progress and prospects for nucleon PDF analyses

nonperturbative QCD and nuclear effects

HADRON2021

Universidad Nacional Autónoma de México

a tour of select nonpertubative issues in PDF analyses

- PDF global fits → crucial shuttle between nonperturbative, nuclear dynamics and high-energy phenomenology
 - \rightarrow nonpert. effects relevant to precision at higher energies
 - \rightarrow high-energy data sensitive to nonpert. physics
 - \rightarrow PDFs provide arena to explore patterns in nonpert. QCD
- highlight through illustrative <u>examples</u> from **CTEQ family** of QCD fits
 - → CTEQ-TEA (CT): LHC emphasis ····· T.-J. Hou et al., PRD 103 (2021) 1, 014013
 - → CTEQ-JLab (CJ): JLab physics-centric · · A. Accardi et al., PRD 93 (2016) 11, 114017
 - → nuclear CTEQ (nCTEQ) E. Segarra et al., PRD 103 (2021) 11, 114015

PDFs critical to next-generation precision for hadronic expts

 \rightarrow essential nonperturbative input for DIS, LHC predictions

$$\sigma(AB \to W/Z + X) = \sum_{n} \alpha_{s}^{n} \sum_{a,b} \int dx_{a} dx_{b} f_{a/A}(x_{a}, \mu^{2}) \hat{\sigma}_{ab \to W/Z + X}^{(n)}(\hat{s}, \mu^{2}) f_{b/B}(x_{b}, \mu^{2})$$

upcoming programs need high-precision → reductions to PDF uncertainties

 \rightarrow needed to match (N)NNLO theory accuracy; MC improvements

example: LHC measurement of the EW mixing angle

Accardi, TJH, Jing, Nadolsky EPJC81 (2021) 7, 603

• significant correlations between EW quantities $(\sin^2 \theta_w)$ and valence *u*, *d* PDFs

- CTEQ-TEA: deuterium DIS experiments have strong pull on u_{val}, d_{val} for $x \sim 0.03$ more later

> modified deuteron theory may have LHC EW precision implications!

 $\mathbf{C} \mathbf{T} \mathbf{E} \mathbf{Q}$

fit a wide assortment of data from various underlying processes; scales

$$f_{q/p}(x,\mu^2 = Q_0^2) = a_{q_0} x^{a_{q_1}} (1-x)^{a_{q_2}} P[x, \{a_{q_{n-3}}\}]$$

• theory accuracy now/approaching (N)NNLO in α_s for typical processes

 \rightarrow NLO EW corrections, especially for LHC data

invitation: photon PDF for precision EW physics (i)

- at $\mathcal{O}(\alpha_s^2)$ accuracy, EW corrections and explicit $\gamma(x, \mu^2)$ needed Xie, TJH, Hou, Schmidt, Yan, Yuan: 2106.10299
- following CT14QED, CT18QED now interfaces LUX formalism

$$x\gamma(x,\mu^2) = \frac{1}{2\pi\alpha(\mu^2)} \int_x^1 \frac{z}{z} \left\{ \int_{\frac{x^2m_p^2}{1-z}}^{\frac{\mu^2}{1-z}} \frac{Q^2}{Q^2} \alpha_{\rm ph}^2(-Q^2) \left[\left(zp_{\gamma q}(z) + \frac{2x^2m_p^2}{Q^2} \right) F_2(x/z,Q^2) - z^2 F_L(x/z,Q^2) \right] - \alpha^2(\mu^2) z^2 F_2(x/z,\mu^2) \right\} + \mathcal{O}(\alpha^2,\alpha\alpha_s)$$

 \rightarrow 2 complementary implementations: CT18lux, CT18qed

invitation: photon PDF for precision EW physics (ii)

- calculation depends on nonperturbative proton-structure inputs!
- integrated proton SFs include contributions from low Q, moderate x

$$x\gamma(x,\mu^{2}) = \frac{1}{2\pi\alpha(\mu^{2})} \int_{x}^{1} \frac{z}{z} \left\{ \int_{\frac{x^{2}m_{p}^{2}}{1-z}}^{\frac{\mu^{2}}{1-z}} \frac{Q^{2}}{Q^{2}} \alpha_{ph}^{2}(-Q^{2}) \left[\left(zp_{\gamma q}(z) + \frac{2x^{2}m_{p}^{2}}{Q^{2}} \right) F_{2}(x/z,Q^{2}) - z^{2}F_{L}(x/z,Q^{2}) \right] - \alpha^{2}(\mu^{2})z^{2}F_{2}(x/z,\mu^{2}) \right\} + \mathcal{O}(\alpha^{2},\alpha\alpha_{s})$$

