



# The ATLAS Experiment upgrades: present status and the future at the High Luminosity LHC

#### Sandra Leone (INFN Pisa)

on behalf of the ATLAS Collaboration

19th International Conference on Hadron Spectroscopy and Structure (HADRON2021) July 28, 2021

# Physics motivation for High Luminosity LHC

- High luminosity is needed to extend the reach of LHC physics program:
- Pursue exploration of Electroweak
   Symmetry Breaking in the Standard
   Model
  - Precision measurements (e.g. Higgs couplings and self-coupling)
  - $\,\circ\,$  Search for SM rare processes (e.g.
    - $H \rightarrow \mu\mu$ , vector boson scattering, etc.)



 $https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EventDisplayRun2Physics\#Exotics\_Full\_Run2\_event\_displays$ 

- Search for Beyond Standard Model physics in new regions of phase space:
  - SUSY and exotic benchmarks significantly extended
  - Rare processes and resonances: search for new massive states
  - Exploration of the dark sector
    - S. Leone (INFN Pisa)

# Luminosity and energy increase at the LHC



- Long Shutdown 2 (Phase-1 upgrade) preparing for Run 3
- Luminosity leveling at 2 x  $10^{34}$  cm<sup>-2</sup>s<sup>-1</sup>, possible increase to Vs=13.5 or 14 TeV
- Expecting accumulation of 300 fb<sup>-1</sup> during Run 3
- Long Shutdown 3 (Phase-2 upgrade) to prepare for HL-LHC
- The HL-LHC era with luminosity of 7.5 x  $10^{34}$  cm<sup>-2</sup>s<sup>-1</sup> at Vs=14 TeV
- Large data samples (up to 4000 fb<sup>-1</sup>) and major experimental challenges

4000 fb<sup>-1</sup> ultimate

#### HL-LHC impact and challenges for ATLAS detectors

• The HL-LHC challenges the detectors and detector electronics





- High luminosity: from 2x 10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup> up to 7.5x10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup>
- High trigger rates from 100 kHz Level1 to 1 MHz in ATLAS
- High pile-up (ie detector occupancy) conditions  $\rightarrow$  from < $\mu$ > = 20 for LHC design up to < $\mu$ > =200 for HL-LHC
- Increased radiation dose  $\rightarrow$  increased radiation damage and activation of materials
- Long term operation  $\rightarrow$  15 additional years on top of the original 15 (was designed for 10)
- Detector and electronic upgrades are underway to ensure high efficiency and high quality data-taking and maintain good physics performance in HL-LHC era

# Atlas detector overview...

- 44m long and 25m high, ~7000 tons
- ~ 3000 km cables and ~110 million channels
- Eight superconducting coils 25m long and 5m wide.
- 2T/1T magnetic field delivered by solenoid/toroid magnet





#### Atlas detector overview... and phase I Upgrade

- 44m long and 25m high, ~7000 tons
- ~ 3000 km cables and ~110 million channels
- Eight superconducting coils 25m long and 5m wide.



6

# Phase I Upgrade: New Small Wheel status

- Two 5m radius wheels in the inner end-cap region (1.3 <  $|\eta|$  < 2.7)
- Needed to reduce fake muon triggers in the end-cap region, thanks to the coincidence endcap-NSW
- Each wheel is formed by:
- 2 external small-strip Thin Gap Chambers sTGC wedges (trigger, bunch crossing identification + tracking with < 1 mrad resol.)
- $\bullet$  2 internal MicroMega wedges (mainly tracking, spatial resolution <100  $\mu m)$



#### News on 12 July 2021:

NSW-A was lowered 100 meters underground Second wheel will follow in October 2021 2022 will be crucial for commissioning and integration in ATLAS of the 2 wheels

S. Leone (INFN Pisa)







• LAr new front-end and back-end boards

Trigger electronics with higher granularity

CERN-LHCC-2013-017

(increased trigger tower granularity  $\Delta \eta x \Delta \phi = 0.025 x 0.1$  and longitudinal shower information)

- More refined processing of electromagnetic calorimeter information at higher granularity
- → Electrons: high efficiency & reduced trigger rate
- → Jets: Improved resolution
- → allows ATLAS to maintain lower EM trigger thresholds in Run 3

S. Leone (INFN Pisa)

# Atlas detector overview... and phase II Upgrade



Global number of readout channels from 100 millions to 15 hundred millions!

S. Leone (INFN Pisa)

CERN-LHCC-2012-022

ATL-PHYS-PUB-2019-005



- New all-silicon inner tracker with increased acceptance (from  $|\eta| < 2.5$  (ID) to  $|\eta| < 4$  [mm] (ITk)) and increased pile-up rejection
- Inner part made of 5 barrel layers and barrel+end-cap rings of **pixel** detector
   Covering |η|< 4.0. Active area: 12.7 m<sup>2</sup>·# of channels: ~5x10<sup>9</sup>
- <u>Outer part made of 4 barrel layers and 6 end-cap disks of strip detectors</u>

   Covering |η|< 2.7. 165 m<sup>2</sup> of Silicon. almost 60 million channels
   Silicon microstrip modules with small stereo angle provide 2D measurements
- Improves tracking and b-tagging performance compared to existing detector thanks to:

   high track reconstr. efficiency over 90% (comparable to current Inner Detector (ID))
   low rate of fake tracks (one order of magnitude reduction compared to ID)
   S. Leone (INFN Pisa)

