J-PET	Positronium Decays	Tests of discrete symmetries	Future perspectiv
000	O	00000	00
	European Republic Funds of Poland	Foundation for Distin Science	r

Test of discrete symmetries with J-PET

S. Sharma

on behalf of the J-PET collaboration

S. Sharma (on behalf of the J-PET)

HADRON2021

28.07.2021

э

Outline • Positronium Decays

Tests of discrete symmetries 00000

Future perspectiveS

1 Jagiellonian Positron Emission Tomograph

- Positronium atom decays
- **3** Tests of discrete symmetries
- **4** Future perspectice : Portable detection modules

S. Sharma (on behalf of the J-PET)

HADRON2021

28.07.2021

(日)

2/13

3

utline J-PET Positronium Decays ●00 0 Tests of discrete symmetries

Future perspectiveS

Jagiellonian Positron Emission Tomograph

- 2012 : First prototype with 2 plastic strips read by vacuum photomultipliers.
- 2014 : Data acquisition was successfully tested with multiple module system.
- 2016 : Prototype optimized to study the decays of positronium atoms
- 2018-2021 : Modular protoype major changes in terms of SiPMs readout.

S. Sharma (on behalf of the J-PET)

HADRON2021

Tests of discrete symmetries 00000

Future perspectiveS

Key features

000

- 192 detection modules arranged in 3 Layers.
- Each module is made made of plastic scintillators (50 × 1.9 × .7 cm³) and **2 photomultipliers** on each end.
- Trigger less and reconfiguration \overline{DAQ}
- Time Over Threshold (TOT) Measure of energy deposition*
- Multiple photon detection in a single event
- Ang. reso.($\approx 1^0$) Good time reso. (\approx 200 ps)

$$Eres.(\sigma_E/E) = 0.044/\sqrt{(E(MeV))}$$

Figure: 3 Layers prototype

S. Sharma.., P.Moskal et al., EJNMMI Physics 7, 39 (2020)

イロト イポト イヨト イヨト

000

Tests of discrete symmetries

Future perspectiveS

Data Acquisition and Analysis : J-PET framework*

- J-PET Analysis Framework can be categorized in three sequential steps : <u>DAQ</u> (FPGA based), reconstruction of signal events and data analysis
- Mainly written in C++11 using heavily the ROOT and BOOST libraries
- Dedicated MC simulations based on Geant4 toolkit and GATE package

S. Sharma (on behalf of the J-PET)

Future perspectiveS

Positronium Decays : Applications in Fundamental physics

- First time detected in Gas by Martin Deutsch Nobel prize in 1956 for discovering Ps
- Hydrogen like atom without nuclei : purely leptonic object particle : e⁻ and anti-particle : e⁺
- Eigenstate of C,P,CP operators
- Undergoes self-annihilation into gamma quanta. Number of annihilated photons followd the charge parity conservation.
- Formed in two gnd. states: para-Positronium(p-Ps - .125 ns) ortho-Positronium(o-Ps - 142 ns) (S =0, $m_Z = 0$). (S =1, $m_Z = -1$, 0, 1) Even no of photons 2,4,.. Charge Conj. Odd no of photons 3,5,..
- J-PET qualifies to perform the tests on discrete symmetries in the decays of o-Ps atoms

S. Sharma (on behalf of the J-PET)

28.07.2021

イロト 不得 トイラト イラト 二日

Dutline J-PET Positronium Deca

Tests of discrete symmetries

Future perspectiveS

Tests of discrete symmetries in the decays of o-Ps atoms

- Odd symmetry operators can be constructed using <u>momentum vectors</u> of anni. photons($\vec{k_i}$) and <u>Spin</u> of Ps atoms(\vec{S}).
- A. Gajos et al. NIM A 819 (2016) 54

S. Sharma (on behalf of the J-PET)

Positronium production chambers

Target chambers

Table: Operators

	•				
Odd					
symmetric	С	Р	т	СР	СРТ
\vec{S} . \vec{k}_1	+	-	+	-	-
\vec{S} . $(\vec{k}_1 imes \vec{k}_2)$	+	+	-	+	-
$(\vec{S} \cdot \vec{k}_1)(\vec{S} \cdot (\vec{k}_1 \times \vec{k}_2))$	+	-	-	-	+

