Philipp Kroenert

Co-Authors: Y. Wunderlich, F. Afzal, A.Thiel

Minimal complete sets for two-pseudoscalar-meson photoproduction

PHYSICAL REVIEW C 103, 014607 (2021)

Motivation

- Search for missing resonances
- More measurements, observables
- Increase in precision
- Interest in complete experiment analysis

Oberle et al. [Phys. Lett. B 721, 237 (2013)]

Pool of Measurements

Observable	Energy range E_{γ}^{lab}	Facility	Reference	Year of publicatio)n				
				$\gamma n o p \pi^- \pi^0$					
Io	309–792 MeV	TAPS at MAMI	Härter et al. [20]	1997	$\overline{I_0}$	≈370–940 MeV	LNF	Carbonara et al. [37]	1976
I ₀	309-820 MeV	TAPS at MAMI	Wolf <i>et al.</i> [21]	2000	I_0	≈450–800 MeV	DAPHNE at MAMI	Zabrodin et al. [53]	1997
Io	200-820 MeV	TAPS at MAMI	Kleber et al. [22]	2000	I_0	≈500–800 MeV	DAPHNE at MAMI	Zabrodin et al. [54]	1999
I ₀	300-425 MeV	TAPS at MAMI	Kotulla et al. [23]	2004			$\gamma n \rightarrow n \pi^+ \pi^-$		
I ₀	309-800 MeV	CB/TAPS at MAMI	Zehr et al. [24]	2012	Io	370-940 MeV	LNF	Carbonara <i>et al.</i> [37]	1976
Io	309-1400 MeV	CB/TAPS at MAMI	Kashevarov et al. [25]	2012	-0		$\gamma n \rightarrow n K^+ K^-$		
I ₀	432-1374 MeV	CB/TAPS at MAMI	Dieterle et al. [26]	2015		2000 2000 X X X			0010
Io	400-800 MeV	DAPHNE at MAMI	Braghieri et al. [27]	1995	I ₀	3000–3800 MeV	CLAS at JLAB	Lombardo <i>et al.</i> [55]	2018
Io	400-800 MeV	DAPHNE at MAMI	Ahrens et al. [28]	2005	I.	1100–5400 MeV	CLAS at JLAB	Badui <i>et al.</i> $[43]$	2016
I ₀	309-820 MeV	TAPS at MAMI, CB at ELSA	Sarantsev et al. [29]	2008					
I ₀	400-1300 MeV	CB at ELSA	Thoma et al. [30]	2008		DUV	NCAL DEVIEW C 103	014607(2021)	
L ₀	≈750–2500 MeV	CBELSA/TAPS at ELSA	Thiel <i>et al.</i> [31]	2015		FH IS	SICAL KEVIEW C 103,	014007 (2021)	
I_0, Σ	600-2500 MeV	CB/TAPS at ELSA	Sokhovan <i>et al.</i> [1]	2015					
I_0, Σ	650–1450 MeV	GRAAL	Assafiri et al. [32]	2003					
Σ	650–1450 MeV	CB at ELSA	Thoma et al. [30]	2008					
I ^O	560-810 MeV	CB/TAPS at MAMI	Krambrich <i>et al</i> [33]	2009					
I⊙ I	≈600-1400 MeV	CB/TAPS at MAMI	Oberle et al $[34]$	2009					
I.O.	550-820 MeV	CB/TAPS at MAMI	Zehr et al [24]	2013					
F a a	$\approx 431 \ 1455 \ MeV$	CB/TAPS at MAMI	Dieterle et al [35]	2012					
$E, \sigma_{1/2}, \sigma_{3/2}$	$\sim 431 - 1433$ MeV	CDELSA/TADS at MAMI	Seifen et al [14]	2020					
$\Gamma_{\rm X}, \Gamma_{\rm y}, I, II, I$	070 1650 MeV	CD /TADS at ELSA	Solthowen at al [1]	2020					
1,1	970–1030 Mev	CB/TAPS at ELSA	Soknoyan <i>et al</i> . [1]	2013					
		$\gamma p \rightarrow p \pi^{-} \pi$			_	Νζομο			
I_0	400-800 MeV	DAPHNE at MAMI	Braghieri et al. [27]	1995		• More	than 55 mea	asurements	
I ₀	400-800 MeV	DAPHNE at MAMI	Ahrens et al. [36]	2007					
I ₀	370–940 MeV	LNF	Carbonara et al. [37]	1976					
I ₀	800-1100 MeV	NKS at LNS	Hirose et al. [38]	2009					
I_0	500–4800 MeV	CEA	Crouch et al. [39]	1964					
I ₀	≈560–2560 MeV	SAPHIR at ELSA	Wu et al. [40]	2005		Dublic	sations from	$1076 \ 2020$	
I ₀	≈895–1663 MeV	CLAS at JLAB	Golovatch et al. [41]	2019				1 1970 - 2020	
I⊙	575-815 MeV	CB/TAPS at MAMI	Krambrich et al. [33]	2009					
I☉	502-2350 MeV	CLAS at JLAB	Strauch et al. [42]	2005					
I⊙	1100–5400 MeV	CLAS at JLAB	Badui et al. [43]	2016					
		$\gamma p \rightarrow p \pi^0 \eta$			_				
Io	≈930–2500 MeV	CB/TAPS at ELSA	Gutz et al. [15]	2014					
Io	≈1070–2860 MeV	CB at ELSA	Horn <i>et al.</i> [44]	2008					
I ₀	950-1400 MeV	CB/TAPS at MAMI	Kashevarov et al. [45]	2009					
I ₀	1000-1150 MeV	GeV- γ at LNS	Nakabayashi et al. [46]	2006					
I_0, Σ	≈930–1500 MeV	GRAAL	Ajaka et al. [47]	2008					
Σ	970-1650 MeV	CBELSA/TAPS at ELSA	Gutz et al. [48]	2008					
Σ	≈1070–1550 MeV	CB/TAPS at ELSA	Gutz et al. [15]	2014					
I ^c . I ^s	970-1650 MeV	CBELSA/TAPS at ELSA	Gutz et al. [49]	2010					
I ^c . I ^s	≈1081–1550 MeV	CB/TAPS at ELSA	Gutz et al. $[15]$	2014					
- , -		$\gamma p \rightarrow n\pi^+\pi^0$							
Io	300-820 MeV	TAPS at MAMI	Langgärtner et al. [50]	2001					
I_0	≈325–800 MeV	CB/TAPS at MAMI	Zehr et al. [24]	2012					
I_0	400-800 MeV	DAPHNE at MAMI	Braghieri et al. [27]	1995					
I_0	400-800 MeV	DAPHNE at MAMI	Ahrens et al. [51]	2003					
I⊙	520-820 MeV	CB/TAPS at MAMI	Krambrich et al. [33]	2009					
I⊙	≈550–820 MeV	CB/TAPS at MAMI	Zehr et al. [24]	2012					
		$\gamma n \to n \pi^0 \pi^0$							
I _☉	≈600–1400 MeV	CB/TAPS at MAMI	Oberle et al. [34]	2013	25				
I_0, Σ	≈600–1500 MeV	GRAAL	Ajaka <i>et al.</i> [52]	2007					
Io	≈430–1371 MeV	CB/TAPS at MAMI	Dieterle et al. [26]	2015					

