigma_c^{(*)} \overline{D}^{(*)}$ molecular states

 \blacksquare Preferred spin assignment (Solution B)

$P_{c}(4312)$:	$1/2^{-},$	$(\bar{D}\Sigma_c)$
$P_{c}(4440)$:	$3/2^{-},$	$(\bar{D}^*\Sigma_c)$
$P_{c}(4457)$:	$1/2^{-},$	$(\bar{D}^*\Sigma_c)$

- The We can not say much about $\Lambda_c \bar{D}^{(*)}$ interaction without data in this channel.
- Solution A narrow $P_c(4380)$, different from the broad one reported by LHCb in 2015.

Thank you very much for your attention!