Luminosity determination with ALICE at the LHC

Chong Kim Pusan National University

HADRON 2021

July 28, 2021

For the ALICE Collaboration

<u>Outline</u>

1. Introduction

- Luminosity
- van der Meer (vdM) scan

2. vdM Analysis

- Overview
- Process and corrections
- Long-term stability and consistency
- Run 2 results

• Luminosity

For any cross-section measurement,

 $\sigma = N / L_{int}$

- *a.* σ : cross-section of a physics process
- b. N : yield of the physics process
- c. $L_{int} = \int L(t) dt$: integrated luminosity, where L is the instantaneous luminosity

	$\sqrt{s} = 13$	TeV	$\sqrt{s} = 5.02 \text{ TeV}$	
Source	J/ψ (%)	$\psi(2S)$ (%)	$\mathrm{J}/\psi\left(\% ight)$	$\psi(2S)$ (%)
Branching ratio	0.6	11	0.6	11
Luminosity	3.4	3.4	2.1	2.1
Signal extraction	3 (3-8)	5(5-9)	3 (1.5-10)	8
MC input	0.5(0.5-1.5)	1 (0.5 - 4)	2(0.5-2.5)	2.5
MCH efficiency	4	4	1	1
MTR efficiency	4(1.5-4)	4(1.5-4)	2(1.5-2)	2
Matching	1	1	1	1

ALICE J/ ψ and ψ (2S) in pp, arXiv:1702.00557 (2017)

• Luminosity

For any cross-section measurement,

 $\sigma = N / L_{int}$

- *a.* σ : cross-section of a physics process
- b. N : yield of the physics process
- c. $L_{int} = \int L(t) dt$: integrated luminosity, where L is the instantaneous luminosity
- Two possible approaches to measure the luminosity during physics data-taking
 - a. $L = \frac{R_{ref}}{\sigma_{ref}}$: by using the cross-section of a known physical process (e.g., Z⁰ boson)

	$\sqrt{s} = 13$	TeV	$\sqrt{s} = 5.0$	02 TeV
Source	J/ψ (%)	$\psi(2S)$ (%)	J/ψ (%)	$\psi(2S)$ (%)
Branching ratio	0.6	11	0.6	11
Luminosity	3.4	3.4	2.1	2.1
Signal extraction	3 (3-8)	5(5-9)	3 (1.5 – 10)	8
MC input	0.5(0.5-1.5)	1 (0.5 - 4)	2(0.5-2.5)	2.5
MCH efficiency	4	4	1	1
MTR efficiency	4(1.5-4)	4(1.5-4)	2(1.5-2)	2
Matching	1	1	1	1

ALICE J/ ψ and ψ (2S) in pp, arXiv:1702.00557 (2017)

Luminosity

- For any cross-section measurement,

 $\sigma = N / L_{int}$

- a. σ : cross-section of a physics process
- b. N : yield of the physics process
- c. $L_{int} = \int L(t) dt$: integrated luminosity, where L is the instantaneous luminosity
- Two possible approaches to measure the luminosity during physics data-taking
 - a. $L = \frac{R_{ref}}{\sigma_{ref}}$: by using the cross-section of a known physical process (e.g., Z⁰ boson)
 - b. $L = \frac{R_{vis}}{\sigma_{vis}} = \frac{f_{rev} \mu_{vis}}{\sigma_{vis}}$: by using a visible cross-section (σ_{vis})
 - b-1. f_{rev} : accelerator revolution frequency
 - b-2. μ_{vis} : average # of "visible" interactions per bunch crossing
 - b-3. σ_{vis} : "visible" cross-section measured experimentally
 - b-4. The method used in ALICE

	$\sqrt{s} = 13$	TeV	$\sqrt{s} = 5.02 \text{ TeV}$	
Source	J/ψ (%)	$\psi(2S)$ (%)	$\mathrm{J}/\psi\left(\% ight)$	$\psi(2S)$ (%)
Branching ratio	0.6	11	0.6	11
Luminosity	3.4	3.4	2.1	2.1
Signal extraction	3 (3-8)	5(5-9)	3 (1.5 – 10)	8
MC input	0.5(0.5-1.5)	1 (0.5 - 4)	2(0.5-2.5)	2.5
MCH efficiency	4	4	1	1
MTR efficiency	4(1.5-4)	4(1.5-4)	2(1.5-2)	2
Matching	1	1	1	1