Introduction

 $\begin{array}{l} \underline{\text{Overall goal:}}\\ \text{determine matrix elements of transition matrix } \mathcal{T}\\ \text{for certain reaction, i.e. } \gamma N \rightarrow \pi \pi N \end{array}$

• Polarisation observable:
$$\mathcal{O}_i = \langle t | \hat{A}_i | t \rangle = \sum_{k,j} t_k^* (\hat{A}_j)_{kj} t_j$$

- Bilinear product → mathematical ambiguities arise
- Perform complete experiment analysis
- Analytical approach very hard for $N \ge 4$ (N = 8 for $\gamma N \rightarrow \pi \pi N$)

Moravcsik's Theorem

Explanation:

- <u>Node</u>: complex amplitude *t_i*
- <u>Edge</u>: Re/Im of bilinear product $t_i t_i^*$
- $\operatorname{Re}(t_i t_j^*) \sim \cos(\phi_{ij})$
- $\operatorname{Im}(t_i t_j^*) \sim \sin(\phi_{ij})$

Complete Set of Observables if:

- Connected Graph
- Odd number of "sine-type" ambiguities

PHYSICAL REVIEW C 103, 014607 (2021)

Approach

Polarisation Observables

for Two-Pion Photoproduction off the Nucleon

First published by Roberts and Oed [Phys. Rev. C 71, 055201 (2005)]

