# News from the Light Non-Strange and Strange Meson Sector

## Stefan Wallner

Institute for Hadronic Structure and Fundamental Symmetries - Technical University of Munich



19th International Conference on Hadron Spectroscopy and Structure in memoriam Simon Eidelman July 26, 2021



- $\blacktriangleright |q\overline{q}'
  angle$  states, with q = u, d, or s
- Masses in the range  $0.14 < m \lesssim 2.5 \, {
  m GeV}/c^2$

### Quantum numbers of mesons

- Meson spin J
- ► Parity *P*
- For non-strange light mesons: Charged conjugation C
- Excitations possible

Spectrum of resonances with the same J<sup>P(G)</sup>

- $\blacktriangleright |q\overline{q}'
  angle$  states, with q = u, d, or s
- Masses in the range  $0.14 < m \lesssim 2.5 \, {
  m GeV}/c^2$

## Quantum numbers of mesons

- Meson spin *J*
- ► Parity P
- For non-strange light mesons: Charged conjugation C
- Excitations possible

Spectrum of resonances with the same  $J^{P(C)}$ 

- $\blacktriangleright |q\overline{q}'
  angle$  states, with q = u, d, or s
- ▶ Masses in the range  $0.14 < m \lesssim 2.5 \, {\rm GeV}/c^2$

## Quantum numbers of mesons

- Meson spin *J*
- Parity P
- For non-strange light mesons: Charged conjugation C
- Excitations possible
  - Spectrum of resonances with the same  $J^{P(C)}$

- $\blacktriangleright |q\overline{q}'
  angle$  states, with q = u, d, or s
- Masses in the range  $0.14 < m \lesssim 2.5 \, {\rm GeV}/c^2$

## Quantum numbers of mesons

- Meson spin *J*
- Parity P
- For non-strange light mesons: Charged conjugation C
- Excitations possible
  - Spectrum of resonances with the same  $J^{P(C)}$

## Light non-strange mesons

Certain J<sup>PC</sup> combinations not possible
 Spin-exotic quantum numbers

$$J^{PC} = 0^{--}, 0^{+-}, 1^{-+}, 2^{+-}, 3^{-+}, \dots$$

- $\blacktriangleright |q\overline{q}'
  angle$  states, with q = u, d, or s
- Masses in the range  $0.14 < m \lesssim 2.5 \, {\rm GeV}/c^2$

## Quantum numbers of mesons

- Meson spin J
- Parity P
- For non-strange light mesons: Charged conjugation C
- Excitations possible
  - Spectrum of resonances with the same  $J^{P(C)}$

## Produced in

- Scattering of high-energy beams
  - Studied at
    - ► GlueX, VES, COMPASS, ...

## Multi-body decays of heavier states

- Studied at
  - $e^+e^-$  colliders: Belle, BES, ...
  - hadron colliders: LHCb, ...



- $\blacktriangleright |q\overline{q}'
  angle$  states, with q = u, d, or s
- Masses in the range  $0.14 < m \lesssim 2.5 \, {\rm GeV}/c^2$

## Quantum numbers of mesons

- Meson spin J
- Parity P
- For non-strange light mesons: Charged conjugation C
- Excitations possible
  - Spectrum of resonances with the same  $J^{P(C)}$

## Produced in

- Scattering of high-energy beams
  - Studied at
    - ► GlueX, VES, COMPASS, ...
- Multi-body decays of heavier states
  - Studied at
    - ▶  $e^+e^-$  colliders: Belle, BES, ...
    - hadron colliders: LHCb, ...





- Further configurations possible in QCD
- Mesons are linear superposition of all allowed basis states
  - "Configuration mixing"
  - Disentanglement of contributions difficult
- Spin-exotic states
  - Exclude |qq' contribution







## Talk by Peter Pauli, Plenary (Thu 7:00) Talk by Colin Gleason, Meson spectroscopy (Wed 10:30)

Alexander Austregesilo, JLUO Group Meeting June 2020

### $\eta\pi$ from GlueX

- Expected as a golden channel for spin-exotic  $\pi_1$
- ▶ Large data set from GlueX of  $\eta\pi^-$  final state
  - First partial-wave analysis
- **>** Similar large data set from GlueX of  $\eta \pi^0$ 
  - Different exchange in production
    - ➡ Complementary data
  - First partial-wave analysis