ALICE J/ψ and ψ(2S) in pp, arXiv:1702.00557 (2017)

- Luminosity (continue)
 - From an experimental point of view, *L* for a colliding bunch pair is:

$$L = \frac{R_{vis}}{\sigma_{vis}} = \frac{f_{rev} \,\mu_{vis}}{\sigma_{vis}} = f_{rev} \,N_1 N_2 \cdot \int \int \rho_1(x, y) \,\rho_2(x, y) \,dxdy$$

- a. N_1 , N_2 : bunch intensity
- *b.* ρ : particle density distribution in transverse plane
- *c.* $\iint \rho_1 \rho_2 dxdy$: beam overlap integral

- Luminosity (continue)
 - From an experimental point of view, *L* for a colliding bunch pair is:

$$L = \frac{R_{vis}}{\sigma_{vis}} = \frac{f_{rev} \,\mu_{vis}}{\sigma_{vis}} = f_{rev} \,N_1 N_2 \cdot \int \int \rho_1(x, y) \,\rho_2(x, y) \,dxdy$$

- a. N_1 , N_2 : bunch intensity
- b. ρ : particle density distribution in transverse plane
- *c.* $\iint \rho_1 \rho_2 dxdy$: beam overlap integral
- Assuming factorization stands, then L can be written as:
 - $\boldsymbol{L} = \frac{f_{rev} N_1 N_2}{h_x h_y}$
 - a. $1/h_x : \int \rho_{1,x}(x) \rho_{2,x}(x) dx$, $h_{x(y)}$: effective beam overlap width in x (y) direction
 - b. N_1N_2 : measured by using accelerator instrumentation
 - c. $h_x h_y$:
 - c-1. Can be derived from nominal machine parameters but large uncertainty (> 10%)
 - c-2. Require dedicated session for direct & precise measurement: van der Meer (vdM) scan

1

- vdM scan
 - Dedicated measurement of μ_{vis} vs. beam separation
 - a. Estimate visible rate per bunch crossing
 - b. Adjust separation distance of each bunch crossing:
 scan horizontal (x) or vertical (y) direction,
 while fixing the other direction in the head-on position
 - c. "Tailored" running conditions are preferred: low μ_{vis} , low intensity, well-spaced bunches...
 - d. 1-2 sessions per year

- vdM scan
 - Dedicated measurement of μ_{vis} vs. beam separation
 - a. Estimate visible rate per bunch crossing
 - Adjust separation distance of each bunch crossing:
 scan horizontal (x) or vertical (y) direction,
 while fixing the other direction in the head-on position
 - c. "Tailored" running conditions are preferred: low μ_{vis} , low intensity, well-spaced bunches...

 $L = \frac{f_{rev}N_1N_2}{h_xh_y}$ $h_{x(y)}$: the area under the curve normalized by its peak value, obtained during the horizontal (vertical) scan

• vdM scan related apparatus in ALICE

TO-A

Introduction

- vdM scan related apparatus in ALICE
 - All detectors are built as a pair WRT the IP
 (* ATLAS (A-) side or CMS (C-) side)
 - a. <u>V0</u>

a-1. Two scintillator arrays

a-2. 2.8 < η < 3.7, -3.7 < η < -1.7

b. <u>T0</u>

b-1. Two Cherenkov detector arrays

b-2. 4.61 < η < 4.92, -3.28 < η < -2.97

c. ZN (Neutron ZDC)

Two quartz-fiber spaghetti calorimeters at z = \pm 114 m

- Signal condition in vdM scan by collision system

- a. pp, p-Pb: coincidence of A- and C- side in T0, V0
- b. <u>Pb-Pb</u>: Amplitude trigger (V0), Single-neutron trigger (ZN)

11 / 23

C.Kim - HADRON2021

vdM analysis

In ALICE

vdM analysis Overview

- vdM analysis in ALICE
 - Goal: determine visible cross-section (σ_{vis})

