Tool kit for baryon amplitude analyses and polarization measurements

Daniele Marangotto

INFN & Università degli Studi, Milano, Italy

HADRON 2021, Jul 28th, Virtual in Mexico City

Daniele Marangotto (INFN & UNIMI)

Toolkit AmpAna

Motivation: baryon amplitude analyses

- Spectroscopy
- Baryon decays often feature complicated phase-space structures
- Excellent place to search for new baryonic and exotic pentaquark states
- Parity-violation
- Measurement of decay asymmetry parameters
- Determines sensitivity to polarization (later in the talk)
- CP-violation
- Still unobserved for baryons
- Comparison of baryon-antibaryon amplitude models
- Resonance interference patterns can enhance sensitivity

Motivation: Polarization

- Baryon amplitude analyses can be used to measure baryon polarization vector P
- Polarization is excellent probe for baryon production physics (with no meson counterpart)
- Strong production: anchor point for low-energy QCD
- Weak production: additional observable for New Physics tests
- For heavy baryons, multibody decays provide best statistics
- e.g. $\Lambda_c^+ \rightarrow pK^-\pi^+$ is the main decay channel of Λ_c^+ (BF = 6.28%) with no neutral hyperons (problematic for fixed-target experiments)
- Essential for heavy baryon electromagnetic dipole moments measurement via spin precession in bent crystals, see PRD 103 (2021) 072003 and Refs therein

The Tool Kit

Main tools for baryon amplitude analysis:

- Polarization system
- Amplitude model
- Amplitude fit framework
- Will also present tests and sensitivity studies
- Will be illustrated taking as example the Λ⁺_c → pK⁻π⁺ decay: amplitude analysis from semileptonic decay production ongoing at LHCb

Polarization system

- Polarization components defined w.r.t. an external system
- Tailored according to production mechanism
- Strong production: natural system is production plane formed by proton and baryon momenta: only orthogonal polarization allowed by parity conservation
- Weak production: best system is helicity system reached from mother particle: *z* axis defined by baryon momentum in mother rest frame
- For Λ_c^+ produced in semileptonic decays:
- $\hat{\pmb{z}}_{\Lambda_c^+} = \hat{\pmb{p}}(\Lambda_c^+)$
- $\hat{\pmb{x}}_{A_c^+}$ defined such that x-z plane coincides with $A_c^+-\mu$ one

Helicity formalism

- Considering amplitude models written in the helicity formalism
- Multi-body decays decomposed via single two-body A → BC amplitudes defined in terms of final-state helicities
- Structure:
- Complex coupling: encodes the decay dynamics, to be determined from fit
- Angular dependence: fixed from angular momentum conservation, expressed in terms of Wigner D-matrices
- Invariant mass dependence: parametrization of the A particle width

$$\mathcal{A}_{\lambda_{B},\lambda_{C}}^{A\to BC} = \mathcal{H}_{\lambda_{B},\lambda_{C}}^{A\to BC} \times D_{m_{A},\lambda_{B}-\lambda_{C}}^{J_{A}}(\phi_{B},\theta_{B},0)^{*} \times \mathcal{R}(m_{BC}^{2})$$

Writing the amplitude model

Given the three-body decay $\Lambda_c^+
ightarrow p {\it K}^- \pi^+$

• Amplitudes built for each intermediate resonance $\Lambda_c^+ \to Rh$

-
$$\Lambda^*
ightarrow
ho K^-$$
, $\Delta^*
ightarrow
ho \pi^+$, $K^*
ightarrow K^- \pi^+$

- multiplying two-body helicity amplitudes, e.g.

$$\mathcal{A}_{m_{\Lambda_{c}^{+}},\lambda_{B},\lambda_{\rho}}^{[R]} = \mathcal{A}_{\lambda_{B},0}^{\Lambda_{c}^{+} \to R\pi^{+}} \mathcal{A}_{\lambda_{\rho},0}^{R \to \rho \kappa^{-}}$$