## Talk by Peter Pauli, Plenary (Thu 7:00) Talk by Colin Gleason, Meson spectroscopy (Wed 10:30)

Alexander Austregesilo, JLUO Group Meeting June 2020

### $\eta\pi$ from GlueX

- Expected as a golden channel for spin-exotic  $\pi_1$
- ▶ Large data set from GlueX of  $\eta\pi^-$  final state
  - First partial-wave analysis
    - Finds expected signals
- ▶ Similar large data set from GlueX of  $\eta \pi^0$ 
  - Different exchange in production
    - ➡ Complementary data
  - First partial-wave analysis



## $\eta\pi$ from GlueX

- Expected as a golden channel for spin-exotic  $\pi_1$
- Large data set from GlueX of  $\eta\pi^-$  final state
  - First partial-wave analysis
    - Finds expected signals
- ▶ Similar large data set from GlueX of  $\eta\pi^0$ 
  - Different exchange in production
    - ➡ Complementary data
  - First partial-wave analysis
    - Finds expected signals



## $\eta\pi$ from GlueX

- Expected as a golden channel for spin-exotic  $\pi_1$
- Large data set from GlueX of  $\eta\pi^-$  final state
  - First partial-wave analysis
    - Finds expected signals
- ▶ Similar large data set from GlueX of  $\eta\pi^0$ 
  - Different exchange in production
    - Complementary data
  - First partial-wave analysis
    - Finds expected signals



Curtis A. Meyer, LISHEP Virtual Conference 2021

• 
$$J^{PC} = 1^{-+}$$
 studied at COMPASS in the  $ho\pi$  final state

- Resonance-like signal
  - Reproduced by Breit-Wigner resonance
- Non-resonant production mechanisms also contribute
- Data show excess over non-resonant contribution

- ▶  $J^{PC} = 1^{-+}$  studied at COMPASS in the  $\rho\pi$  final state
- Resonance-like signal
  - Reproduced by Breit-Wigner resonance
- Non-resonant production mechanisms also contribute
- Data show excess over non-resonant contribution



### Talk by Fabian Krinner, Meson spectroscopy (Wed 10:10)

- ▶  $J^{PC} = 1^{-+}$  studied at COMPASS in the  $\rho\pi$  final state
- Resonance-like signal
  - Reproduced by Breit-Wigner resonance
- Non-resonant production mechanisms also contribute
- Data show excess over non-resonant contribution



- ▶  $J^{PC} = 1^{-+}$  studied at COMPASS in the  $\rho\pi$  final state
- Resonance-like signal
  - Reproduced by Breit-Wigner resonance
- Non-resonant production mechanisms also contribute
- Data show excess over non-resonant contribution



## Talk by Lukasz Bibrzycki, Meson spectroscopy (Wed 9:25)

## JPAC analysis of COMPASS $\eta^{(\prime)}\pi$ data

- Non-resonant contributions also in  $\eta^{(\prime)}\pi$  final state
- JPAC analysis of high-mass region
  - Expected to be dominated by non-resonant contributions
- Data can be described by double-Regge model
- Study of different Regge exchanges
  - $\mathbb{P}/\mathbb{P}$  neccessary to describe  $\eta'\pi$  final state
    - 🍽 Points to large gluon affinity
  - Importance of bottom-f<sub>2</sub> exchange
    - $\blacktriangleright \eta^{(\prime)} \pi$  not only produced by  ${\mathbb P}$  exchange at high masses



JPAC, arXiv:2104.10646 (2021)

## Talk by Lukasz Bibrzycki, Meson spectroscopy (Wed 9:25)

## JPAC analysis of COMPASS $\eta^{(\prime)}\pi$ data

- Non-resonant contributions also in  $\eta^{(\prime)}\pi$  final state
- JPAC analysis of high-mass region
  - Expected to be dominated by non-resonant contributions
- Data can be described by double-Regge model
- Study of different Regge exchanges
  - $\mathbb{P}/\mathbb{P}$  neccessary to describe  $\eta'\pi$  final state
    - ➡ Points to large gluon affinity
  - Importance of bottom-f<sub>2</sub> exchange
    - ⇒  $\eta^{(\prime)}\pi$  not only produced by  $\mathbb{P}$  exchange at high masses



