

Mexico city/zoom

SATOSHI N. NAKAMURA TOHOKU UNIVERSITY

30th July 2021

Precise spectroscopy of Lambda hypernuclei with electron and meson beams

Current problems on A hypernuclei

Current problems on A hypernuclei

Electron beam vs. meson beams

(e,e'K⁺) Excellent mass resolution $\sim 0.5 \text{ MeV}(FWHM)$ Absolute energy calibration $p(e,e'K^+) \Lambda, \Sigma^0$ Thin target (isotopically enriched) eg. ${}^{40,48}Ca, {}^{3}H$

(K⁻, π^-) 1-2 MeV resolution Normalized to ${}^{12}{}_{\Lambda}$ C mass (π^+ , K⁺) **HIHR** Excellent mass resolution < 0.4 MeV

Thin target (isotopically enriched)

(e,e'K⁺) reaction spectroscopy

Two solar mass neutron stars E12-15-008 ^{40,48} Ca targets E12-19-002 Light targets E12-18-013 ²⁰⁸ Pb targets

E12-17-003 ³H target

New Astronomical Observations of NS

Gravitation Wave from neutron star mergers LIGO/Virgo PRL **119**, 161101 (2017)

Great progresses Macroscopic features of NS

NICER : NS x-ray hot spot measurement Physics 14, 64 (Apr. 29, 2021)

© HENNING DALHOFF/SCIENCE PHOTO LIBRARY

Hyperon Puzzle

Based on our knowledge on Baryonic Force: Hyperon naturally appear at high density ($\rho=2\sim3\rho_0$)

AFDMC by Lonardoni et al. PRL114 (2015) 092301, updated (2016) ESC08c + 3B/4B RF : G-Matrix Calc. by Yamamoto et al., PRC 90 (2014) 045805. Variational Meth. + AV18+UIX by Togashi et al., PRC 93 (2016) 035808

From hypernuclei to NS

Phenomenological 3 BRF+AFDMC

C_T :Parameter to gauge Λnn contribution in ΛNN potential

 $^{40}Ca(e, e'K^{+})^{40}{}_{\Lambda}K$ and $^{48}Ca(e, e'K^{+})^{48}{}_{\Lambda}K$

E12-15-008 accepted with GRADE A.

E12-15-008 ($^{40,48}_{\Lambda}$ Ca), E12-20-013 ($^{208}_{\Lambda}$ Pb)

2020/3/13 @ TOKIN (SENDAI)

New Pair Charge Sep. Mag. 40,48Ca targets

HKS+HES+PCS@Hall-C

From T.Gogami JLab PAC49

Hypertriton $\binom{3}{\Lambda}H$ puzzle

 $B_{\Lambda} = 0.13 \pm 0.05$ MeV (emulsion¹) $B_{\Lambda} = 0.41 \pm 0.12 \pm 0.11$ MeV (STAR²)

RMS radius, $\sqrt{\langle r^2 \rangle} \cong \frac{\hbar}{\sqrt{4\mu B_{\Lambda}}}$

 ¹ M. Juric *et al.*, *Nucl. Phys. B* **52**, 1-30 (1973).
 ² The STAR Collaboration, *Nature Physics* (2020); https://doi.org/10.1038/s41567-020-0799-7 J-PARC new exp. Talk by Dr. Ma $au = (0.5 \sim 0.92) au_{\Lambda}$ (HypHI, STAR, ALICE)

Fadeev calcuation with realistic NN/YN interactions $\rightarrow \tau = 0.97 \tau_A$ (H. Kamada *et al., Phys. Rev. C* **57**, 4 (1998))

Target	Density [/(g/cm³)]	Temperature [/K]	Pressure [/atm]
³ He	9.5	10	
⁴ He	13.1		3
$^{1}\text{H}_{2}$	2.8	30	

Hyperon Puzzle

Two solar mass neutron stars E12-15-008: ^{40,48} Ca targets E12-19-002 Light targets E12-18-013 ²⁰⁸ Pb targets

E12-17-003 ³H target

Λ

Jlab PAC45 approved as "High-Impact" exp. An interaction study by investigation of Ann resonance

I.R.Afnan and B.F.Gibson, PRC 92, 054608 (2015)

