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• Why flavor? Why lattice QCD?

• Quark flavor physics: Experiments & lattice results (focus: b)

• Muon (g-2): Experiments & lattice results for HVP and HLbL

• Some exciting frontiers

• Summary
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Impossible to be comprehensive 
in 30 min.
Apologies to those whose work  
has been omitted!



Precision Flavor Physics 
A window to high scales
• CP violation in neutral kaons

• 1964:

• CP violation anticipated 3rd quark generation 

• 1977: B-mesons produced at Fermilab: p + Be ➞ bb ̅➞ 𝜇+𝜇-

• B0-B̅0 mixing

• 1987: 

• Loops with top quark dominate

• Large mixing ⟹ top mass heavier than expected

• 1995: top quark discovered at Fermilab
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Determine the quark masses
Determine decay constants
Determine form factors
Calculate HVP, HLbL for (g-2)

{ Tackle using 
Lattice QCD

We must know the fundamental parameters
of the Standard Model precisely to be able
recognize what a deviation looks like.

Precision Flavor Physics 
A window to high scales



Lattice QCD
• Lattice QCD gives complete non-perturbative definition to the strong interactions

• This framework gives:

• Fundamental approximations:

• UV cutoff: lattice spacing a [target: a ≪ physical scales]

• IR cutoff: finite spacetime volume V = L3 ⨉T [target: 1 ≪ m𝜋 L]

• Approximations of convenience:

• Often: Heavier-than-physical pions: (m𝜋)lattice > (m𝜋)PDG

• Often: Isospin limit mu = md

• Often: QCD interactions only, no QED

• Often: lighter-than-physical or static heavy quarks
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Lattice QCD is systematically improvable
•All approximations admit theoretical descriptions via EFT
‣ Cutoff dependence  ⟺ Symanzik effective theory

‣ Finite-volume dependence ⟺ Finite-volume χPT 

‣ Chiral extrapolation / interpolation ⟺ χPT

‣ Heavy quark extrapolation / interpolation ⟺ HQET, NRQCD, etc…

‣ Isospin breaking ⟺ perturbative expansion of path integral
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• Precise treatment of all systematic effects is key to modern high-
precision lattice QCD studies



Quark Flavor and Lattice QCD 
Two complementary roles
1.Determine CKM matrix elements from tree-level processes

2.Test the CKM paradigm of the Standard Model via rare decays
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The CKM Matrix on the lattice
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Leptonic decays

Semi-leptonic decays

“Gold-plated processes” ⟺ 
Single hadron in initial state 
Zero or one hadron in final state 
All hadrons stable under QCD

(Decay constants)

(Form factors)



A Golden Age of Flavor
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• Last 2 decades: BaBar; Belle; BES III; CDF, D0; ATLAS, 
CMS

• LHCb: pp at LHC

• ~1012 b-hadrons to date (cf. ~107 at LEP)

• Belle II: e+e- around 𝜰(4s) ~ 10.5 GeV

• Goal: 50 ab-1 (50x Belle), roughly 215 fb-1 to date

• Proposed tau-charm factories in China, Russia



Measuring CKM matrix elements
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Tension in inclusive vs. exclusive determinations
• |Vcb| from B ➞ D*ℓ𝜈 has 3.3𝜎 tension
• |Vcb| from B ➞ Dℓ𝜈 has 2.0𝜎 tension
• |Vub| from B ➞ 𝜋ℓ𝜈 has 2.8𝜎 tension

Figures: Bouchard, Cao, Owen, arXiv:1902.09412



Testing Lepton Universality
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Combined 3.1𝜎
tension with
SM prediction

similar

2.6𝜎
Figure: hflav.web.cern.ch 

http://hflav.web.cern.ch


Studying Rare Decays
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Rare processes are sensitive probes of high-scale physics

Persistent tension ~3𝜎 
tension with SM in 
angular distribution P5´

• New sources of CP violation?
• New RH currents?

arXiv:2003.04831 
PRL 125, 011802 (2020)



Studying Rare Decays
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CKM-suppressed decays are a powerful new 
experimental handle   

b➞sℓ+ℓ-

b➞dℓ+ℓ- is 32 × rarer
In 2015, LHCb actually 
observed 94±12 events for
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(No tensions yet, but an exciting unexplored region!)