Observa	ble Definition in terms of polar coordinates / 2	Bilinear form	Robe	Roberts, Oed		
$\mathcal{O}_1^{\mathrm{I}}$	$\frac{1}{2}(t_1 ^2 + t_2 ^2 + t_3 ^2 + t_4 ^2 - t_5 ^2 - t_6 ^2 - t_7 ^2 - t_8 ^2)$	$\langle t \Gamma_1^{\mathrm{I}} t \rangle$		I [⊙]		
\mathcal{O}_2^{I} \mathcal{O}_2^{I}	$\frac{1}{2}(t_1 ^2 + t_2 ^2 - t_3 ^2 - t_4 ^2 + t_5 ^2 + t_6 ^2 - t_7 ^2 - t_8 ^2)$ $\frac{1}{2}(t_1 ^2 - t_2 ^2 + t_2 ^2 - t_4 ^2 + t_5 ^2 - t_6 ^2 + t_7 ^2 - t_8 ^2)$	$\langle t \Gamma_{2}^{1} t \rangle$ $\langle t \Gamma_{1}^{1} t \rangle$		Py Py		
\mathcal{O}_4^3	$\frac{1}{2}(t_1 ^2 - t_2 ^2 - t_3 ^2 + t_4 ^2 - t_5 ^2 + t_6 ^2 + t_7 ^2 - t_8 ^2)$	$\langle t \Gamma_4^{\rm I} t \rangle$		$\mathcal{O}_{\mathbf{v}\mathbf{v}'}^{\odot}$		
$\mathcal{O}_5^{\mathrm{I}}$	$\frac{\tilde{1}}{2}(t_1 ^2 - t_2 ^2 - t_3 ^2 + t_4 ^2 + t_5 ^2 - t_6 ^2 - t_7 ^2 + t_8 ^2)$	$\langle t \Gamma_5^{\mathrm{I}} t \rangle$		$\mathcal{O}_{\mathbf{y}\mathbf{y}'}$		
$\mathcal{O}_6^{\mathrm{I}}$	$\frac{1}{2}(t_1 ^2 - t_2 ^2 + t_3 ^2 - t_4 ^2 - t_5 ^2 + t_6 ^2 - t_7 ^2 + t_8 ^2)$	$\langle t \Gamma_6^{\rm I} t \rangle$		$P_{y'}^{\odot}$		
\mathcal{O}_7^1	$\frac{1}{2}(t_1 ^2 + t_2 ^2 - t_3 ^2 - t_4 ^2 - t_5 ^2 - t_6 ^2 + t_7 ^2 + t_8 ^2)$	$\langle t \Gamma_7^1 t \rangle$		P_y^{\odot}		
	$\frac{1}{2}(I_1 ^2 + I_2 ^2 + I_3 ^2 + I_4 ^2 + I_5 ^2 + I_6 ^2 + I_7 ^2 + I_8 ^2)$	$\langle t 1_{8} t \rangle$		I 0	PHYSICAI	L REVIEW C 103 , 014607 (2021)
\mathcal{O}_{c1}^{II}	$ l_1 l_3 \cos(\phi_{13}) + l_2 l_4 \cos(\phi_{24}) + l_5 l_7 \cos(\phi_{57}) + l_6 l_8 \cos(\phi_{68})$ $ t_1 t_2 \cos(\phi_{13}) + t_2 t_4 \cos(\phi_{24}) - t_5 t_7 \cos(\phi_{57}) - t_6 t_8 \cos(\phi_{68})$	$\langle t \Gamma_{c1} t \rangle$ $\langle t \Gamma_{c1}^{II} t \rangle$		$-P_z$ $-P^{\odot}$		
\mathcal{O}_{c3}^{c2}	$ t_1 t_3 \cos(\phi_{13}) - t_2 t_4 \cos(\phi_{24}) + t_5 t_7 \cos(\phi_{57}) - t_6 t_8 \cos(\phi_{68})$	$\langle t \Gamma_{c3}^{II} t \rangle$		Z		
\mathcal{O}_{c4}^{II}	$ t_1 t_3 \cos(\phi_{13}) - t_2 t_4 \cos(\phi_{24}) - t_5 t_7 \cos(\phi_{57}) + t_6 t_8 \cos(\phi_{68})$	$\langle t \Gamma^{\rm II}_{\rm c4} t \rangle$	Γ -matrices	Def	inition	Shape-class