C.Rappold et al. PRC 88041001(R) (2013)

Beam	Direction		,
	Target	Thickness [mg/cm ²]	Number of incident electrons
	3 _H	84.8	1.0×10 ²⁰
	1 _H	70.8	3.0×10 ¹⁹

 $^{3}H(e e'K^{+})nn\Lambda$

Very preliminary result

Difference between data and simulation

QF- Λ distribution with JLab standard simulation code (SIMC)

Physics : fermi momentum, spectral function, kaon decay, radiative correlations

Possible FSI effects

From K.Itabashi, APFB2020

Hadron Experimental Facility eXtension (HEF-ex) Project @J-PARC

1 production target (T1) + charged beamlines (K1.8/1.8BR, High-p) 1 neutral beamline (KL) 1 muon beamline (COMET)

1 new production target (T2) +
4 new beamlines (HIHR, K1.1/K1.1BR, KL2, K10) +
2 modified beamlines (High-p (π20), Test-BL)

Strategy to solve the hyperon puzzle

Astronomical observations GW, X-ray telescope info.

HIHR

- High-Intensity High-Resolution Beamline for High Precision (π^+ , K⁺) Spectroscopy

Momentum dispersion matching

Exist beamlines: $\sim 10^6$ pions/pulse, $\Delta p/p \sim 1/1000$

200 x 10⁶ pions/pulse, ∆p/p ~ 1/10000

no beam tracking = **NO limit for** π rate from detectors

HR beamline (P_{max} = 2 GeV/c) + High Res. Kaon sectrometer

Momentum dispersion match

Momentum Matching Parameters and Conditions
$\begin{pmatrix} x_f \end{pmatrix} \begin{pmatrix} s_{11} & s_{12} & s_{16} \end{pmatrix} T = 0 = 0 \qquad 0 \qquad 0 b_{11} & b_{12} & b_{16} \end{pmatrix} \begin{pmatrix} x_0 \end{pmatrix} = 0$
$\left \begin{array}{c} \theta_{f} \end{array} \right = \left \begin{array}{c} s_{21} & s_{22} & s_{26} \end{array} \right \left \begin{array}{c} 0 & \theta/\theta_{1} + 1 \end{array} \right \left \begin{array}{c} 0 & 0 \end{array} \right \left \begin{array}{c} b_{21} & b_{22} & b_{26} \end{array} \right \left \begin{array}{c} \theta_{0} \end{array} \right $
$ \left\lfloor \delta_{f} \right\rfloor \left\lfloor 0 0 1 \\ \left\lfloor 0 0 (K\theta + DQ) / \delta_{0} + C \\ \left\lfloor 0 0 1 \\ \left\lfloor \delta_{0} \right\rfloor \right\rfloor $
T:TGT cosine, <i>Q</i> : Excitation Energy,
θ : Scattering Angle, $\theta_1 = b_{21}x_0 + b_{22}\theta_0 + \delta_0b_{26}$
$K: (\partial p_{seat} / \partial \theta)(1 / p_{seat})$ Scattering Angle Correction Coefficient
$C: (\partial p_{scat} / \partial p_{beam})(p_{beam} / p_{scat}) \dots$ Incident Momentum Correction Coefficient
$D: (\partial p_{seat} / \partial Q)(1 / p_{seat})$ Excitation Energy Correction Coefficient
Momentum Matching Condition :
$x_f = (\partial x_f / \partial x_0) x_0 + (\partial x + \partial \theta_0) \theta_0 + (\partial x + \partial \phi_0) \delta_0 + (\partial x + \partial \theta_0) \theta + s_{16} * DQ$
$\partial x_f / \partial x_0 = s_{11} * b_{11} * T + s_{12} * b_{21}$: total magnification $\rightarrow minimize$,
$\partial x_f / \partial \theta_0 = s_{11} * b_{12} * T + s_{12} * b_{22}$: point - to - point focus $\rightarrow 0$,
$\partial x_f / \partial \delta_0 = s_{11} * b_{16} * T + s_{12} * b_{26} + s_{16} * C$: momentum matching $\rightarrow 0$,
$\partial x_f / \partial \theta = s_{12} + s_{16}^* K$: kinematical correction (finite scatt. angle) $\rightarrow 0$
s * DQ · a position shift by the excitation energy