## Talk by Lukasz Bibrzycki, Meson spectroscopy (Wed 9:25)

## JPAC analysis of COMPASS $\eta^{(\prime)}\pi$ data

- Non-resonant contributions also in  $\eta^{(\prime)}\pi$  final state
- JPAC analysis of high-mass region
  - Expected to be dominated by non-resonant contributions
- Data can be described by double-Regge model
- Study of different Regge exchanges
  - $\mathbb{P}/\mathbb{P}$  neccessary to describe  $\eta'\pi$  final state
    - ➡ Points to large gluon affinity
  - Importance of bottom-f<sub>2</sub> exchange
    - ⇒  $\eta^{(\prime)}\pi$  not only produced by  $\mathbb{P}$  exchange at high masses



## JPAC analysis of COMPASS $\eta^{(\prime)}\pi$ data

- Non-resonant contributions also in  $\eta^{(\prime)}\pi$  final state
- JPAC analysis of high-mass region
  - Expected to be dominated by non-resonant contributions
- Data can be described by double-Regge model
- Study of different Regge exchanges
  - $\mathbb{P}/\mathbb{P}$  neccessary to describe  $\eta'\pi$  final state
    - ➡ Points to large gluon affinity
  - Importance of bottom-f<sub>2</sub> exchange
    - $\eta^{(\prime)}\pi$  not only produced by  $\mathbb{P}$  exchange at high masses



# Combined Analysis of Different Samples

- Combined analysis of
  - Crystal Barrel data

$$\blacktriangleright ~~ p \overline{p} 
ightarrow \pi^0 \pi^0 \eta$$
,  $\pi^0 \eta \eta$ ,  $K^+ K^- \pi^0$ 

- Various  $\pi\pi$  scattering data
- COMPASS  $2^{++}$  and  $1^{-+}$  waves in
  - $\ \, \mathbf{\pi}^{-}\mathbf{p} \rightarrow \eta^{(\prime)}\pi^{-}\mathbf{p}$
- Study  $\pi_1$  in  $\eta^{(\prime)}\pi$  system
- Data described wel
- Only one  $\pi_1(1600)$  pole needed
  - Similar to JPAC analysis of COMPASS data [JPAC, Phys. Rev. Lett. 122 (2019) 042002]
  - $\pi_1(1400)$  put into question

# Combined Analysis of Different Samples

- Combined analysis of
  - Crystal Barrel data

$$\blacktriangleright \ p\overline{p} \to \pi^0 \pi^0 \eta, \ \pi^0 \eta \eta, \ K^+ K^- \pi^0$$

- Various ππ scattering data
   COMPASS 2<sup>++</sup> and 1<sup>-+</sup> waves in
- - $\blacktriangleright \pi^- p \rightarrow \eta^{(\prime)} \pi^- p$
- Study  $\pi_1$  in  $\eta^{(\prime)}\pi$  system
- Data described well
- > Only one  $\pi_1(1600)$  pole needed
  - Similar to JPAC analysis of COMPASS data [JPAC, Phys. Rev. Lett. 122 (2019) 042002]
  - $\blacktriangleright$   $\pi_1(1400)$  put into question



# The $\pi_1$ from Lattice QCD

### Talk by Christopher Thomas, Meson spectroscopy (Wed 9:00)

Hadron Spectrum, Phys. Rev. D 103 (2021) 054502



▶ Determination of hadronic decays of lightest  $\pi_1$  from Lattice QCD

- Decaying dominantly to  $b_1\pi$ 
  - Experimentally more challenging to access:  $b_1\pi \rightarrow \omega\pi\pi \rightarrow 5\pi$
  - Seen at E852 (BNL) and Crystal Barrel
  - Under study at COMPASS and GlueX

## Exotic States beyond Spin-Exotics Excited $\pi$ with $J^{PC} = 0^{-+}$

## Lattice QCD

[Hadron Spectrum, Phys. Rev. D 88 (2013) 094505]

- ▶ Predicts three excited  $\pi$  with  $J^{PC} = 0^{-+}$
- One of them is potential hybrid candidate

Excited  $\pi$  with  $J^{PC} = 0^{-+}$ 

### Talk by Florian Kaspar, Meson spectroscopy (Wed 9:50)

## Lattice QCD

[Hadron Spectrum, Phys. Rev. D 88 (2013) 094505]

- Predicts three excited  $\pi$  with  $J^{PC} = 0^{-+}$
- One of them is potential hybrid candidate

## $\pi^-\pi^-\pi^+$ from COMPASS

- Updated analysis: About 2× larger sample
- Clear  $\pi(1800)$  signal in
  - ► f<sub>0</sub>(980)π
  - $f_0(1500)\pi$

Þ ...