LHCb in Run 3 and Run4 
A bright future
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Flavor physics and lattice QCD

!15

Credit: Shot from Ruth Van de Water @ Lattice 2021, 
FLAG working group members T. Kaneko, J. Simone, 
S. Simula, N. Tantalo for preliminary figure 

• Overall precision around ~0.3%

• My take: fK/f𝜋 essentially solved 
as a “QCD-only” problem

• Current precision now requires 
systematic inclusion QED and 
strong-isospin breaking effects

CalLat: arXiv:2005.04795 
PRD 102, 034507 (2020)

ETMC: arXiv:2104.06747
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Credit: Shot from Ruth Van de Water @ Lattice 2021, 
FLAG working group members T. Kaneko, J. Simone, 
S. Simula, N. Tantalo for preliminary figure 

• Overall precision around ~0.3%

• My take: fK/f𝜋 essentially solved 
as a “QCD-only” problem

• Current precision now requires 
systematic inclusion QED and 
strong-isospin breaking effects

CalLat: arXiv:2005.04795 
PRD 102, 034507 (2020)

ETMC: arXiv:2104.06747

Much more could be said about  
how these and related results fit into 
unitarity tests of the CKM matrix…

Flavor physics and lattice QCD
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Decays of heavy quarks 
Some selected lattice results 2020 / 2021



The challenge of heavy quarks
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Heavy quarks are hard: lattice artifacts grow like powers (amh)n — 
especially tricky for masses near or above the cutoff

1. Use an effective theory for heavy quarks (b, sometimes c)
‣ “FNAL interpretation,” NRQCD, RHQ, Oktay-Kronfeld
‣ Good: Solves problem with artifacts (amh)
‣ No free lunch: EFTs require matching, which introduces 

systematic effects

2. Use highly-improved relativistic light-quark action on fine lattices
‣ Good: advantageous renormalization, continuum limit
‣ No free lunch: simulations still need amh < 1 and often an 

extrapolation to the physical bottom mass



The challenge of heavy quarks
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• Many different treatments used in the literature:
Group Heavy valence Sea “Generation”

HPQCD NRQCD on ASQTAD I
HPQCD NRQCD on HISQ II
HPQCD HISQ on HISQ III

FNAL/MILC Fermilab on ASQTAD 1
FNAL/MILC Fermilab on HISQ 2
FNAL/MILC HISQ on HISQ 3

JLQCD Möbius DW on Möbius DW
LANL/SWME Oktay-Kronfeld on HISQ
RBC/UKQCD RHQ on DW 

ETMC Twisted mass on Twisted mass



HPQCD: Bc ➞J/𝜓
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• Ensembles: 4x (Nf=2+1+1) MILC HISQ
• Lattice spacings: [0.04 - 0.09 ] fm
• Valence quarks: all HISQ
• 𝛤(Bc➞J/𝜓𝜇ν)̅/|ηEW Vcb|2 = 1.73(12) ⨉ 1013 s-1 [7%]
• Br(Bc➞J/𝜓𝜇ν)̅ =0.0150(11)thy(10)|ηEW Vcb|(3)lifetime

• R(J/𝜓)=0.2582(38) [1.5%]

arXiv:2007.06957 
PRD 102 (2020) 9, 094518

“Generation III”

arXiv:2007.06956 
PRL 125 (2020) 22, 222003



HPQCD: fTJ/𝜓
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• Ensembles: 4x (Nf=2+1+1) MILC HISQ
• Lattice spacings: [0.04 - 0.09] fm
• Valence quarks: all HISQ
• fTJ/𝜓(2 GeV) = 0.3927(27) GeV in MSbar

arXiv:2008.02024 
PRL 125 (2020) 22, 222003

“Generation III”

Table VII: Error budget for ratio J/𝜓

vector and tensor decay constants

Crucial for rare loop  
decays like B → Kℓ+ℓ-
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FNAL/MILC B➞D✶
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• Ensembles: 15x (Nf=2+1) MILC asqtad
• Lattice spacings: 5x in [0.045 - 0.15] fm
• Light valence quarks: asqtad
• Heavy valence charm/bottom: EFT (FNAL interpretation)
• Full physical q2—world-first calculation away from q2=q2max

• |Vcb| = (38.40 ± 0.66th± 0.34exp)×10-3

• R(D*)
   = 0.265 ± 0.013 

arXiv:2105.14019

“Generation 1”

Results confirm tension 
between theory and 
experiment



HPQCD: Bs➞Ds✶
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• Ensembles: 4x (Nf=2+1+1) MILC HISQ
• Lattice spacings: [0.04 - 0.09] fm
• Valence quarks: all HISQ
• Full kinematic q2

• R(Ds*) = 0.2442(79)latt(35)EM

• |Vcb| = 43.0(2.1)latt(1.7)exp(0.4)EM ⨉10-3

arXiv:2105.11433 

“Generation III”

