# Testing the molecular nature of $\phi(2170)$ (and $K^{*}$ resonances with hidden charm) <br> HADRON 2021 

Alberto Martínez Torres
28/07/2021
University of São Paulo
In collaboration with: Brenda B. Malabarba (University of São Paulo), Xiu-Lei Ren (University of Mainz), Kanchan P. Khemchandani (Federal University of São Paulo), Li-
Sheng Geng (Beihang University)

## INTRODUCTION

- $\phi(2170)$ : observed by different collaborations (2006-2020) in processes like $e^{+} e^{-} \rightarrow K^{+} K^{-} \pi^{+(0)} \pi^{-(0)}, J / \psi \rightarrow \eta K^{+} K^{-} \pi^{+} \pi^{-}, e^{+} e^{-} \rightarrow \phi \eta^{\prime}(\mathrm{PDG}: M=2160 \pm 80 \mathrm{MeV}$, $\Gamma=125 \pm 65 \mathrm{MeV}$ )
- Different theoretical models trying to explain its nature and properties:

$$
\begin{aligned}
& s \bar{s}\left(n^{2 S+1} L_{J}=3^{3} S_{1}\right) \Longrightarrow \Gamma \sim 300 \mathrm{MeV} \\
& s \bar{s}\left(2^{3} D_{1}\right) \Longrightarrow \Gamma_{K^{*}(892) \bar{K}^{*}(892)}, \Gamma_{K^{*}(1410) \bar{K}}>\Gamma_{K(1460) \bar{K}}, \Gamma_{K_{1}(1400) \bar{K}}, \Gamma_{K_{1}(1270) \bar{K}} \\
& s \bar{s} g \Longrightarrow \Gamma_{K^{*}(1410) \bar{K}} \gtrsim \Gamma_{K_{1}(1270) \bar{K}, \text {, Mode } K(1460) \bar{K} \text { forbidden (spin }} \\
& \quad \text { selection rule). Not supported by Lattice QCD and QCD Gaussian } \\
& \quad \text { sum rules. } \\
& \text { Tetraquark } \Longrightarrow \text { Difficulties in obtaining a compatible mass }
\end{aligned}
$$

## INTRODUCTION

- $\phi(2170)$ : observed by different collaborations (2006-2020) in processes like $e^{+} e^{-} \rightarrow K^{+} K^{-} \pi^{+(0)} \pi^{-(0)}, J / \psi \rightarrow \eta K^{+} K^{-} \pi^{+} \pi^{-}, e^{+} e^{-} \rightarrow \phi \eta^{\prime}$ (PDG: $M=2160 \pm 80 \mathrm{MeV}, \Gamma=125 \pm 65 \mathrm{MeV}$ )
$\Longrightarrow$ Observed in the $\phi f_{0}(980)$ invariant mass distribution


8) A. Martínez Torres, K. P. Khemchandani, L. S. Geng, M. Napsuciale, E. Oset, Phys. Rev. D78, 074031 (2008); 9) M. Napsuciale, E. Oset, et al., Phys. Rev. D76, 074012 (2007). 10) J. A. Oller, E. Oset, Nucl. Phys. A620, 438 (1997); 11) L. Roca, E. Oset, J. Singh, Phys. Rev. D72, 014002 (2005); 12) L.S. Geng, E. Oset, L. Roca, J. A. Oller, Phys. Rev. D72, 014002 (2005).

## INTRODUCTION

- $\phi(2170)$ : observed by different collaborations (2006-2020) in processes like $e^{+} e^{-} \rightarrow K^{+} K^{-} \pi^{+(0)} \pi^{-(0)}, J / \psi \rightarrow \eta K^{+} K^{-} \pi^{+} \pi^{-}, e^{+} e^{-} \rightarrow \phi \eta^{\prime}$ (PDG: $M=2160 \pm 80 \mathrm{MeV}, \Gamma=125 \pm 65 \mathrm{MeV}$ )
$\Longrightarrow$ Observed in the $\phi f_{0}(980)$ invariant mass distribution



8) A. Martínez Torres, K. P. Khemchandani, L. S. Geng, M. Napsuciale, E. Oset, Phys. Rev. D78, 074031 (2008); 9) M. Napsuciale, E. Oset, et al., Phys. Rev. D76, 074012 (2007). 10) J. A. Oller, E. Oset, Nucl. Phys. A620, 438 (1997); 11) L. Roca, E. Oset, J. Singh, Phys. Rev. D72, 014002 (2005); 12) L.S. Geng, E. Oset, L. Roca, J. A. Oller, Phys. Rev. D72, 014002 (2005).