- $\blacktriangleright \ [\pi\pi]_{S}^{\text{AMPK}}\pi$
- Signal in  $f_2(1270)\pi$  decay
- Different interpretations possible
  - Another resonance at about  $1.7 \,\text{GeV}/c^2$ ?
  - Interference of  $\pi(1800)$  with other components?

Excited  $\pi$  with  $J^{PC} = 0^{-+}$ 

### Talk by Florian Kaspar, Meson spectroscopy (Wed 9:50)

## Lattice QCD

#### [Hadron Spectrum, Phys. Rev. D 88 (2013) 094505]

- Predicts three excited  $\pi$  with  $J^{PC} = 0^{-+}$
- One of them is potential hybrid candidate

- Updated analysis: About 2× larger sample
- Clear  $\pi(1800)$  signal in
  - ► f<sub>0</sub>(980)π
  - $f_0(1500)\pi$
  - $\blacktriangleright \ [\pi\pi]_{S}^{\text{AMPK}}\pi$
- Signal in  $f_2(1270)\pi$  decay
- Different interpretations possible
  - Another resonance at about  $1.7 \,\text{GeV}/c^2$ ?
  - Interference of  $\pi(1800)$  with other components?



Excited  $\pi$  with  $J^{PC} = 0^{-+}$ 

### Talk by Florian Kaspar, Meson spectroscopy (Wed 9:50)

## Lattice QCD

#### [Hadron Spectrum, Phys. Rev. D 88 (2013) 094505]

- Predicts three excited  $\pi$  with  $J^{PC} = 0^{-+}$
- One of them is potential hybrid candidate

- Updated analysis: About 2× larger sample
- Clear  $\pi(1800)$  signal in
  - ► f<sub>0</sub>(980)π
  - $f_0(1500)\pi$
  - $\blacktriangleright \ [\pi\pi]_{S}^{\text{AMPK}}\pi$
- Signal in  $f_2(1270)\pi$  decay
- Different interpretations possible
  - Another resonance at about  $1.7 \,\text{GeV}/c^2$ ?
  - Interference of  $\pi(1800)$  with other components?



Excited  $\pi$  with  $J^{PC} = 0^{-+}$ 

### Talk by Florian Kaspar, Meson spectroscopy (Wed 9:50)

## Lattice QCD

#### [Hadron Spectrum, Phys. Rev. D 88 (2013) 094505]

- Predicts three excited  $\pi$  with  $J^{PC} = 0^{-+}$
- One of them is potential hybrid candidate

## $\pi^{-}\pi^{-}\pi^{+}$ from COMPASS

- Updated analysis: About 2× larger sample
- Clear  $\pi(1800)$  signal in
  - ► f<sub>0</sub>(980)π

. . .

- $f_0(1500)\pi$
- $\blacktriangleright \ [\pi\pi]_{S}^{\text{AMPK}}\pi$
- Signal in  $f_2(1270)\pi$  decay
- Different interpretations possible
  - Another resonance at about  $1.7 \,\text{GeV}/c^2$ ?
  - Interference of  $\pi(1800)$  with other components?



## Exotic States beyond Spin-Exotics Excited $\pi$ with $J^{PC} = 0^{-+}$

 $\blacktriangleright$  Search of strange partners of excited  $\pi$ 



# Strange Meson Spectroscopy



## PDG lists 25 strange mesons

- 16 established states, 9 need further confirmation
- Missing states with respect to quark-model predictions
- Many measurements performed more than 30 years ago

- Study  $K_I^*$  and  $K_J$  mesons in  $K^-\pi^-\pi^+$  final state
- So far world's largest data set: 720 000 events
- About 3.5 times larger than ACCMOR (WA03)



## $K^{-}\pi^{-}\pi^{+}$ from COMPASS

- Study  $K_I^*$  and  $K_J$  mesons in  $K^-\pi^-\pi^+$  final state
- So far world's largest data set: 720 000 events
- About 3.5 times larger than ACCMOR (WA03)



WA03 (CERN), 200 000 events, ACCMOR, Nucl. Phys. B 187 (1981)

# Searching for Established States $_{^{The}\,\mathcal{K}_{2}^{*}(1430)}$



# Searching for Established States The $K_2^*(1430)$

## $K^{-}\pi^{-}\pi^{+}$ from COMPASS

Signal in  $K_2^*(1430)$  mass region

In agreement with previous measurements
 Recent precise measurement from BES III



# Searching for Established States The $K_2^*(1430)$

## $K^{-}\pi^{-}\pi^{+}$ from COMPASS

▶ Signal in  $K_2^*(1430)$  mass region

In agreement with previous measurements
 Recent precise measurement from BES III



Talk by Nils Huesken, Plenary (Tue 7:00) Talk by Shuangshi Fang, Meson spectroscopy (Mon 11:15)