“… a model-independent determination of 
|Vcb| using Bs→Ds✶ will require a reduction 
in uncertainty by a factor of ≈ 3 to reach 
the same precision as that quoted for the 
exclusive determination using B→D✶ at 
zero-recoil.”

https://arxiv.org/abs/2105.11433


Further work on B decays
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Large community pursuing calculations with heavy 
quarks in a variety of discretization schemes
• JLQCD B➞D(✶) preliminary results in 2019 with 

Möbius domain wall fermions
• LANL/SWME B➞D(✶) preliminary results in 2019 with 

Oktay-Kronfeld heavy quarks on HISQ
• RBC/UKQCD Bs➞Ds preliminary results in 2019 with 

domain wall up to charm and RHQ for bottom.
• ETMC (see “frontiers” later)



Proton Decay
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RBC/UKQCD’06 (Nf = 0) ChPT
JLQCD’99 (Nf = 0)

• Experiments looking for proton decay set 
stringent limits on Grand Unified Theories.

• Reliable proton-to-meson matrix elements 
are needed from theory

• Martin and Stavenga had suggested that 
these matrix elements might be highly 
suppressed at physical quark masses (cf. 
arXiv:1110.2188)

• A new lattice calculation revisits these 
matrix elements with physical-mass pions 
and a chirally symmetric quarks

• Results are consistent previous direct 
(=lattice) and indirect (=χPT) 
determinations

See talk by Sergey Syritsyn 
Friday 30 Jul 2021 at 11:55
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Muon (g-2): a𝜇
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FNAL E989: PRL 126 (2021) 14, 141801 
White paper: Phys.Rept. 887 (2020) 1-166 

Hadronic vacuum
polarization

Hadronic
“light-by-light”

Measurements of (g-2)

“Standard Model” = 
(g-2) Theory Initiative 

White Paper 

Dominant Theoretical Uncertainties

• 2006—BNL E821:   a𝜇(BNL) = 116 592 080 (63) ⨉ 10-11 [0.54 ppm]

• 2021—FNAL E989: a𝜇(FNAL) = 116 592 040 (54) ⨉ 10-11 [0.46 ppm]

• 2021—BNL+FNAL: a𝜇(EXP) = 116 592 061 (41) ⨉ 10-11 [0.35 ppm]



Pheno 
+ Lattice

Lattice

Pheno
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Theory for (g-2) 
HVP: (g-2) Theory Initiative ca. Nov 2020
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Phys.Rept. 887 (2020) 1-166 



LQCD and a𝜇HVP
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• BWMc has recently published a new lattice results for the HVP

• a𝜇HVP= 707.5(2.3)stat(5.0)syst[5.5] (0.8%)

• The final reported precision is quite impressive

arXiv:2002.12347 
Nature 593 (2021) 7857, 51-55



LQCD and a𝜇HVP
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• BWMc has recently published a new lattice results for the HVP

• a𝜇HVP= 707.5(2.3)stat(5.0)syst[5.5] (0.8%)

• The final reported precision is quite impressive

arXiv:2002.12347 
Nature 593 (2021) 7857, 51-55



LQCD and a𝜇HVP
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• Intermediate lattice results provide powerful consistency checks

• Example: “Windows” for and isolating and studying systematics effects

‣ Bernecker and Meyer, Eur.Phys.J. A47 (2011) 148, arXiv:1107.4388 

‣ RBC/UKQCD: PRL 121 (2018) 2, 022003, arXiv:1801.07224

‣ Idea: convolute lattice integrand with a smooth “filter” to isolate regions of interest

• Some lattice groups already have already obtained values with commensurate precision

arXiv:2002.12347 
Nature 593 (2021) 7857, 51-55
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LQCD and a𝜇HLbL
• In 2019, RBC completed the first calculation of 

a𝜇HLbL with fully controlled systematic errors

• Finite-volume QEDL prescription for photons

• Result: a𝜇HLbL = 7.87(3.06)(1.77)⨉10-10

arXiv:1911.08123 
PRL 124 (2020) 13, 132002

QED cross check
QCD total result 
(conn + disconn)
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• Mainz group released their first result in 2020

• QED via ctm, infinite volume Euclidean scheme

• Calculation done at SU(3)f point: m𝜋=mK=420 MeV

• a𝜇HLbL = 65.4(4.9)(6.6)⨉10-11 at SU(3)f point

• a𝜇HLbL = 104.0(20.8)⨉10-11 at physical point

LQCD and a𝜇HLbL

arXiv:2006.16224 
Eur.Phys.J.C 80 (2020) 9, 869



Lattice

Pheno
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• Recent result from the Mainz group away from SU(3)f

• Good agreement with previous determinations

• a𝜇HLbL = 106.8(14.7)⨉10-11

• “It now appears conclusive that the hadronic light-by-light 
contribution cannot explain the current tension between 
theory and experiment for the muon.”