## INTRODUCTION

- We have determined the decay width of $\phi(2170)$ to kaonic resonances: $K^{+}(1460) K^{-}, K_{1}^{+}(1400) K^{-}, K_{1}^{+}(1270) K^{-}, K^{*+}(892) K^{*-}(892)$.
$K(1460)$


$$
\begin{aligned}
& K_{1}(1270) \& K_{1}(1400) \\
& \pi K^{*}(892), \phi K, \rho K \Longrightarrow K_{1}(1270) \text {, two poles } \\
& z_{1}=1195-i 123 \mathrm{MeV} \\
& z_{2}=1284-i 73 \mathrm{MeV}
\end{aligned}
$$

Mixing scheme $\Longrightarrow K_{1 A}, K_{1 B}$ belonging to the nonet of axials (mixing angles $29^{\circ}-62^{\circ}$ )

Phenomenological approach $\Longrightarrow$ Use of the data available in the PDG on their radiative decays

## THE MODEL

From $\mathscr{L}_{V P P}=-i g V^{\mu}\left[\partial_{\mu} \Phi, \Phi\right]$,
$V^{\mu} \equiv$ Matrix vector meson octet fields

- Triangular loops:
$\Phi \equiv$ Matrix pseudoscalar meson octet fields $t_{K_{1}^{+} \rightarrow \phi K^{+}}=g_{K_{1}^{+} \rightarrow \phi K^{\prime}} \epsilon_{K_{1}^{+}} \cdot \epsilon_{\phi}$


20) Brenda B. Malabarba, Xiu-Lei Ren, K. P. Khemchandani, A. Martínez Torres, Phys. Rev. D103, 016018 (2021)

## RESULTS

- BESIII collaboration: $\phi(2170) \rightarrow K^{*}(892) \bar{K}^{*}(892)$ is suppressed


RESULTS

| $\phi(2170) \rightarrow$$K^{+}(1460) K^{-}$ |
| :---: | :---: |
| Form factor Decay width |



## RESULTS

- BESIII collaboration: $\mathscr{B} r \Gamma_{R}^{e^{+} e^{-}}$

$$
\mathscr{B} r \equiv \text { Branching fraction } \phi(2170) \rightarrow R K^{-}
$$

$$
\Gamma_{R}^{e^{+} e^{-}} \equiv \text { Partial decay width of } \phi(2170) \rightarrow e^{+} e^{-}
$$

## RESULTS

- BESIII collaboration: $\mathscr{B} r \Gamma_{R}^{e^{+} e^{-}}$

$$
\mathscr{B} r \equiv \text { Branching fraction } \phi(2170) \rightarrow R K^{-}
$$ $\Gamma_{R}^{e^{+} e^{-}} \equiv$ Partial decay width of $\phi(2170) \rightarrow e^{+} e^{-}$