 $\sigma_{vis} = R(0, 0)/L ,$ $L = f_{rev} N_1 N_2 / h_x h_y$

- <u>N₁N₂</u>: beam intensities of colliding bunches (* Measured by using LHC instrumentation)
- 2. <u>Separation</u>
- **R**: (visible) rate measured in ALICE
 (* R(0, 0): head-on (highest) rate)
- <u>h</u>_x<u>h</u>_y: effective beam overlap width
 (* Area under the curve, divided by R(0, 0))
- 5. <u>Compute σ_{vis} </u>

Rate (Hz)

vdM analysis Overview

- vdM analysis in ALICE
 - Goal: determine visible cross-section (σ_{vis})

 $\sigma_{vis} = R(0, 0)/L ,$ $L = f_{rev} N_1 N_2 / h_x h_v$

- <u>N₁N₂</u>: beam intensities of colliding bunches (* Measured by using LHC instrumentation)
- 2. Separation
- **R**: (visible) rate measured in ALICE
 (* R(0, 0): head-on (highest) rate)
- <u>h</u>_x<u>h</u>_y: effective beam overlap width
 (* Area under the curve, divided by R(0, 0))
- 5. <u>Compute σ_{vis} </u>

R(0, 0)

vdM Analysis Process and corrections

- 1. Intensity
 - Measured with LHC (DCCT, FBCT) or ATLAS (BPTX) instrumentation

DCCT for total beam current (normalization) and FBCT/BPTX for relative bunch intensity

- Correction for satellite/ghost
 - a. One bunch slot = $\underline{10}$ buckets = $\underline{25}$ ns Most of the ions in a bunch are well placed in a $\underline{2.5}$ ns wide central bucket of the RF system
 - b. Satellite: ions placed "outside the central bucket"
 - c. Ghost: ions placed in the slots "supposed to be empty"
 - d. DCCT measures charge of all buckets: contribution from satellite/ghost must be removed (i.e., $N_{bunch} = N_{tot} - N_{sat} - N_{ghost}$)
 - e. Large correction for Pb-Pb: correction can reach few % level
 - f. However, either pp or Pb-Pb, the final effect on σ_{vis} uncertainty is <u>a few per-mill (‰)</u> level

CERN-ATS-Note-2013-034 TECH

Process and corrections

2. <u>Separation</u>

vdM Analysis

- Start with the "nominal" separation
 The separation info provided by the LHC
- Corrections on nominal separation:
 - a. <u>LSC (length-scale calibration)</u>: measure the conversion factor between nominal and actual beam position
 - b. Orbit drift correction (ODC):
 - b-1. A bunch's orbit can vary from the reference beam orbit
 - b-2. Time-dependent
 - c. <u>Beam Beam deflection (BBD)</u>:
 - c-1. Each bunch (beam) is electrically charged
 - c-2. Two beams exert a repulsive force upon each other:

the repulsion affects the separation

vdM Analysis

Process and corrections

3. <u>Rate</u>

- Measured with ALICE detectors (V0, T0, and ZN)
- Corrections on raw trigger rate:
 - a. Backgrounds (BB):
 - a-1. Beam-gas, Satellites, After-pulsing
 - a-2. Use timing cut for the removal
 - b. <u>Pile-up (PU)</u>:
 - b-1. Effect of multiple collisions per bunch crossing
 - b-2. Corrections based on the Poisson distribution of coincidences
 - c. Intensity decay (DC)
- Note that explanations here are written WRT pp,
 but equivalent procedures exist in Pb-Pb

vdM Analysis Process and corrections

- 4. Effective beam width $(h_x h_y)$
 - Bunch by Bunch $h_x h_y$:
 - a. Estimated by fitting the measured rate vs. separation
 - b. Standard fit function in pp: Gaussian x partial pol6

 $A(x) = N \cdot exp(-\frac{(x-\mu)^2}{2\sigma}) \cdot (1 + p_2(x-\mu)^2 + p_4(x-\mu)^4 + p_6(x-\mu)^6)$

c. Final crosscheck by using the ratio of $h_x h_y$ from different detectors

٩

vdM Analysis Process and corrections

- Effective beam width $(h_x h_y)$ (continue) 4.
 - Non-factorization
 - Let's take a few steps back: a.