$\mathcal{O}_{\mathrm{s1}}^{\mathrm{II}}$	$ t_1 t_3 \sin(\phi_{13}) + t_2 t_4 \sin(\phi_{24}) + t_5 t_7 \sin(\phi_{57}) + t_6 t_8 \sin(\phi_{68})$	$\langle t \Gamma_{s1}^{II} t \rangle$	Γ_1^{I}	$\sigma^3 \otimes$	$I_2 \otimes I_2$	
\mathcal{O}_{s2}^{II}	$ t_1 t_3 \sin(\phi_{13}) + t_2 t_4 \sin(\phi_{24}) - t_5 t_7 \sin(\phi_{57}) - t_6 t_8 \sin(\phi_{68})$	$\langle t \Gamma_{s2}^{II} t \rangle$	Γ_2^{I}	$I_2 \otimes$	$\sigma^3 \otimes I_2$	
\mathcal{O}_{s3}^{II}	$ t_1 t_3 \sin(\phi_{13}) - t_2 t_4 \sin(\phi_{24}) - t_5 t_7 \sin(\phi_{57}) - t_6 t_8 \sin(\phi_{68})$ $ t_1 t_3 \sin(\phi_{13}) - t_2 t_4 \sin(\phi_{24}) - t_5 t_7 \sin(\phi_{57}) + t_6 t_8 \sin(\phi_{68})$	$\langle t \Gamma_{s3}^{II} t \rangle$	Γ_3^{I}	$I_2 \otimes$	$I_2\otimes\sigma^3$	
54		1 541 /	Γ_4^{I}	$\sigma^3 \otimes$	$\sigma^3 \otimes \sigma^3$	
	•	\frown	Γ_5^1	$I_2 \otimes I_3 \otimes I_3$	$\sigma^{3} \otimes \sigma^{3}$	
			Γ_6^{I}	$\sigma^{\circ} \otimes \sigma^{3} \otimes$	$I_2 \otimes \sigma^{\circ}$ $\sigma^3 \otimes I$	
	$\begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	Γ_7	$V \otimes I_2 \otimes$	$O \otimes I_2$ $I_2 \otimes I_2$	
•	$64 \text{ observables} \qquad \qquad \begin{bmatrix} 0 & 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$		8	12 0	101	
-	$\Gamma_{a}^{\text{II}} = \begin{bmatrix} 0 & -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \end{bmatrix}$	0 0 0		$I_2 \otimes \sigma^3 \otimes$	$\sigma^1 \otimes I_2$ $\sigma^1 \otimes I$	
		$ \begin{array}{cccc} 0 & 1 & 0 \\ 0 & 0 & -1 \end{array} $	Γ^{II}	$I_2 \otimes$	$\frac{\sigma \otimes I_2}{\sigma^1 \otimes \sigma^3}$	
	$\mathbf{P} = \begin{bmatrix} \mathbf{p} & \mathbf{p} \\ \mathbf{p} & \mathbf{q} \end{bmatrix} = \begin{bmatrix} \mathbf{p} & \mathbf{p} \\ \mathbf{p} & \mathbf{q} \end{bmatrix} = \begin{bmatrix} \mathbf{p} & \mathbf{p} \\ \mathbf{p} & \mathbf{q} \end{bmatrix}$	0 0 0	Γ_{c4}^{II}	$\sigma^3 \otimes$	$\sigma^1 \otimes \sigma^3$	
•	0 0	$-1 \ 0 \ 0$	Γ^{II}_{s1}	$-I_2 \otimes$	$\sigma^2 \otimes I_2$	
			$\Gamma^{\mathrm{II}}_{s2}$	$-\sigma^3$ (8)	$\sigma^2\otimes I_2$	
		1 1	$\Gamma^{\mathrm{II}}_{s3}$	$-I_2 \otimes$	$\sigma^2\otimes\sigma^3$	
•	Single-, double- and triple polarisation observ	vables	$\Gamma^{\mathrm{II}}_{s4}$	$-\sigma^3 \otimes$	$\sigma^2\otimes\sigma^3$	
					•	