M(K<sup>+</sup>n) (GeV/c<sup>2</sup>)





## $K^-\pi^-\pi^+$ from COMPASS

- Large signal in  $2^- 0^+ K_2^*(1430) \pi S$  wave
- Two resonances in signal region
  - K<sub>2</sub>(1770), K<sub>2</sub>(1820)
- Bump in high-mass shoulder
  - Potential K<sub>2</sub>(2250)

## Similar signals also in

- $\rho(110)$  K and
- $K^*(892) \pi$  decays



- Large signal in  $2^- 0^+ K_2^*(1430) \pi S$  wave
- Two resonances in signal region
  - ▶ K<sub>2</sub>(1770), K<sub>2</sub>(1820)
- Bump in high-mass shoulder
  - Potential K<sub>2</sub>(2250)
- Similar signals also in
  - ρ(770) K and
  - *K*\*(892) π decays



## $K^-\pi^-\pi^+$ from COMPASS

- Large signal in  $2^- 0^+ K_2^*(1430) \pi S$  wave
- Two resonances in signal region
  - ► K<sub>2</sub>(1770), K<sub>2</sub>(1820)
- Bump in high-mass shoulder
  - Potential K<sub>2</sub>(2250)
- Similar signals also in
  - ρ(770) K and
  - K<sup>\*</sup>(892) π decays



Existence of one or two low-mass K<sub>2</sub> state not clear at previous measurements

•  $K_2(2250)$  observed mainly in  $A\bar{p}$  final state

 $B^+ \rightarrow J/\psi \phi K^+$  from LHCb

- Both  $K_2(1770)$  and  $K_2(1820)$  considered
- Limited kinematic range
  - Cannot access low- and high-mass states
- Updated analysis of larger sample
  - High- and low mass tail of states outside kinematic range needed to describe data
  - Requires input from other measurement



WA03 (CERN), 200 000 events, ACCMOR, Nucl. Phys. B 187 (1981)

- Existence of one or two low-mass K<sub>2</sub> state not clear at previous measurements
- $K_2(2250)$  observed mainly in  $\Lambda \bar{p}$  final state

## $B^+ ightarrow J/\psi \phi K^+$ from LHCb

- ▶ Both *K*<sub>2</sub>(1770) and *K*<sub>2</sub>(1820) considered
- Limited kinematic range
  - Cannot access low- and high-mass states
- Updated analysis of larger sample
  - High- and low mass tail of states outside kinematic range needed to describe data
  - Requires input from other measurement



CERN  $\Omega'$  spectrometer, 10 000 events, Nucl. Phys. B 227 (1983)

- Existence of one or two low-mass K<sub>2</sub> state not clear at previous measurements
- $K_2(2250)$  observed mainly in  $A\bar{p}$  final state

## $B^+ \rightarrow J/\psi \phi K^+$ from LHCb

- Both  $K_2(1770)$  and  $K_2(1820)$  considered
- Limited kinematic range
  - Cannot access low- and high-mass states
- Updated analysis of larger sample
  - High- and low mass tail of states outside kinematic range needed to describe data
  - Requires input from other measurement



- Existence of one or two low-mass K<sub>2</sub> state not clear at previous measurements
- $K_2(2250)$  observed mainly in  $A\bar{p}$  final state

## $B^+ \rightarrow J/\psi \phi K^+$ from LHCb

- Both  $K_2(1770)$  and  $K_2(1820)$  considered
- Limited kinematic range
  - Cannot access low- and high-mass states
- Updated analysis of larger sample
  - High- and low mass tail of states outside kinematic range needed to describe data
  - Requires input from other measurement



- Existence of one or two low-mass K<sub>2</sub> state not clear at previous measurements
- $K_2(2250)$  observed mainly in  $\Lambda \bar{p}$  final state

## $B^+ \rightarrow J/\psi \phi K^+$ from LHCb

- Both  $K_2(1770)$  and  $K_2(1820)$  considered
- Limited kinematic range
  - Cannot access low- and high-mass states
- Updated analysis of larger sample
  - High- and low mass tail of states outside kinematic range needed to describe data
  - Requires input from other measurement