 $L = f_{rev} N_1 N_2 / h_x h_y = f_{rev} N_1 N_2 \cdot \iint \rho_1(x, y) \rho_2(x, y) \, dx dy ,$ only if factorization stands

- If factorization is broken, b.
 - b-1. The motion in x direction also affects the y
 - b-2. 3D convolution on two colliding bunches' overlapped region (aka luminous region)
- Specific data taken for study: С. with offset in x(y)
- Compute correction factors: d. measure luminous region by 3D vertexing based on barrel detectors
- Overall uncertainty on σ_{vis} : e.
 - < 0.5% for pp and < 1.1% for Pb-Pb

vdM Analysis Process and corrections

- 5. <u>Compute σ_{vis} </u>
 - Extracting final σ_{vis}
 - *a.* σ_{vis} is computed for each bunch crossing
 - b. Get average σ_{vis} of a given scan (either 0 or 1) by constant fit
 - c. Final σ_{vis} is the average of the two scans

vdM Analysis Long-term stability and consistency

- Validity throughout the runs
 - The luminosity of a physics run = Luminosity trigger counts of the run / σ_{vis}
 - The stability and consistency of ALICE detectors (V0, T0, and ZN)
 - a. Evaluation by the ratio of "T0-based / V0-based luminosity" (or V0/ZN, in Pb-Pb)
 - b. Estimate the uncertainty by using RMS (WRT unity) over the runs
 - The largest uncertainty source in pp (2016 2018)

vdM Analysis Run 2 results

- Table of systematic errors
 - Presenting only recent results (pp/Pb-Pb 2015-2018): check backup for others
 - Source of the largest error is different for each system: stability for pp and non-factorization for Pb-Pb
 - In pp, one must consider the correlation across the years:

the overall uncertainty of the luminosity for the <u>analyses use data from all 3 years</u> ~ 1.6%

Uncertainty	2016	2017	2018	Correlated?
•	T0 V0	T0 V0	T0 V0	
Statistical	0.05% 0.05%	0.07% 0.07%	0.05% 0.05%	No
Bunch intensity				
Beam current normalisation	0.5%	0.5%	0.4%	Yes
Relative bunch populations	0.1%	0.3%	0.1%	No
Ghost and satellite charge	< 0.1%	< 0.1%	< 0.1%	No
Non-factorisation	0.5%	0.2%	0.4%	Yes
Length-scale calibration	0.2%	0.3%	0.3%	No
Beam-beam effects	0.3%	0.3%	0.3%	Yes
Orbit drift	0.1%	0.1%	0.2%	No
Magnetic non-linearities	0.1%	0.2%	0.2%	Yes
Beam centring	< 0.1%	< 0.1%	0.1%	No
Luminosity decay	0.5%	0.5%	0.3%	No
Background subtraction	0.1% 0.6%	0.1% 0.8%	0.1% 0.7%	Yes
Pile-up	0.1% < 0.1%	0.5%	$0.2\% \mid < 0.1\%$	Yes
Fit model	0.2%	0.6%	0.4%	Yes
$h_x h_y$ consistency (T0 vs V0)	0.1%	0.4%	0.4%	No
Bunch-by-bunch consistency	< 0.1% < 0.1%	0.1% 0.1%	0.1% 0.1%	No
Scan-to-scan consistency	0.2% 0.1%	0.1% 0.1%	0.5% 0.5%	No
Stability and consistency	1.5%	2.3%	1.6%	No
Total correlated	0.8% 1.0%	1.0% 1.2%	0.8% 1.0%	Yes
Total uncorrelated	1.6% 1.6%	2.4% 2.4%	1.8% 1.8%	No
Total	1.8% 1.9%	2.6% 2.7%	1.9% 2.1%	Partially

pp \sqrt{s} = 13 TeV (2016, 2017, and 2018)