High precision (π^+, K^+) spectroscopy

¹²C, ^{6,7}Li, ⁹Be, ^{10,11}B, ²⁸Si, ⁴⁰Ca, ⁵¹V, ⁸⁹Y, ¹³⁹La, ²⁰⁸Pb

KEK-PS E369 with SKS

60 days \times 3M π /spill @ KEK K6 Δ E~2.3 MeV(FWHM)

Expected at HIHR beamline

60 days × 200M π /spill @ HIHR $\Delta E \sim 0.4$ MeV(FWHM)

Expected spectra

Expected Yield of Hypernulclei

	HIHR@J-PARC Ex. 1.1GeV/c π ⁺	
Reaction	$^{12}\mathrm{C}(\pi^+,K^+)^{12}_{\ \Lambda}\mathrm{C}$	
Beam on target (/ sec)	$3.85 imes10^7~\pi^+$ (200 M/spill, 50kW)	
Target Thick (mg/cm²)	400 (1.8 g/cm³ x 0.22 cm)	
Solid Angle for K ⁺ (msr)	>20	
Kaon Survival Ratio	0.12 (11.4 m for QSQDMD)	02 _E
Cross section (µb/sr)	8.1	persive angle y _{fat} (read) 0.12
Expected Yield (/h)	53.1	-0.15

GEANT4 simulation

Proposal of 1st Campaign, J-PARC P84

	Table 6·I : Summary of requesting beamtime for 50 kW proton beam power. Differential cross sections at $\theta_K \sim 0$ were estimated by using data of prior (π^+, K^+) experiments [PIL91, HAS94, HAS96, HOT01, HAS06].				
	Assumed g.s. Cross Section (µb/sr)	Target thickness (mg/cm²)	Expected Yield(/h)	Requested number of events for g.s.	Beam Time (h)
¹² _Λ C	8.1	100	13.3	1000	79
¹² _Λ C	8.1	200	26.6	2000	79
¹² _Λ C	8.1	400	53.1	2000	39
⁶ ΛLi	1.9	200	12.7	100	8
$^{7}_{\Lambda}$ Li	1.9	200	10.9	100	10
⁹ _Λ Be	0.2	200	1.1	100	98
$^{10}_{\Lambda}\mathrm{B}$	0.9	200	3.5	100	30
$^{11}_{\Lambda}\text{B}$	0.9	200	3.2	100	33
²⁸ _Λ Si	0.5	400	1.4	100	75
⁴⁰ ^Са	0.5	400	0.94	100	112
${}^{51}_{\Lambda}V$	1.2	400	1.8	100	59
⁸⁹ ΛY	0.6	400	0.53	100	199
Sub total (light- mid heavy)					724 (30 days)

GOAL : Peak determination precision 40 keV (σ ~ 17 keV)

¹³⁹ La	0.3	200	0.085	20	236
¹³⁹ _A La	0.3	400	0.17	80	471
²⁰⁸ ΛPb	0.3	200	0.057	20	352
²⁰⁸ ΛPb	0.3	400	0.11	80	705
Sub total (heavy)					1764 (73 days)
Grand Total					2488 (104 days)

73 days for heavier targets

30 days for lighter targets

104 days for total

Summary

(e,e'K⁺) opens a door of sub-MeV spectroscopy of Λ hypernuclei at JLab. Experiment of ${}^{3}H(e, e'K^{+})X$: Consistency check of analysis in progress. New programs: Hypertriton puzzle and CSB study (${}^{3}_{\Lambda}$ H, ${}^{4}_{\Lambda}$ H), Isospin dependence $\binom{40}{\Lambda}$ K, $\frac{48}{\Lambda}$ K), Heaviest hypernuclei $(^{208}_{\Lambda}Tl)$ New HIHR beamline at J-PARC Hadron Hall Extension Project Spectroscopy of Λ hypernuclei with (π^+, K^+) reaction at HIHR (P84) Precise Spectroscopy of A hypernuclei in all mass range ANN 3-body force based on realistic 2-body interaction to be studied at New K1.1 Challenge to Hyperon Puzzle **Hypernuclear Factory**