$$
\begin{aligned}
& B_{1} \equiv \frac{\Gamma_{\phi_{R} \rightarrow K^{+}(1460) K^{-}}}{\Gamma_{\phi_{R} \rightarrow K_{1}^{+}(1400) K^{-}}}=\frac{\mathcal{B} r\left[\phi_{R} \rightarrow K^{+}(1460) K^{-}\right]}{\mathcal{B} r\left[\phi_{R} \rightarrow K_{1}^{+}(1400) K^{-}\right]} \\
& B_{2} \equiv \frac{\Gamma_{\phi_{R} \rightarrow K^{+}(1460) K^{-}}}{\Gamma_{\phi_{R} \rightarrow K_{1}^{+}(1270) K^{-}}}=\frac{\mathcal{B} r\left[\phi_{R} \rightarrow K^{+}(1460) K^{-}\right]}{\mathcal{B} r\left[\phi_{R} \rightarrow K_{1}^{+}(1270) K^{-}\right]} \\
& B_{1}^{\exp }=\left\{\begin{array}{l}
0.64 \pm 0.92, \text { Solution 1, } \\
0.03 \pm 0.04, \text { Solution 2, }
\end{array}\right. \\
& B_{2}^{\exp }=\left\{\begin{array}{l}
0.40 \pm 0.54, \text { Solution 1, } \\
0.02 \pm 0.03, \text { Solution 2, }
\end{array}\right. \\
& B_{3} \equiv \frac{\Gamma_{\phi_{R} \rightarrow K_{1}^{+}(1270) K^{-}}}{\Gamma_{\phi_{R} \rightarrow K_{1}^{+}(1400) K^{-}}}=\frac{\mathcal{B} r\left[\phi_{R} \rightarrow K_{1}^{+}(1270) K^{-}\right]}{\mathcal{B} r\left[\phi_{R} \rightarrow K_{1}^{+}(1400) K^{-}\right]} \\
& B_{3}^{\exp }=\left\{\begin{array}{l}
1.62 \pm 1.38, \text { Solution 1, } \\
1.55 \pm 0.19, \text { Solution 2. }
\end{array}\right.
\end{aligned}
$$

## RESULTS

$$
\begin{aligned}
& B_{1}^{\exp }=\left\{\begin{array}{l}
0.64 \pm 0.92, \text { Solution 1, } \\
0.03 \pm 0.04, \text { Solution 2, }
\end{array}\right. \\
& B_{2}^{\exp }=\left\{\begin{array}{l}
0.40 \pm 0.54, \text { Solution 1, } \\
0.02 \pm 0.03, \text { Solution 2 },
\end{array}\right. \\
& B_{3}^{\exp }=\left\{\begin{array}{l}
1.62 \pm 1.38, \text { Solution 1 } \\
1.55 \pm 0.19, \text { Solution 2 }
\end{array}\right.
\end{aligned}
$$

$B_{1}=\frac{\Gamma_{\phi_{R} \rightarrow K^{+}(1460) K^{-}}}{\Gamma_{\phi_{R} \rightarrow K_{1}^{+}(1400) K^{-}}} \quad B_{2}=\frac{\Gamma_{\phi_{R} \rightarrow K^{+}(1460) K^{-}}}{\Gamma_{\phi_{R} \rightarrow K_{1}^{+}(1270) K^{-}}}$
$B_{3}=\frac{\Gamma_{\phi_{R} \rightarrow K^{+}(1270) K^{-}}}{\Gamma_{\phi_{R} \rightarrow K_{1}^{+}(1400) K^{-}}}$


Model A: Molecular model for $K_{1}$ (1270)
Model B: Mixing scheme
Model C: Phenomenological (radiative decays)


|  |  |
| :--- | :--- |
| - $K^{*}(1680)$ |  |
| - $K_{2}(1770)$ | $1 / 2\left(1^{-}\right)$ |
| - $K_{3}^{*}(1780)$ | $1 / 2\left(2^{-}\right)$ |
| - $K_{2}(1820)$ | $1 / 2\left(3^{-}\right)$ |
| $\left.K_{(1830}\right)$ | $1 / 2\left(2^{-}\right)$ |
| $K_{0}^{*}(1950)$ | $1 / 2\left(0^{-}\right)$ |
| - $K_{2}^{*}(1980)$ | $1 / 2\left(0^{+}\right)$ |
| - $K_{4}^{*}(2045)$ | $1 / 2\left(2^{+}\right)$ |
| $K_{2}(2250)$ | $1 / 2\left(4^{+}\right)$ |
| $K_{3}(2320)$ | $1 / 2\left(2^{-}\right)$ |
| $K_{5}^{*}(2380)$ | $1 / 2\left(3^{+}\right)$ |
| $K_{4}(2500)$ | $1 / 2\left(5^{-}\right)$ |
| $K(3100)$ | $1 / 2\left(4^{-}\right)$ |