<u>Pb-Pb √s_{NN} = 5.02 TeV (2015 + 2018)</u>			
Source	Uncertainty (%) V0M ZED		
Statistical	0.09 0.04		
Bunch intensity	0.8		
$h_x h_y$ consistency (V0M vs ZED)	0.13		
Length-scale calibration	1		
Non-factorisation	1.1		
Bunch-to-bunch consistency	0.1 0.4		
Scan-to-scan consistency	1		
Background subtraction	0.5 0.8		
Magnetic non-linearities	0.2		
Orbit drift	0.15		
Beam-beam deflection and distortion	0.1		
Fitting scheme	0.4		
Total on visible cross section	2.1 2.2		
Stability and consistency	0.7		
Total on luminosity	2.2 2.3		

ALICE-PUBLIC-2021-005

<u>Summary</u>

- Luminosity determination in ALICE
 - Luminosity
 - a. Baseline of the normalization
 - b. A source of non-negligible uncertainty for precision measurements

vdM scan

- a. Simple principle, but complicated calibrations and corrections
- b. Require dedicated data taking
- c. Rely on LHC instrumentation for beam control info and beam intensity, ALICE detectors (V0, T0, and ZN) for rate measurements
- 2015-2018 results for pp and Pb-Pb
 - a. Source of the largest error:

stability and consistency for pp and non-factorization for Pb-Pb

b. Total luminosity uncertainty for the analyses using 2015-2018 data:

~1.6% for pp and ~1.1% for Pb-Pb

Backup Scans in a vdM session

- Type of scans in a vdM session
 - Standard, symmetric scans (X1 Y2)
 - a. Range: [-6 σ_{beam} , +6 σ_{beam}]
 - b. Step width: 0.5 σ_{beam} per step, total 25 steps
 - c. Elapsed time: 30 *s* / *step*
 - Length-scale calibration (LSC)
 - a. Step width: ~ σ_{beam} per step, total 5 steps
 - b. Beams kept at $\sim \Sigma$
 - Offset scan
 - a. Typical offset ~ 4 σ_{beam}
 - b. Input to non-factorization fits

Backup Separation – LSC correction

• Length scale calibration (LSC)

- LHC operators control the beam separation by using the B-fields:
 to check if the applied adjustment is properly converted to the desired length scale
- Specific LSC scan is performed during a vdM session:
 - a. The beams are moved simultaneously in one direction
 - b. The position after the move is measured by using ALICE trackers, to compare w/ LHC broadcasted separation
- The calibration factor is estimated as the slope of the measured position vs. intended beam-spot position
- The effect of the correction on σ_{vis} is < 2%, but the uncertainty is much less than that

Backup Run 2 results: pp $\sqrt{s} = 5$ TeV (2015, 2017)

pp vs = 5 TeV (2015), ALICE-PUBLIC-2016-005

Source	Uncertainty
Non-factorisation	1%
Orbit drift	< 0.1%
Beam-beam deflection	0.4%
Dynamic β^*	0.2%
Background subtraction	0.3% (T0), 1.1% (V0)
Pileup	0.7%
Length-scale calibration	1%
Fit model	0.7%
$h_x h_y$ consistency (T0 vs V0)	0.2%
Luminosity decay	0.7%
Bunch-by-bunch consistency	< 0.1%
Scan-to-scan consistency	0.5%
Beam centreing	0.1%
Bunch intensity	0.4%
Total on visible cross section	2.05% (T0), 2.31% (V0)
Stability and consistency	0.4%
Total on luminosity	2.09% (T0), 2.34% (V0)

pp vs = 5 TeV (2017), ALICE-PUBLIC-2018-014

Source	Uncertainty
Non-factorisation	0.1%
Orbit drift	0.1%
Beam-beam deflection	0.5%
Dynamic β^*	0.2%
Background subtraction	0.2% (T0), 1.1% (V0)
Pileup	0.5%
Length-scale calibration	0.2%
Fit model	0.5%
$h_x h_y$ consistency (T0 vs V0)	< 0.1%
Luminosity decay	0.9%
Bunch-by-bunch consistency	< 0.1%
Scan-to-scan consistency	0.5% (T0), 0.4% (V0)
Beam centreing	0.2%
Bunch intensity	0.4%
Total on visible cross section	1.5% (T0), 1.8% (V0)
Stability and consistency	1.1%
Total on luminosity	1.8% (T0), 2.1% (V0)