• dependence on Sachs EM form factors; twist-4, resonance prescriptions; ...

nonperturbative theory developments

• recent years: progress in *ab initio* hadron-structure calculations from QCD

 \rightarrow quasi-PDFs, pseudo-PDFs, quasi-TMDs, ...

insights possible from continuum methods and model-building

TJH, Wang, Nadolsky, Olness, PRD**100** (2019) 9, 094040

2020 PDF-Lattice Report, 2006.08636

parametrization uncertainty: nonperturbative fitting forms

- still, initial PDFs not generally calculable through rigorous QCD at $Q = Q_0 = m_c$ (to the needed precision...)
 - \rightarrow subject to complex nonperturbative dynamics
 - \rightarrow practice agnosticism w.r.t. initial parametrization

(some guidance from QCD, QCD-inspired models)

 \rightarrow explore model uncertainty with many forms

high-*x* PDFs remain dominated by large uncertainties

• PDF (Hessian) uncertainties enlarge dramatically in high-*x* limit

quantifying PDF preferences of fitted data: the L₂ method

 $S_{f,L_2}(E)$: fast approximation of the Lagrange Multiplier scan of χ^2_E along direction of $f_a(x_i, Q_q)$.

→ estimated $\Delta \chi_E^2$ for experiment *E* when $f_a(x_i, Q_i)$ increases by its +68% c.l. PDF uncertainty

$$Y = \chi_E^2 \quad X = f_a(x_i, Q_i) \qquad S_{f,L_2} \equiv \Delta Y(\vec{z}_{m,X}) = \vec{\nabla} Y \cdot \vec{z}_{m,X}$$

CT18 NNLO, BcdF2dCor (102), Q=2 GeV

$$= \vec{\nabla} Y \cdot \frac{\vec{\nabla} X}{|\vec{\nabla} X|} = \Delta Y \cos \varphi$$

extension of L₁ sensitivity (PDFSense)
method used to explore
• HEP data pulls for CT18
Phys.Rev.D 103 (2021) 1, 014013
• PDF-Lattice sensitivities
Phys.Rev.D 100 (2019) 9, 094040
• EIC potential

EIC YR, arXiv: 2103.05419

extracting high-x dependence in PDF fits

- high-x PDFs, ratios [e.g., d/u] connected to details of proton WF
- behavior at $x \to 1$ an important nonpert. discriminator
- CT18, parametrize $f_{a/A}(x, Q_0^2) = x^{A_{1,a}}(1-x)^{A_{2a}} \times \Phi_a(x)$

Η

Courtoy and Nadolsky, PRD103, 054029 (2021)

high-*x d*-PDF: information from light nuclei

- extracting *d*-type PDFs from proton targets only is challenging
- instead, e.g., **DIS on deuterium**: flavor separation by fitting *with* proton data

LO quark model:
$$F_2^{(p+n)/2} \sim \frac{5x}{9} (d+u)$$
 vs. $F_2^p \sim \frac{2x}{9} (4u+d)$

 \rightarrow assumes *isoscalar* deuteron: *i.e.*, an incoherent superposition, N = p + n

• in actuality, the deuteron is a two-body nuclear bound state

 \rightarrow binding modifies parton structure w.r.t. free nucleon

- \rightarrow virtuality of struck (bound) nucleon
- \rightarrow relativistic Fermi motion
- \rightarrow details of the nuclear wave function

fixed isoscalar-to-physical deuteron correction

• corrections are generally ~percent-level, but can become larger, especially at <u>high x</u>

$$f^d(x,Q^2) = \int \frac{dz}{z} \int dp_N^2 \, \mathcal{S}^{N/d}(z,p_N^2) \, \widetilde{f}^N(x/z,p_N^2,Q^2)$$

examine CT, CTEQ-JLab (CJ) fits with/out this correction: Accardi, TJH, Jing, Nadolsky EPJC81 (2021) 7, 603