LQCD and a𝜇HLbL

arXiv:2104.02632
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Lattice (g-2) @
≥ 17 talks at 

lattice conference 
earlier this week

The field is quickly 
moving. Stay tuned 

for new results!
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Frontiers of lattice QCD



Radiative Decays: P➞ℓν𝛾
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• Rome-Southampton
• Ensembles: 12x (Nf=2+1+1) ETMC
• a ≈ 0.6, 0.8, 0.9 fm, m𝜋 = 230 - 450 MeV
• Finite-volume QEDL prescription for photons
• Computed structure-dependent V, A form factors
• Compared to KLOE, PIBETA, E787, ISTRA+, OKA
• Agreement with KLOE data (K ➞eν𝛾)
• Tension, e.g.,  with FNAL E787 (K ➞𝜇ν𝛾)

arXiv:2006.05358 
PRD 103 (2021) 1, 014502

arXiv:2012.02120 
PRD 103 (2021) 5, 053005

“We are able to separate unambiguously 
and non-pertubatively the point-like 
contribution, from the structure-dependent, 
IR-safe, terms in the amplitude.



Unitarity and analyticity 
Constraining semileptonic decays
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• Recent work from S. Simula, L. Vittorio and colleagues
• Motivation: computing full q2 dependence is very demanding for exclusive B-meson 

semileptonic decays
• Idea: Unitarity and analyticity constrain the q2 behavior
• New: Dispersion relations applied to lattice QCD correlation functions allow f(q2≈q2max) 

to be extended to the full kinematic range [1990s: used perturbation theory]
• New: Improved / simplified treatment of systematic effects

arXiv:2105.02497 
arXiv:2105.07851

Results within ~2.5σ of PT 
~5-10% agreement for 1-, 0- 
~20% agreement for 0+, 1+



Inclusive Processes
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• Recall: Long-standing tension between exclusive (fixed final 
state, e.g., D) and inclusive (sum over all final states)

• Presently, inclusive rates are calculated via the OPE using 
perturbation theory

• Calculating both using a single theoretical framework is very 
attractive

• Main idea: compute forward-scattering matrix elements using 
lattice QCD and relate them to the sum over all states:

arXiv:2005.13730  
PRL 125 (2020) 3, 032001

B X BX B B

J†J



Summary 
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• Lattice QCD for flavor physics has become a mature 
field producing high-precision results

• In several cases, the “QCD-only” problems have been 
successfully tackled 

• Further precision often now requires systematic 
inclusions of QED effects and strong isospin breaking

• Lattice QCD will play a pivotal role over the next few 
years in interpreting upcoming experimental results 

• Progress is being driven by theoretical insight, 
algorithmic progress, and improved computing power



Studying Rare Decays

!41

Rare processes are sensitive probes of high-scale physics

arXiv:2003.04831 
PRL 125, 011802 (2020)

arXiv:2012.13241 
PRL 126, 161802 (2021)

FL = vector meson longitudinal polarization fraction
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Credit: Shot from Ruth Van de Water @ Lattice 2021, 
FLAG working group members T. Kaneko, J. Simone, 
S. Simula, N. Tantalo for preliminary figure 

• New result since FLAG 2019 
with ~0.2% precision

• Milestone: |Vus| from Kℓ3 decay 
now commensurate with fK/f𝜋 

and |Vud| from nuclear beta 
decay

• See also: Ruth Van de Water 
@ Lattice 2021

FNAL/MILC: arXiv:1809.02827 
PRD 99, 114509 (2019)

Flavor physics and lattice QCD  
A few recent success stories



HPQCD: D➞Kℓν
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• Ensembles: 8x (Nf=2+1+1) MILC HISQ
• Lattice spacings: [0.45 - 0.15] fm
• Valence quarks: all HISQ
• Full kinematic q2

• |Vcs| = 0.9663(53)latt(39)exp(19)ηEW (40)EM [0.8%]
• R𝜇/e = 0.9779(2)latt(50)EM

‣ EM = short-distance QED

arXiv:2104.09883

“Generation III”