We find a narrow $K^{*}(4307)$
21) Xiu-Lei Ren, Brenda B. Malabarba, Li-Sheng Geng, K. P. Khemchandani, A. Martínez Torres, Phys. Lett. B785, 112-117 (2018); Xiu-Lei Ren, K. P. Khemchandani, A. Martínez Torres, JHEP 05, 103 (2019) and Phys. Rev. D102, 016005 (2020).


(a)


(b)
(d)

21) Xiu-Lei Ren, Brenda B. Malabarba, Li-Sheng Geng, K. P. Khemchandani, A. Martínez Torres, Phys. Lett. B785, 112-117 (2018); Xiu-Lei Ren, K. P. Khemchandani, A. Martínez Torres, JHEP 05, 103 (2019) and Phys. Rev. D102, 016005 (2020).


(a)

(b)


21) Xiu-Lei Ren, Brenda B. Malabarba, Li-Sheng Geng, K. P. Khemchandani, A. Martínez Torres, Phys. Lett. B785, 112-117 (2018); Xiu-Lei Ren, K. P. Khemchandani, A. Martínez Torres, JHEP 05, 103 (2019) and Phys. Rev. D102, 016005 (2020).

## CONCLUSIONS

- $\phi(2170)$ as a $\phi f_{0}(980)$ state:
- Explains its suppressed decay to $K^{*}(892) \bar{K}^{*}(892)$.
- $K(1460)$ as a state which couples to $K f_{0}, K_{1}(1400)$ mixing angle scheme/
phenomenological approach: compatible results for $B_{1}=\frac{\Gamma_{\phi_{R} \rightarrow K^{+}(1460) K^{-}}}{\Gamma_{\phi_{R} \rightarrow K_{1}^{+}(1400) K^{-}}}$.
- $K_{1}(1270)$ as state related to two poles arising from PV dynamics/
phenomenological approach for $K_{1}(1270) \& K_{1}(1400)$. Compatible results for
$B_{2}=\frac{\Gamma_{\phi_{R} \rightarrow K^{+}(1460) K^{-}}}{\Gamma_{\phi_{R} \rightarrow K_{1}^{+}(1270) K^{-}}}$. The mixing scheme considered for $K_{1}(1270) \& K_{1}(1400)$ is not compatible.
- The ratio $B_{3}=\frac{\Gamma_{\phi_{R} \rightarrow K^{+}(1270) K^{-}}}{\Gamma_{\phi_{R} \rightarrow K_{1}^{+}(1400) K^{-}}}$is compatible with the mixing scheme/phenomenological approach.
- $K^{*}$ resonance with hidden charm is predicted around 4307 MeV (also found by Ma, Wang, Meissner in Chin. Phys. C43, 014102 (2019) and by Tian-Wei Wu, Ming-Zhu Liu, Li-Sheng Geng in Phys. Rev. D103,3 (2021))


## BACKUP SLIDES: SOME MORE DETAILS OF THE MODEL

- Triangular loops:
$K_{1}(1270) \& K_{1}(1400)$ as mixed states: $K_{1 A}, K_{1 B}$
- Tensor meson formalism for the vector mesons (rank 2)



## BACKUP SLIDES: SOME MORE DETAILS OF THE MODEL

- Triangular loops:


$$
t_{K_{1}^{+} \rightarrow \phi K^{+}}=g_{K_{1}^{+} \rightarrow \phi K} \epsilon_{K_{1}^{+}} \cdot \epsilon_{\phi}
$$

Phenomenological approach for $K_{1}(1270) \& K_{1}(1400)$ :