14

- 1. Fits without deuteron corrections (no d.c.): CT no d.c., CJ no d.c.;
- 2. Fits with the *fixed* CJ15 correction: CT fixed d.c., CJ fixed d.c.;
- 3. A CJ fit in which the off-shellness correction is freely varied: CJ free d.c.;
- 4. Fits with the fixed CJ15 deuteron correction and variations in the fitted data sets: CT no nu-A (removing inclusive νA DIS experiments from CT), and CJ no-W_slac (removing Tevatron W production the CDF [131] and DØ [132] W asymmetry data and SLAC DIS [proton and deuteron] sets from CJ).

comparative analysis: CJ and CT at **NLO**

deuteron corrections: consequential for PDF pulls of fitted data

d/u

• in CJ fits without deuteron correction, large tensions at high x: γ -jet [1] vs. DIS-deuterium [4] data; especially at x > 0.5

• with fixed correction, tensions soften significantly; PDF pulls of DIS-deuteron [4] data flip sign over broad *x* range

 \rightarrow reflects striking shift in d/u PDF with fixed deuteron correction

Article

The asymmetry of antimatter in the proton

Nature | Vol 590 | 25 February 2021 | 561

https://doi.org/10.1038/s4	1586-021-03282-z
Received: 2 June 2020	
Accepted: 15 December 2	020
Published online: 24 Febru	uary 2021
Check for updates	

J. Dove¹, B. Kerns¹, R. E. McClellan^{1,18}, S. Miyasaka², D. H. Morton³, K. Nagai^{2,4}, S. Prasad¹, F. Sanftl², M. B. C. Scott³, A. S. Tadepalli^{5,18}, C. A. Aidala^{3,6}, J. Arrington^{7,19}, C. Ayuso^{3,20}, C. L. Barker⁸, C. N. Brown⁹, W. C. Chang⁴, A. Chen^{1,3,4}, D. C. Christian¹⁰, B. P. Dannowitz¹, M. Daugherity⁸, M. Diefenthaler^{1,18}, L. El Fassi^{5,11}, D. F. Geesaman^{7,21}, R. Gilman⁵, Y. Goto¹², L. Guo^{6,22}, R. Guo¹³, T. J. Hague⁸, R. J. Holt^{7,23}, D. Isenhower⁸, E. R. Kinney¹⁴, N. Kitts⁸, A. Klein⁶, D. W. Kleinjan⁶, Y. Kudo¹⁵, C. Leung¹, P.-J. Lin¹⁴, K. Liu⁶, M. X. Liu⁶, W. Lorenzon³, N. C. R. Makins¹, M. Mesquita de Medeiros⁷, P. L. McGaughey⁶, Y. Miyachi¹⁵, I. Mooney^{3,24}, K. Nakahara^{16,25}, K. Nakano²¹², S. Nara¹⁵, J.-C. Peng¹, A. J. Puckett^{6,26}, B. J. Ramson^{3,27}, P. E. Reimer^{7⊠}, J. G. Rubin^{3,7}, S. Sawada¹⁷, T. Sawada^{3,28}, T.-A. Shibata^{2,29}, D. Su⁴, M. Teo^{1,30}, B. G. Tice⁷, R. S. Towell⁸, S. Uemura^{6,31}, S. Watson⁸, S. G. Wang^{4,13,32}, A. B. Wickes⁶, J. Wu¹⁰, Z. Xi⁸ & Z. Ye⁷ nonperturbative behavior of high-*x* PDFs

The Fermilab SeaQuest (E906) experiment may be sensitive to the high-x fraction of \overline{d} vs. \overline{u}

→ many nonpert. models favor $\bar{d}/\bar{u} > 1$

What \bar{d}/\bar{u} ratio do the other CT18 experiments prefer?

SeaQuest impact in CT18 at NNLO

• **preliminary** <u>NNLO</u> fits:

 \rightarrow directly include SeaQuest on top of CT18 default sets, choices

→ 'CT18n': replace E866 with SeaQuest; add deut. correction; no incl. vA; 5% E605 uncorr. unc. for nuclear effects on Cu

• SeaQuest pulls $\overline{d}/\overline{u}$ upward at high *x*; *may* reduce strangeness uncert.