### Inner tracker (ITk)

A lot of progress, despite of pandemic situation Entering preproduction stage



Pixel module on automated machine



At least 9 hits are guaranteed for all particles with  $p_T > 1$  GeV Overall significant improvement thanks to:

- Reduced material budget → minimize material interactions
- Increase in overall hit counts → tighter track selection
- Improved hermeticity  $\rightarrow$  more hits, fewer holes

S. Leone (INFN Pisa)



# Electromagnetic calorimeter (LAr)

LAr calorimeters sensing components inherently radiation hard

 $\rightarrow$  expected to perform reliably at HL-LHC

Readout electronics full replacement is required:

- → Current electronics is not compatible with phase-II requests (latency and trigger rate)
- → Radiation hardness requirements are above original design
- new front-end, calibration boards and all backend electronics will be replaced
- new LV power supplies
- full granularity calorimeter signals will be digitized and sent off-detector at 40 MHz S. Leone (INFN Pisa)





# Hadron calorimeter (TileCal)

- New readout for front-end and back-end electronics
  - → To provide fully digital data to the trigger processors.
  - $\rightarrow$  More radiation hard.
- New mechanical structure to host the electronics
   → easier access for maintenance
- New HV for PMT  $\rightarrow$  individual channel for each PMT
- New LVPS  $\rightarrow$  will be more radiation tolerant
- Upgraded calibration systems (Cesium and Laser)



Project in very mature state. Entering production phase in many areas





#### **Muon detectors**

• Muon system is made of different types of gaseous detectors in the outer part of ATLAS (barrel+end-cap)

- <u>Requirements for Phase-II:</u>
  - →reduce the trigger fake rate in barrel and end-cap regions (combine NSW-TGC trigger info)
     → increase geometrical coverage in the barrel

<u>New detectors:</u>

- barrel inner RPC + sMDT:
- old BIS MDT replaced by new (sMDT + RPC)
- new RPC mounted on top of existing BIL MDT
- TGC EIL4 (from doublet to triplet + finer granularity)
- New front-end, trigger and readout electronics, new power system
- Transmitting all data @ 40MHz, for both trigger and readout: no buffering on detector
- Use MDT for trigger  $\rightarrow$  Improvement in trigger momentum resolution MDT: Muon Drift Chamber – RPC: Res







MDT: Muon Drift Chamber – RPC: Resistive Plate Chamber - TGC: Thin Gap Chambers

#### **Muon detector chambers**

Most of the projects in prototyping phase Huge activity from the electronics side (ASIC prototyping and production)

- sMDT
  - → Production underway
  - → High precision and performance of the first chambers
  - → New electronics allows for better performance than legacy
- RPC
  - → Prototypes are being built
  - → Mechanics design progressing well
- EIL4 TGC
  - → First prototype available
  - → Test ongoing

CERN-LHCC-2017-017 ATLAS-TDR-026.



New sMDT chamber tubes



TGC EIL-4 chamber first prototype

# High granularity timing detector

- HGTD designed to improve performance in the forward region in the HL-LHC high-pileup environment
  - →Use high-precision timing information to distinguish between collisions close in space but well-separated in time.
- installed in space between inner detector and calorimeter end-caps at z = ±3.5m
   → constrained by limited available space
- Two instrumented double-sided layers per end-cap
- $2.4 < \eta < 4.0$ ;  $R_{min}$ = 12 cm;  $R_{max}$  = 64 cm
- based on silicon Low Gain Avalanche Detector (LGAD) technology
- Required time resolution:  $\Delta t = 30-50 \text{ ps/track}$
- Allow precision luminosity measurement bunch-by-bunch
- Improves pileup rejection by a factor of ~ 1.5



CERN-LHCC-2020-007 - ATLAS-TDR-031

# Forward detectors

HL-LHC program requires stable and precise luminosity measurement and foresees a rich program of forward and heavy ions physics



Upgrade of existing luminomiters and forward detectors to withstand HL-LHC conditions in progress:

- Beam Condition Monitor (BCM)
- Luminosity Cherenkov
   Integrating Detector
   (LUCID3)
- Pixel luminosity rings (PLR)
- Zero Degree Calorimeter

# Trigger and DAQ (TDAQ) upgrade

- TDAQ provides the required bandwidth and processing capacity to efficiently select events at HL-LHC
- LOTrigger Data from the detectors @ 40 MHz
- Maximum output rate of 1 MHz (was 100 kHz in Run2) and 10 μs latency (was 2.5 μs)
- Complete event-data transmitted through Readout & Dataflow into Event-Filter
- Event Filter performs event reconstruction & selection
- Final selected events (5 vs 2 MB today) then transferred to permanent storage @ 10 kHz (1 kHz today)

FELIX Phase II

test board









# Conclusions



- The HL-LHC experimental conditions challenge the detector and electronics in many aspects, including high pile-up and high radiation doses exceeding current ATLAS detector capabilities
- Upgrades are underway to ensure high efficiency and high quality data taking, and exploit the full physics potential of HL-LHC
- Many projects entering pre-production or production phase
- Outstanding work of all teams despite pandemic difficulties (lock down of labs, reduced lab operation efficiency, delays in component delivery schedule)
- Wide range of physics possibilities: the large datasets that will be collected will allow
  - → precision measurements in the 125 GeV Higgs boson sector
  - → the exploration of extremely rare Standard Model processes
  - → the search for new phenomena Beyond the Standard Model



19