- Available data on the radiative decays
- Vector meson dominance: Couplings of $K_{1}(1270) \& K_{1}(1400)$ to $\phi K$ are obtained


$$
\begin{aligned}
t_{K_{1}^{0} \rightarrow \gamma K^{0}}^{T}= & -\frac{2 e F_{V}}{M_{K_{1}^{0}}}\left[\frac{g_{K_{1}^{0} \rightarrow \rho^{0} K^{0}}^{T}}{M_{\rho^{0}}^{2}}+\frac{g_{K_{1}^{0} \rightarrow \omega K^{0}}^{T}}{3 M_{\omega}^{2}}-\frac{\sqrt{2} g_{K_{1}^{0} \rightarrow \phi K^{0}}^{T}}{3 M_{\phi}^{2}}\right] \\
& \times\left[(P \cdot p)\left(\epsilon_{K_{1}^{0}}(P) \cdot \epsilon_{\gamma}(p)\right)-\left(P \cdot \epsilon_{\gamma}(p)\right)\left(p \cdot \epsilon_{K_{1}^{0}}(P)\right)\right]
\end{aligned}
$$

## BACKUP SLIDES: SOME MORE DETAILS OF THE MODEL

- Triangular loops:

$$
t_{K_{1}^{+} \rightarrow \phi K^{+}}=g_{K_{1}^{+} \rightarrow \phi K} \epsilon_{K_{1}^{+}} \cdot \epsilon_{\phi}
$$

Phenomenological approach for $K_{1}(1270) \& K_{1}(1400)$ :

- Available data on the radiative decays
- Vector meson dominance: Couplings of $K_{1}(1270) \& K_{1}(1400)$ to $\phi K$ are obtained


Fixed to reproduce the experimental data on the decay width

$$
\Gamma_{K_{1}^{0} \rightarrow \gamma K^{0}}^{T}=\frac{|\vec{p}|^{3}}{3 \pi M_{K_{1}^{0}}^{2}} e^{2}\left|F_{V}\right|^{2}\left|\frac{g_{K_{1}^{0} \rightarrow \rho^{0} K^{0}}^{T}}{M_{\rho^{0}}^{2}}+\frac{g_{K_{1}^{0} \rightarrow \omega K^{0}}^{T}}{3 M_{\omega}^{2}}-\frac{\sqrt{2} g_{K_{1}^{0} \rightarrow \phi K^{0}}^{T}}{3 M_{\phi}^{2}}\right|^{2}
$$

We use the experimental data

We get the coupling in the Tensor formalism

## BACKUP SLIDES: SOME MORE DETAILS OF THE MODEL

- Triangular loops:

$\Gamma_{K_{1} \rightarrow \phi K}^{T} \sim \Gamma_{K_{1} \rightarrow \phi K}$ : we can determine $\left|g_{K_{1} \rightarrow \phi K}\right|$

Phenomenological approach for $K_{1}(1270) \& K_{1}(1400)$ :

- Available data on the radiative decays
- Vector meson dominance: Couplings of $K_{1}(1270) \& K_{1}(1400)$ to $\phi K$ are obtained


Fixed to reproduce the experimental data on the decay width


We get the coupling in the Tensor formalism

## BACKUP SLIDES: SOME MORE DETAILS OF THE MODEL

- Triangular loops:

Phenomenological approach for $K_{1}(1270) \& K_{1}(1400)$ :


$$
\begin{aligned}
& \left|g_{K_{1}^{+}(1270) \rightarrow \phi K^{+}}\right|=\left\{\begin{array}{l}
3967 \pm 419 \mathrm{MeV}, \text {, olution } \mathbb{S}_{1}, \\
12577 \pm 763 \mathrm{MeV}, \text { Solution } \mathbb{S}_{2}, \\
19841 \pm 1177 \mathrm{MeV}, \text { Solution } \mathbb{S}_{3} .
\end{array}\right. \\
& \left|g_{K_{1}^{+}(1400) \rightarrow \phi K^{+}}\right|=8480 \pm 1333 \mathrm{MeV}
\end{aligned}
$$

No direct measurement of $K_{1} \rightarrow K \gamma$