- combined with other nuclear prescriptions: more complicated pattern of shifts

SeaQuest impact in CT18 at NNLO

• the nuclear choices in this latest fit affect PDF correlations, L₂ pulls

important relationship between deuteron / heavy nucl. data

- indications of tensions between inclusive vA data and DIS-deut./WZ@LHC
- removing incl. vA improves agreement; enhances alignment of DIS p, d data

 \rightarrow n.b.: $\Delta \chi^2$ can approach size of NNLO correction, scale-variation shifts

for precision studies, important to understand heavy-nuclear corrections

20

important relationship between deuteron / heavy nucl. data

8	nu-A incl. DIS	CDHSW F_2	108
		CDHSW xF_3	109
		$CCFR F_2$	110
		$CCFR xF_3$	111
9	ttbar production	CMS 8 TeV 19.7 fb ⁻¹ , $t\bar{t}$ norm. top p_T and y cross sec.	573
		ATLAS 8 TeV 20.3 fb ⁻¹ , $t\bar{t} p_T^t$, $m_{t\bar{t}}$ abs. spectrum	580
10	nu-A dimuon SIDIS	NuTeV $\nu\mu\mu$ SIDIS	124
		NuTeV $\nu \bar{\mu} \mu$ SIDIS	125
		CCFR $\nu\mu\mu$ SIDIS	126
		CCFR $\nu \bar{\mu} \mu$ SIDIS	127

 \rightarrow deserves dedicated, consistent study; heavy-nuclear corrections can be $\leq 5\%$

dedicated nuclear PDF studies relevant for proton PDFs

• **nCTEQ:** parametrize and fit nuclear PDFs directly

$$f^{A} = \frac{Z}{A} f^{p/A} + \frac{(A-Z)}{A} f^{n/A} \qquad \qquad x f_{i}^{p/A}(x,Q_{0}) = c_{0} x^{c_{1}} (1-x)^{c_{2}} e^{c_{3}x} (1+e^{c_{4}}x)^{c_{5}} \\ c_{k} \longrightarrow c_{k}(A) \equiv p_{k} + a_{k} (1-A^{-b_{k}})$$

• fit range of nuclear data; relax W, Q cuts with to fit 6 GeV JLab data

include TMC, HT prescriptions; CJ15 deuteron correction

dedicated nuclear PDF studies relevant for proton PDFs (i)

• ¹²C PDFs, uncertainties sensitive to theory corrections, low-*W* data

[nb: fitted at NLO...]

dedicated nuclear PDF studies relevant for proton PDFs (ii)

these improvements can be assessed in the context of other nPDF determinations
 → nCTEQ uncertainties significantly narrower

Carbon PDFs (Q = 2 GeV)

extendable to large A; relevant for vA experiments

 parametrization of A dependence allows predictions for ⁵⁶Fe (cf. NuTeV, CCFR, ...)

 \rightarrow valuable for LBNF measurements (Ar)

(useful for accessing unique flavor currents)

Iron PDF Ratios to nCTEQ15 (Q = 2 GeV)

precision QCD will also be necessary for vA

- future analyses will witness an interplay between pQCD and nuclear effects
- NNLO accuracy is necessary to stabilize scale uncertainties

Gao, TJH, Nadolsky, Sun, Yuan: 2107.00460

 corrections enhance pQCD precision in CC DIS cross-section
 → DUNE few-GeV region

> → higher energies: EIC, FASERv

the future: <u>many</u> complementary experiments

- experiments beyond JLab12, LHC, FNAL vA program
- EIC and LHeC pursue complementary physics studies in $[x, Q^2]$
- EIC: overlap with high-sensitivity fixed-target DIS experiments

 \rightarrow extensive probe(s) of the **quark-to-hadron transition** region

conclusions: toward next-gen precision in nucleon PDFs

- signatures of nonperturbative QCD are etched upon the PDFs
 - → flavor-symmetry breaking (\bar{d}/\bar{u}) ; wave function effects $[d(x \approx 1)]$
 - → nuclear effects [q(x), intermediate x]; description of deuterium data
- critical for understanding QCD; necessary for precision HEP measurements
- future analyses: leverage interplay among ingredients explored here (higher pQCD theory accuracy; model exploration; nuclear effects; ...)

• input from other nonperturbative, theoretical methods

connections to larger tomography program

 \rightarrow projections:

$$\int d\vec{k}_T \, d\vec{b}_T \, W(x, \vec{b}_T, \vec{k}_T) = f(x)$$

• future experiments: JLab12 \rightarrow EIC, HL-LHC, <u>LBNF</u>, ...