Peter Pauli for the GlueX collaboration

Accessing glue through photoproduction measurements at GlueX

Hadron 2021

Introduction

- QCD gives rise to spectrum of hadrons
 - Many qq̄ and qqq states have been observed
 - *qqqqq, qqqqq, ...* are not forbidden!

A SCHEMATIC MODEL OF BARYONS AND MESONS *

M. GELL-MANN California Institute of Technology, Pasadena, California

Received 4 January 1964

... Baryons can now be constructed from quarks by using the combinations (qqq), $(qqqq\bar{q})$, etc., while mesons are made out of $(q\bar{q})$, $(qq\bar{q}\bar{q})$, etc...

Phys. Lett. 8 (1964) 214

Evidence exists for pentaquark states:

LHCb, Phys. Rev. Lett. 122, 222001

Hybrid mesons

- main objective for GlueX:
 Search and study of hybrid mesons
- * In quark model: $\overrightarrow{J} = \overrightarrow{L} + \overrightarrow{S}, P = (-1)^{L+1}, C = (-1)^{L+S}$

 \rightarrow <u>not</u> allowed: $J^{PC} = 0^{--}, 0^{+-}, 1^{-+}, 2^{+-}, \dots$

* "Exotic" quantum numbers are "smoking gun" for something not being pure $q\bar{q}$

Light quark mesons from lattice QCD

hadspec collaboration

hadspec, Phys. Rev. D 88, 094505

Hybrid mesons - evidence

- * Experimental evidence for a 1^{-+} :
 - * $\pi_1(1400)$: GAMS, VES, E852, CBAR, COMPASS
 - * $\pi_1(1600)$: VES, E852, COMPASS
- * JPAC coupled channel fit to $\eta\pi$ and $\eta'\pi$ data from COMPASS

1⁻⁺ hybrid from lattice QCD

- * LQCD indicates that $b_1\pi$ is the dominant decay mode
 - * Experimentally challenging
- * Start with $\eta \pi$, $\eta' \pi$
 - * Smaller expected branching ratio but large statistics

Towards hybrids at GlueX

- Photoproduction complementary to pion production
 - Utilize polarization to understand production mechanisms

- Study production mechanisms to inform choice of wave sets for PWA (beam asymmetries, spin density matrix elements)
- Reproduce previous results by COMPASS
- * Study $b_1 \rightarrow \omega \pi$ as first step towards $b_1 \pi$ PWA
- Work closely with theory colleagues

CEBAF at Jefferson Lab

GlueX experiment in Hall D

 tag electrons to determine photon energy produce linearly polarized photon beam via coherent bremsstrahlung on thin diamond

Acceptance:

 $\theta_{lab} \approx 1^{\circ} - 120^{\circ}$

- * Charged particles: $\sigma_p/p \approx 1\% 3\% (8\% 9\% \text{ very-forward high-momentum tracks})$
- Photons:

Spin density matrix elements

Μ

p

X

 $\mathbf{f} P_{\gamma}$

 π

Talk by A. Austregesilo, Mon 12:40

- * SDMEs ρ_{jk}^{i} contain information on the spinpolarization of the produced state
- Measure angular distribution of decay products
- Learn about production mechanism
 - * Study the naturality $\eta = P(-1)^J$ of the exchanged particle X

For vector meson to pseudo-scalar decays:

 $W(\cos\theta, \phi, \Phi) = W^{0}(\cos\theta, \phi, \Phi) + P_{\gamma}\cos(2\Phi)W^{1}(\cos\theta, \phi, \Phi) + P_{\gamma}\sin(2\Phi)W^{2}(\cos\theta, \phi, \Phi)$ $W^{0}(\cos\theta, \phi) = \frac{3}{4\pi} \left(\frac{1}{2}(1 - \rho_{00}^{0}) + \frac{1}{2}(3\rho_{00}^{0} - 1)\cos^{2}\theta - \sqrt{2}\operatorname{Re}\rho_{10}^{0}\sin2\theta\cos\phi - \rho_{1-1}^{0}\sin^{2}\theta\cos2\phi \right)$ $W^{1}(\cos\theta, \phi) = \frac{3}{4\pi} \left(\rho_{11}^{1}\sin^{2}\theta + \rho_{00}^{1}\cos^{2}\theta - \sqrt{2}\operatorname{Re}\rho_{10}^{1}\sin2\theta\cos\phi - \rho_{1-1}^{1}\sin^{2}\theta\cos2\phi \right)$ $W^{2}(\cos\theta, \phi) = \frac{3}{4\pi} \left(\sqrt{2}\operatorname{Im}\rho_{10}^{2}\sin2\theta\sin\phi + \rho_{1-1}^{2}\sin^{2}\theta\sin2\phi \right)$ Schilling et. al., Nucl. Phys. B 15 (1970) 397-412 10

$\rho(770)$ SDMEs

A. Austregesilo

Talk by A. Austregesilo, Mon 12:40 ρ<mark>1</mark> 1-1 0.8 Uncertainties JPAC Model dominated by 0.7 systematics 17% GlueX-I SLAC (Ballam et al.) s-channel helicity 0.6 conservation: $\rho_{1-1}^1 = 0.5$ 0.5 valid for very small -t0.4 JPAC: Regge model (fit to SLAC data) 0.3 \rightarrow good agreement Preliminary at low -t0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.2^{L}_{0} JPAC, Phys. Rev. D 97, 094003 $-t (GeV^2/c^2)$ (2018)