HPQCD: Bc➞Bs(d)
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• Ensembles: 6x (Nf=2+1+1) MILC HISQ
• Lattice spacings: [0.06 - 0.15] fm
• Light/charm valence quarks: HISQ
• Valence bottom: NRQCD, HISQ
• Full physical q2

• 𝛤(Bc+➞Bs0ℓ̅ν)
= 26.25(90)CKM(83)latt⨉109 s-1

• 𝛤(Bc+➞B0ℓ̅ν)
= 1.650(61)CKM(84)latt ⨉109 s-1

arXiv:2007.06957 
PRD 102 (2020) 9, 094518

“Generation II + III”



HPQCD B➞D
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• Ensembles: 5x (Nf=2+1) MILC asqtad
• Lattice spacings: 2 x in [0.09, 0.12] fm
• Light valence and charm: HISQ
• Heavy b: NRQCD
• Full physical q2 

• R(D) = 0.300(8)
• G(1) = 1.035(40)

arXiv:1505.03925 
PRD 92 (2015) 5, 054510

“Generation I”



HPQCD Bs➞Ds
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• Ensembles: 5x (Nf=2+1) MILC asqtad
• Lattice spacings: [0.09, 0.12] fm
• Light valence and charm: HISQ
• Heavy b: NRQCD
• Full physical q2

• G(1)=1.068(40)

arXiv:1703.09728 
PRD 95 (2017) 11, 114506

“Generation I”



HPQCD B(s)➞D(s)✶
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• Ensembles: 8x (Nf=2+1+1) MILC HISQ
• Lattice spacings: [0.09, 0.12, 0.15] fm
• Light valence and charm: HISQ
• Heavy b: NRQCD
• hA1(1) = 0.895(10)(24), B➞D✶

• hA1(1) = 0.883(12)(28), Bs➞Ds✶

arXiv:1711.11013 
PRD 97 (2018) 5, 054502 

“Generation II”

• Zero recoil only (w=1)



HPQCD Bs➞Ds✶
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• Ensembles: 4x (Nf=2+1+1) MILC HISQ  
• Lattice spacings: [0.04, 0.06, 0.09] fm
• Valence quarks: all HISQ
• mha < 0.8 [close-to-physical b at 0.04 fm]
• Zero recoil only (w=1)
• hA1s(1) = 0.9020(96)(90)

arXiv:1904.02046 
PRD 99 (2019) 11, 114512

“Generation III”
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HPQCD Bs➞Ds✶
arXiv:1904.02046 

PRD 99 (2019) 11, 114512

“Generation III”

“Generation 1”

“Generation III”

“Generation II”

“Generation III”

“Generation II”

Bs➞Ds✶

B➞D✶{
{



HPQCD Bs➞Ds
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• Ensembles: 4x (Nf=2+1+1) MILC HISQ  
• Lattice spacings: [0.04, 0.06, 0.09] fm
• Valence quarks: all HISQ
• mha < 0.8
• Full physical q2

• R(Ds) = 0.2987(46)

arXiv:1906.00701 
PRD 101 (2020) 7, 074513

“Generation III”



FNAL/MILC B➞D✶
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• Ensembles: 15x (Nf=2+1) MILC asqtad
• Lattice spacings: 5 x in [0.045 - 0.15] fm
• Light valence: asqtad staggered
• Heavy b/c: FNAL interpretation
• Zero recoil only (w=1)
• hA1(1)=F(1) = 0.906(4)(13)

arXiv:1403.0635 
PRD 89 (2014) 11, 114504

“Generation 1”



FNAL/MILC B➞D
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• Ensembles: 14x (Nf=2+1) MILC asqtad
• Lattice spacings: 4 x in [0.045 - 0.12] fm
• Light valence: asqtad staggered 
• Heavy b/c: FNAL interpretation
• Full physical q2

• R(D) = 0.299(11)
• G(1) = 1.054(4)(8)

arXiv:1503.07237 
PRD 92 (2015) 3, 034506 

“Generation 1”



FNAL/MILC B(s)➞D(s)(✶)
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• 2nd Generation:
• FNAL on (Nf=2+1+1) MILC HISQ
• Plan: joint correlated analysis on B➞D and B➞D✶

• Analysis underway by Alex Vaquero

• 3rd Generation:
• HISQ on (Nf=2+1+1) MILC HISQ
• Complete set: scalar, vector, and tensor currents
• Broad range of momenta across kinematic range
• B(s)➞D(s) [+ many others, e.g., B(s)/D(s)→ K/𝜋)
• Analysis underway by WJ, Andrew Lytle

“Generation 2”

“Generation 3”