・ロト・西ト・モト・モン

utline

Tests of discrete symmetries 0000

Future perspectiveS

Control Spectra for data analysis

Time Over Thresholds

Measure of energy depositions

EJNMMI Physics 7, 39 (2020)

S. Sharma (on behalf of the J-PET)

HADRON2021

28.07.2021

Azimuth angles Angular correlation b/w anni. photons

Future perspectiveS

Tests on discrete symmetries using the photons' polarization

- ◊ J-PET allows to register primary and scattered photon
- ◇ Photon (low energetic) most likely scattered in plane ⊥_{er} to electric vector(dirⁿ of the linear polarization).
- Photon's polarization direction -

With access to *photon polarization direction*, more operators are proposed*:

Table: Operators

Odd					
symmetric	С	Р	т	СР	СРТ
\vec{S} . \vec{k}_1	+	-	+	-	-
\vec{S} . $(\vec{k}_1 \times \vec{k}_2)$	+	+	-	+	-
$(\vec{S} \cdot \vec{k}_1)(\vec{S} \cdot (\vec{k}_1 \times \vec{k}_2))$	+	-	-	-	+
New Operators unique with J-PET $= \vec{\epsilon}$					
$\vec{k}_2 \cdot \vec{\epsilon}_1$	+	-	-	-	+
$ec{S}$. $ec{\epsilon}_1$	+	+	-	+	-
\vec{S} . $(\vec{k}_2 \times \vec{\epsilon}_1)$	+	-	+	-	-

< ロト < 同ト < ヨト < ヨト

*Acta Phys. Pol. B 47, 509(2016)

S. Sharma (on behalf of the J-PET)

HADRON2021

Tests of discrete symmetries

Future perspectiveS

Tests on discrete symmetries using the photons' polarization

- Events with 4 hits are selected. Out of 4, 3 hits are by the o-Ps annihilation photons and and scattering of either of them.
- Scattered photon is associated with its primary based on the scatter test
- ♦ <u>Photon polarization direction</u> is estimated: $(\vec{\epsilon}_1 = \vec{k}_1 \times \vec{k}_{1'})$
- Calculate the expectation value of the operator $<\!\vec{k}_2$. $\vec{\epsilon}_1\!>$

イロト イボト イヨト イヨト

Tests of discrete symmetries

Future perspectiveS

Tests on discrete symmetries using the photons' polarization

Expectation value = $3 \times 10^{-4} + - 0.0003$ (Stat)

イロト イポト イヨト イヨト

S. Sharma (on behalf of the J-PET)

HADRON2021

28.07.2021

3

Modular J-PET : Portable tomograph (AFOV 50cm)

Figure: Digital J-PET

• Composed of **24 individual modules**

- Each module is made of **13** plastic scintillators (50 × 24 × 6 cm³)
- Each side of scintillator is read out by **matrix of SiPMs**
- Modular construction allows to configure as one layer (24) or multiple layers (e.g., 8, 16 and thus requirement specific)
- Modules can be operated individually enabling to utilize as multi-role detector

• Easy to transport (full barrel around 60 kg)

Outline	J-PET	Positronium Decays
0	000	0

00000

Figure: Modular + 3layers

- * J-PET has potential to perform test of discrete symmetries.
- Modular prototype with AFOV 50 cm is already commisioned and started to collect the data as a standalone layer.
- * 24 modules can be reconfigured in multiple layers and can be transported to use in other experimental facilities interested in the the detection of e⁺e⁻ anni. in full phase space.
- It is estimated that using the modular J-PET with 3 layers prototype will enhance the sensitivity by an order of magnitude.

イロト イボト イヨト イヨト

More details : http://koza.if.uj.edu.pl/

S. Sharma (on behalf of the J-PET)

HADRON2021

28.07.2021

<ロト < 部 ト < 目 ト < 目 ト 目 の Q () 13/13