 Total helicity amplitudes for definite initial and final particles helicities to be obtained summing over all intermediate resonance helicity states

$$\mathcal{A}_{m_{\Lambda_{c}^{+}},\lambda_{p}} = \sum_{i=1}^{N_{R}} \sum_{\lambda_{R_{i}}=-J_{R_{i}}}^{J_{R_{i}}} \mathcal{A}_{m_{\Lambda_{c}^{+}},\lambda_{R_{i}},\lambda_{p}}^{[R_{i}]}$$

Final particle spin matching issue

- But, for multibody decays featuring different decay chains, the definition of the final state helicity is different
- For $\Lambda_c^+ \to \rho K^- \pi^+$ the proton helicity differs for Λ^* , Δ^* , K^*
- Different definitions must be matched to a reference one before summing amplitudes
- We addressed recently this problem for generic multi-body particle decays, AHEP (2020) 6674595
- Obtained a set of final particle spin rotations transforming the different helicity definitions into canonical spin states
- Supersedes method used in previous analyses

Decay amplitude

- Decay amplitude for a $A \rightarrow R(\rightarrow 1, 2)3$ topology
- (below) decay amplitude for final particle helicities
- (right) decay amplitude rotated to final particle canonical spin states

$$egin{aligned} \mathcal{A}^{A o R,3 o 1,2,3}_{m_A,\lambda_1^R,ar{\lambda}_2^R,ar{\lambda}_3^R}(\Omega) &= \sum_{\lambda_R} \mathcal{H}^{R o 1,2}_{\lambda_1^R,ar{\lambda}_2^R} D^{*s_R}_{\lambda_R,\lambda_1^R+ar{\lambda}_2^R}(\phi_1^R, heta_1^R,0) \ & imes \mathcal{H}^{A o R,3}_{\lambda_R,ar{\lambda}_3^R} D^{*s_A}_{m_A,\lambda_R+ar{\lambda}_3^R}(\phi_R, heta_R,0). \end{aligned}$$

$$\begin{split} \mathcal{A}_{m_{A},m_{1},m_{2},m_{3}}^{A\to H,3\to1,2,3}(\Omega) &= \sum_{\lambda_{1}^{R},\mu_{1}^{R},\nu_{1}^{R}} D_{m_{1},\nu_{1}^{R}}^{s_{1}}(\alpha_{1}^{W,R},\beta_{1}^{W,R},\gamma_{1}^{W,R}) \\ &\times D_{\nu_{1}^{R},\mu_{1}^{R}}^{s_{1}}(\phi_{R},\theta_{R},0) \\ &\times D_{\mu_{1}^{R},\lambda_{1}^{R}}^{s_{1}}(\phi_{1}^{R},\theta_{1}^{H},0) \\ &\times \sum_{\lambda_{2}^{R},\mu_{2}^{R},\nu_{2}^{R}} D_{m_{2},\nu_{2}^{R}}^{s_{2}}(\alpha_{2}^{W,R},\beta_{2}^{W,R},\gamma_{2}^{W,R}) \\ &\times D_{\nu_{2}^{R},\mu_{2}^{R}}^{s_{2}}(\phi_{R},\theta_{R},0) \\ &\times D_{\mu_{2}^{R},\lambda_{2}^{R}}^{s_{2}}(\phi_{1}^{R},\theta_{1}^{H},0) \\ &\times \sum_{\lambda_{3}^{R}} D_{m_{3},\lambda_{3}^{R}}^{s_{3}}(\phi_{R},\theta_{R},0) \\ &\times \mathcal{A}_{m_{A},\lambda_{1}^{R},\lambda_{2}^{R},\lambda_{3}^{R}}^{s_{3}}(\Omega) \end{split}$$

Baryon polarization

- Generic baryon polarization described by density matrix
- For the $\Lambda_c^+ \to p K^- \pi^+$ case: Λ_c^+ spin 1/2 density matrix

$$\rho_{A_c^+} = \frac{1}{2} \left(\mathcal{I} + \vec{P} \cdot \vec{\sigma} \right) = \frac{1}{2} \left(\begin{array}{cc} 1 + P_z & P_x - iP_y \\ P_x + iP_y & 1 - P_z \end{array} \right)$$