<u>Backup</u> Run 2 results: pp $\sqrt{s} = 13$ TeV (2015)

pp vs = 13 TeV (2015), ALICE-PUBLIC-2016-002

Source	Uncertainty
Non-factorisation	0.9%
Orbit drift	0.8%
Beam-beam deflection	0.8%
Dynamic β^*	0.3%
Background subtraction	0.1% (T0), 0.7% (V0)
Pileup	0.7%
Length-scale calibration	0.5%
Fit model	0.6%
$h_x h_y$ consistency (T0 vs V0)	0.6%
Luminosity decay	0.4%
Bunch-by-bunch consistency	< 0.1%
Scan-to-scan consistency	< 0.1%
Beam centreing	< 0.1%
Bunch intensity	0.6%
Total on visible cross section	2.05% (T0), 2.16% (V0)
Stability and consistency	0.6% (isolated bunches)
	2.7% (whole 2015)
Total on luminosity	2.2% (isolated bunches)
	3.4% (whole 2015)

Backup Run 2 results: p-Pb $\sqrt{s_{NN}}$ = 5.02 TeV (2013) and 8.16 TeV (2016)

p-Pb vs_{NN} = 5.02 TeV (2013), CERN-PH-EP-2014-087

Uncertainty	p–Pp	Pb–p	Correlated between p–Pb and Pb–p
Transverse correlations	2.6%	2.3%	No
Bunch-by-bunch consistency	1.6%	-	No
Scan-to-scan consistency	0.5%	1.5%	No
Length-scale calibration	1.5%	1.5%	Yes
Background subtraction (V0 only)	0.5%	0.5%	Yes
Method dependence	0.3%	0.3%	No
Beam centering	0.3%	0.2%	No
Bunch size vs trigger	0.2%	0.2%	No
Bunch intensity	0.5%	0.5%	No
Orbit drift	0.4%	0.1%	No
Beam-beam deflection	0.2%	0.3%	Partially
Ghost charge	0.1%	0.2%	No
Satellite charge	<0.1%	0.1%	No
Dynamic β^*	<0.1%	0.1%	Partially
Total on visible cross section	3.5%	3.2%	
V0- vs T0-based integrated luminosity	1%	1%	No
Total on integrated luminosity	3.7%	3.4%	

p-Pb vs_{NN} = 8.16 TeV (2016), ALICE-PUBLIC-2018-002

Uncertainty	p–Pp	Pb-p	Correlated
Transverse correlations	0.6%	0.9%	No
Scan-to-scan consistency	0.6%	0.1%	No
Length-scale calibration	0.5%	0.8%	No
Background subtraction	0.5% (< 0.1%) V0 (T0)	0.6% (0.3%) V0 (T0)	Yes
Intensity decay	0.6%	0.7%	No
Method dependence	0.4% (0.5%) V0 (T0)	0.9% (0.6%) V0 (T0)	No
Beam centring	0.1%	0.1%	No
Bunch size vs trigger	0.2%	0.4%	No
Absolute DCCT calibration	0.3%	0.3%	No
Orbit drift	0.7%	0.3%	No
Beam-beam deflection	< 0.1%	0.4%	Partially
Ghost charge	< 0.1%	< 0.1%	No
Satellite charge	< 0.1%	< 0.1%	No
Dynamic β^*	< 0.1%	< 0.1%	Partially
Total on visible cross section	1.5% (1.5%) V0 (T0)	1.9% (1.7%) V0 (T0)	
V0 vs T0 integrated luminosity	1.1%	0.6%	No
Total on integrated luminosity	1.9% (1.8%) V0 (T0)	2.0% (1.8%) V0 (T0)	
Correlated part	0.5% (< 0.1%) V0 (T0)	0.7% (0.5%) V0 (T0)	
Uncorrelated part	1.8% (1.8%) V0 (T0)	1.9% (1.7%) V0 (T0)	