A. Austregesilo

Talk by A. Austregesilo, Mon 12:40

* Study combinations of SDMEs which are purely natural or unnatural

$$\rho_{jk}^{N,U} = \frac{1}{2} \left(\rho_{jk}^{0} \mp (-1)^{i} \rho_{-jk}^{1} \right)$$

Schilling et. al., Nucl. Phys. B 15 (1970) 397-412

Dominance of natural amplitudes

Natural: e.g. f_2 , a_2 Unnatural: e.g. π , η

Λ(1520) SDMEs

PP

* Excited Λ hyperon with $J^P = \frac{3}{2}$

* $\Lambda(1520) \rightarrow K^- p$

- Production mechanism via strangeness
- * First measurement of polarised SDMEs for $\Lambda(1520)$

$\Lambda(1520)$ SDME Interpretation

arxiv:2107.12314

* Study combinations of SDMEs which are purely natural or unnatural

* e.g.
$$\rho_{11}^0 + \rho_{11}^1 = \frac{2}{\mathcal{N}} \left(|N_0|^2 + |N_1|^2 \right)$$

Natural: e.g. *K**(892), *K*₂*(1430) Unnatural: e.g. *K*, *K*₁(1270)

Again, dominance of natural amplitudes

Model based on: B.-G. Yu, K.-J. Kong, Phys. Rev. C 96, 025208 (2017)

Hybrid search in $\eta\pi$

Talk by C. Gleason, Wed 10:30

JPAC, Phys. Rev. Lett. 122, 042002

* JPAC coupled channel fit to $\eta\pi$ and $\eta'\pi$ data from COMPASS

* GlueX has access to different decay modes in multiple final states

$$\begin{array}{ll} & \gamma p \to \eta \pi^{0} p, \, \eta \to \gamma \gamma & & & \gamma p \to \eta \pi^{-} \Delta^{++}, \, \eta \to \pi^{+} \pi^{-} \pi^{0} \\ & & \gamma p \to \eta \pi^{0} p, \, \eta \to \pi^{+} \pi^{-} \pi^{0} & & & \gamma p \to \eta' \pi^{0} p, \, \eta' \to \pi^{+} \pi^{-} \eta, \, \eta \to \gamma \gamma \\ & & & \gamma p \to \eta \pi^{-} \Delta^{++}, \, \eta \to \gamma \gamma & & \\ & & & 15 & & \gamma p \to \eta' \pi^{-} \Delta^{++}, \, \eta' \to \pi^{+} \pi^{-} \eta, \, \eta \to \gamma \gamma \end{array}$$

* a_2 predominantly D_2 wave, consistent with helicity=2 dominance at Belle ($\gamma \gamma \rightarrow \eta \pi^0$) 16 Belle, Phys. Rev. D 80, 032001 b_1 decay

A. Schertz K. Suresh

- * LQCD: $b_1\pi$ is dominating decay mode of 1⁻⁺ exotic
- * First step: study b_1

$$* \gamma p \to b_1 p \to \omega \pi^0 p \to \pi^+ \pi^- \pi^0 \pi^0 p$$

* $\gamma p \rightarrow b_1^- \Delta^{++} \rightarrow \omega \pi^- \Delta^{++} \rightarrow \pi^+ \pi^- \pi^0 \pi^- \pi^+ p$

 b_1 decay

- * Start by measuring *D*/*S* amplitude ratio
- * LQCD prediction by hadspec of |D/S| = 0.27(20)

hadspec, Phys. Rev. D 100, 054506 (2019)

- Good first test of amplitude model
- Can be expanded to all vector-pseudoscalar systems (ωη, φπ, φη,...)

J/ψp

- * LHCb sees pentaquark signal in $\Lambda_b^0 \rightarrow J/\psi p K^-$
- GlueX can search for s-channel production

LHCb, Phys. Rev. Lett. 122, 222001

• measure leptonic decay $\gamma p \rightarrow J \psi p \rightarrow e^+ e^- p$

- exclusive reaction
- * normalise cross-section to non-resonant e^+e^- production (Bethe-Heitler)

GlueX, Phys. Rev. Lett. 123, 072001

model dependent upper limits at 90% CL $BR(P_c(4312) \rightarrow J/\psi p) < 4.6\%$ $BR(P_c(4440) \rightarrow J/\psi p) < 2.3\%$ $BR(P_c(4457) \rightarrow J/\psi p) < 3.8\%$

$J/\psi p$ outlook

Lots of interest in J/Ψ
 production near threshold
 from theory beyond
 spectroscopy

- Full GlueX-I data has about 5x more
 J/Ψ events than published
- Near publication

Summary

Acknowledgments:

- GlueX has a unique data set with unprecedented statistical precision in its energy range
- Start with studying production mechanisms and develop PWA in parallel
- * J/Ψ near threshold
- Many more interesting analyses in the pipeline
- Room for other physics:
 - * Hyperons, ALPs, ...
 - Primex-Eta (I. Jaegle, Mon 12:20)
 - * JEF (Z. Papandreou, Wed 16:15)