• Decay rate takes the from

$$\begin{split} \rho(\Omega, \vec{P}) &\propto \sum_{m_p = \pm 1/2} \left[(1 + P_z) |\mathcal{A}_{1/2, m_p}(\Omega)|^2 + (1 - P_z) |\mathcal{A}_{-1/2, m_p}(\Omega)|^2 \\ &+ (P_x - i P_y) \mathcal{A}_{1/2, m_p}^*(\Omega) \mathcal{A}_{-1/2, m_p}(\Omega) \\ &+ (P_x + i P_y) \mathcal{A}_{1/2, m_p}(\Omega) \mathcal{A}_{-1/2, m_p}^*(\Omega) \right] \end{split}$$

Baryon 3-body phase space

- Described by 5 variables
- 2 two-body invariant mass "Dalitz" variables, describing decay dynamics
- 3 decay orientation angles, describing decay plane orientation w.r.t. polarization system
- For $\Lambda_c^+ \to p K^- \pi^+$ decay, 5 uniform phase space variables can be chosen as
- $\Omega = (m_{
 ho K^-}^2, m_{K^- \pi^+}^2, \cos \theta_{
 ho}, \phi_{
 ho}, \chi)$
- Angles being the polar and azimuthal proton angles, and the signed angle between *p*, *z*⁺_{A⁺} and *K*, π planes

Amplitude fit

- We developed the fitting code for Λ⁺_c → pK⁻π⁺ amplitude analysis basing on TensorFlowAnalysis package, by A. Poluektov and LHCb collaborators
- Exploits the machine-learning framework TensorFlow to build amplitude models
- Based on computer algebra paradigm: users just specify the computational graph, with calculation, optimization and compilation for different architectures run automatically
- Easier building of complicated amplitude models, otherwise prohibitive to build from basic, hard-coded functions
- Caching of decay amplitude parts to speed up minimization process
- Minimization exploits the good-old MINUIT package
- TF methods not suitable for physics purposes, not providing uncertainty estimates

Amplitude model tests

- We performed different tests for amplitude model implementation
- An important one was checking properties of the decay rate following from rotational invariance, valid irrespective of the decay model considered
- Decay rate is isotropic in decay orientation angles for zero polarisation (right)
- Invariant mass distributions are independent of the polarisation
- These tests showed inadequacy of previous spin matching method

Sensitivity study for $\Lambda_c^+ \to \rho K^- \pi^+$

- We demonstrated the possibility to simultaneously measure Λ⁺_c → pK⁻π⁺ amplitude model and Λ⁺_c polarization in AHEP (2020) 7463073 via:
- Analytical study of the constraints posed by the amplitude fit to the decay rate
- Amplitude fit to pseudodata generated with toy $\Lambda_c^+ \to \rho K^- \pi^+$ description
- Results:
- Interference effects among different decay chain contributions are crucial: they give sensitivity to single complex helicity coupling values and to the polarization magnitude
- A non-zero polarization is needed to determine entirely the amplitude model: it gives sensitivity to the parity-violating part of the decay amplitude

Pseudodata toy fit

- Set toy amplitude model with interfering K^* , Λ^* , Δ^* resonances
- Generated pseudo-data for $P_z = 0.5$ and zero polarisation
- Complex couplings, polarisation and resonance parameters retrieved from amplitude fit
- *P_z* = 0.5 (left): all parameters correctly measured within uncertainties

Toolkit AmpAna

- P = 0: measured resonance parameters and polarisation, complex couplings not fully determined
- Fit fractions correctly measured

Sensitivity to polarization

- Given the decay rate written as $p(\Omega) = f(\Omega) + Pg(\Omega)$
- Sensitivity to polarization can be measured as

$$S^2=\int rac{g^2}{f+P_0g}d\Omega$$

- Cast into an effective decay asymmetry parameter $\alpha = \sqrt{3}S$, $0 < \alpha < 1$
- Generalising definition of two-body α parameters to multi-body decays
- Preliminary studies show $\Lambda_c^+ \rightarrow \rho K^- \pi^+$ decays have a large sensitivity to polarization, $\alpha \approx 0.65$, PRD 103 (2021) 072003
- Considering the large BF, $\Lambda_c^+ \to p K^- \pi^+$ is the best channel to access Λ_c^+ polarization