## PDG

- K(1460) and K(1830) potentially quark-model states
- K(1630) candidate for exotic state
  - Unexpectedly small width:  $16 \text{ MeV}/c^2$
  - $J^P$  of K(1630) unclear



## PDG

- ▶ *K*(1460) and *K*(1830) potentially quark-model states
- K(1630) candidate for exotic state
  - Unexpectedly small width:  $16 \text{ MeV}/c^2$
  - $J^P$  of K(1630) unclear

- Peak at about 1.4 GeV/ $c^2$ 
  - Potentially from established K(1460)
  - But,  $m \lesssim 1.5 \, {\rm GeV}/c^2$  region affected by analysis artifacts
- Second peak at about 1.7 GeV/c<sup>2</sup>
  - Potential K(1630) signal
  - Accompanied by clear phase motion
  - Width presumably larger than 16 MeV/c



- Peak at about 1.4 GeV/ $c^2$ 
  - Potentially from established K(1460)
  - ▶ But,  $m \lesssim 1.5 \, {\rm GeV}/c^2$  region affected by analysis artifacts
- Second peak at about 1.7 GeV/c<sup>2</sup>
  - Potential K(1630) signal
  - Accompanied by clear phase motion
  - Width presumably larger than 16 MeV/c



- Peak at about 1.4 GeV/ $c^2$ 
  - Potentially from established K(1460)
  - But,  $m \lesssim 1.5 \, {\rm GeV}/c^2$  region affected by analysis artifacts
- Second peak at about 1.7 GeV/c<sup>2</sup>
  - Potential K(1630) signal
  - Accompanied by clear phase motion
  - Width presumably larger than  $16 \,\mathrm{MeV}/c^2$



## $K^-\pi^-\pi^+$ from ACCMOR

• Potential K(1630) signal already in ACCMOR analysis

## $K^{-}\pi^{-}\pi^{+}$ from LHCb

## ▶ Measurement of $D^0 \rightarrow K^{\mp}\pi^{\pm}\pi^{\pm}\pi^{\mp}$ at LHCb

- Study strange mesons in  $K\pi\pi$  subsystem
- MIPWA of  $J^P = 0^-$  amplitude
- Potential signal above 1.6 GeV/c<sup>2</sup>
- Limited by kinematic range



WA03 (CERN), 200 000 events, ACCMOR, Nucl. Phys. B 187 (1981)

## $K^{-}\pi^{-}\pi^{+}$ from ACCMOR

• Potential K(1630) signal already in ACCMOR analysis

## $K^{-}\pi^{-}\pi^{+}$ from LHCb

• Measurement of 
$$D^0 o K^{\mp} \pi^{\pm} \pi^{\pm} \pi^{\mp}$$
 at LHCb

- Study strange mesons in  $K\pi\pi$  subsystem
- MIPWA of  $J^P = 0^-$  amplitude
- Potential signal above  $1.6 \,\mathrm{GeV}/c^2$
- Limited by kinematic range



## $K^{-}\pi^{-}\pi^{+}$ from ACCMOR

• Potential K(1630) signal already in ACCMOR analysis

## $K^-\pi^-\pi^+$ from LHCb

- ▶ Measurement of  $D^0 \to K^\mp \pi^\pm \pi^\pm \pi^\mp$  at LHCb
  - Study strange mesons in  $K\pi\pi$  subsystem
  - MIPWA of  $J^P = 0^-$  amplitude
  - Potential signal above  $1.6 \,\mathrm{GeV}/c^2$
  - Limited by kinematic range



## High-precision era with data from:

- COMPASS, VES, GlueX, CLAS12
- LHCb, Belle(II), BESIII
- Allows us to get a more complete picture of the physical processes
- Requires a more complete description of our data
- Further prospects
  - PANDA
  - AMBER at CERN: Kaon spectroscopy

[arXiv:1808.00848

- High-precision era with data from:
  - COMPASS, VES, GlueX, CLAS12
  - LHCb, Belle(II), BESIII
- Allows us to get a more complete picture of the physical processes
- Requires a more complete description of our data
- Further prospects
  - PANDA
  - AMBER at CERN: Kaon spectroscopy

[arXiv:1808.00848

- High-precision era with data from:
  - COMPASS, VES, GlueX, CLAS12
  - LHCb, Belle(II), BESIII
- Allows us to get a more complete picture of the physical processes
- Requires a more complete description of our data
- Further prospects
  - PANDA
  - AMBER at CERN: Kaon spectroscopy

[arXiv:1808.00848]

# Backup

## Outline