- Presented the main tools needed for baryon amplitude analyses
- Polarization system: defined according to production process
- Amplitude model: outlined method to write generic multi-body decays in helicity formalism
- Amplitude fit framework: described our strategy based on TensorFlowAnalysis package
- Presented example tests for amplitude model implementation
- Presented sensitivity study for $\Lambda_c^+ \to \rho K^- \pi^+$ case
- Demonstrated simultaneous extraction of amplitude model and baryon polarization
- Large sensitivity to polarization estimated, making $\Lambda_c^+ \to p K^- \pi^+$ best probe for Λ_c^+ polarization

Thanks for your attention!

References:

- D. Marangotto, Amplitude analysis and polarisation measurement of the Λ⁺_c baryon in the pK⁻π⁺ final state for the electromagnetic dipole moment determination, PhD Thesis, https://cds.cern.ch/record/2713231
- D. Marangotto, *Helicity Amplitudes for Generic Multibody Particle Decays Featuring Multiple Decay Chains*, Advances in High Energy Physics (2020) 6674595, doi:10.1155/2020/6674595, arXiv:1911.10025.
- D. Marangotto, Extracting maximum information from polarised baryon decays via amplitude analysis: the Λ⁺_c → pK⁻π⁺ case, Advances in High Energy Physics (2020) 7463073, doi:10.1155/2020/7463073, arXiv:2004.12318.
- S. Aiola et. al., *Progress towards the first measurement of charm baryon dipole moments*, Phys. Rev. D. **103** (2021) 072003, doi:10.1103/PhysRevD.103.072003, arXiv:2010.11902.

Backup Slides

Matching of final particle spin states, $A \rightarrow R \rightarrow 1$

Apply Wigner rotation R(α₁^{W,R}, β₁^{W,R}, γ₁^{W,R}) = L(-**p**₁^A)L(**p**₁^A)L(**p**₁^{'R}): obtain 1 canonical states reached from S_A, |s₁, m₁⟩ states, S₁^C system

Λ_c^+ polarization and time-reversal

• Polarization components defined as

$$\begin{array}{l} P_z \propto \boldsymbol{P} \cdot \hat{\boldsymbol{p}}(\Lambda_c^+) \\ P_x \propto \boldsymbol{P} \cdot \left[\left(\boldsymbol{p}(\Lambda_c^+) \times \boldsymbol{p}(\mu^-) \right) \times \hat{\boldsymbol{p}}(\Lambda_c^+) \right] \\ P_y \propto \boldsymbol{P} \cdot \left[\boldsymbol{p}(\Lambda_c^+) \times \boldsymbol{p}(\mu^-) \right], \end{array}$$

- Longitudinal (P_z) and transverse (P_x) polarization are T-even, while normal (P_y) polarization is T-odd
- P_y can be produced only by
- T-violation: $\mathcal{O}(\textit{CPV})$, tiny in b
 ightarrow c transitions
- Final state interactions: only EM btw Λ_c^+ and μ^- , should be $\mathcal{O}(1\%)$ at max
- Reference: Sozzi, Discrete symmetries and CPV

(1)

Maximum-likelihood fit

• Fit parameters determined minimizing

$$-\log \mathcal{L}(\omega) = -\sum_{i=1}^{N} \log \left[p(\Omega_i | \omega) + \frac{p_{bkg}(\Omega_i) I(\omega)}{\epsilon(\Omega_i)} \frac{n_{bkg}}{n_{sig}} \right] + N \log I(\omega) + \text{constant}$$

 Efficiency-corrected normalization computable using flat phase-space events simulated through full detector reconstruction

$$I(\omega) = \int p(\Omega|\omega)\epsilon(\Omega)d\Omega = \int p(\Omega|\omega)d\Omega' = \sum_{i=1}^{N_{MC}} p(\Omega_i|\omega)$$

- Background and efficiency parametrisation over phase space affect background term only
- For clean decays like $\Lambda_c^+
 ightarrow
 ho K^- \pi^+, \, rac{n_{bkg}}{n_{sig}} \ll 1$