Intermediate Results for N=8

- 322,560 edge configurations wich yield a complete set of observables
- 5964 unique sets of observables
- 392 distinct sets of length 24 (slightly over-complete)

At least five triple polarisation observables

Constructed from four or five different shape classes

Reduction to Minimal Sets of 2N=16

<u>Algorithm</u> (already applied in Tiator et al., Phys. Rev. C 96, 025210 (2017))

- System of multivariate homogenous polynomials: $\mathcal{O}_1(\vec{t}) = g_1, ..., \mathcal{O}_n(\vec{t}) = g_n$
- Fix overall phase of amplitudes, i.e. $\operatorname{Re}(t_1) > 0$ and $\operatorname{Im}(t_1) = 0$
- `NSolve` from Mathematica is used to solve the system

"For systems of algebraic equations,

NSolve computes a numerical Gröbner basis using an efficient monomial ordering,

then uses eigensystem methods to extract numerical roots."

[https://reference.wolfram.com/language/tutorial/SomeNotesOnInternal Implementation.html]

9

• Other methods like Homotopy Continuation are also possible

Implication for Experimentalist

 $\mathcal{O}_{yz'}$

 $\mathcal{O}_{yz'}$

 $\mathcal{O}_{\mathrm{vz}'}$

 $\mathcal{O}_{zx'}$

 $\mathcal{O}_{zy'}$

 $\mathcal{O}_{zy'}$

 $\mathcal{O}_{zz'}$

 $\mathcal{O}_{zz'}$

 $\mathcal{O}_{zz'}$

OTT'

 $\mathcal{O}_{zz'}$

OTT'

 $\mathcal{O}_{zz'}$

 $\mathcal{O}_{zz'}$

 $P^s_{z^\prime}$

 $P_{z'}^s$

 $\mathcal{O}_{xy'}$

 $\mathcal{O}_{xy'}$

 $\mathcal{O}_{\mathrm{x}\mathrm{y}'}$

 $\mathcal{O}_{xy'}$

 $\mathcal{O}_{zx'}$

 $\mathcal{O}_{zx'}$

 $\mathcal{O}_{zx'}$

 P_z $P_{x^{\prime}}$ P_x^s P_z^c P_z^{\odot} $P_{x'}^{\odot}$ $P_{z'}^{\odot}$ (1) $P_{z'}$ (47) P_x P_x^c P^s_x P_x^{\odot} P_z^c P_z^s $P_{z'}^{\odot}$ $\mathbf{P}_{\mathbf{z}'}^{\odot}$ $\mathcal{O}_{yz^{\prime}}$ P_z^c P_z^{\odot} $P_{x'}^{\odot}$ P_x^s (2) P_z $\mathcal{O}_{\mathbf{v}\mathbf{x}'}$ (48)P_x P_x^c P_x^s P_z^c P_z^s $P_{z'}^{\odot}$ $\mathcal{O}_{xy'}$ $\mathcal{O}_{yz^{\prime}}$ P_x^s P_z^c $P^{\odot}_{x^{\prime}}$ $P_{z'}^{\odot}$ $\mathcal{O}_{yx'}$ $\mathbf{P}_{\mathbf{z}}$ $\mathcal{O}_{zy'}$ P_x^{\odot} P_z^c P_z^s $P_{z'}^{\odot}$ (3) (49) P_x^c P_x^s $\mathcal{O}_{xy'}$ $P_{z^{\prime}}$ P_x^s P_z^c $\mathbf{P}_{\mathbf{z}}^{\odot}$ $P_{x'}^{\odot}$ $P_{z'}^{\odot}$ $\mathbf{P}_{\mathbf{z}}^{\odot}$ $P_{x^{\prime}}$ $\mathcal{O}_{zy'}$ $\mathbf{P}_{\mathbf{x}}^{\odot}$ $\mathcal{O}_{xz^{\prime}}$ (4)(50) $P_{x'}^c$ P_x P_z $P_{z'}^s$ $\mathbf{P}^{\mathrm{s}}_{\mathrm{x}}$ P_z^{\odot} $P_{x'}^{\odot}$ P_z^c $\mathbf{P}_{\mathbf{z}'}^{\odot}$ $\mathcal{O}_{\mathrm{yx'}}$ $\mathcal{O}_{yz'}$ $\mathcal{O}_{zy'}$ $\mathcal{O}_{zx'}$ (5) (51)P_x P_z $P_{x'}^c$ $P_{z'}^s$ $\mathcal{O}_{xy'}$ $\mathcal{O}_{\mathbf{x}\mathbf{z}'}$ P_x^s $\mathbf{P}_{\mathbf{x}}^{\odot}$ P_z^{\odot} $P_{z'}^{\odot}$ P_x $\mathbf{P}_{\mathbf{z}}$ $P_{z^{\prime}}$ P_z^c (52) $\mathbf{P}_{\mathbf{x}}^{\odot}$ P_z^{\odot} $P_{x'}^c$ (6) $P^s_{z^\prime}$ $\mathcal{O}_{xy'}$ $\mathcal{O}_{\mathbf{x}\mathbf{z}'}$ $\mathcal{O}_{zx'}$ $\mathcal{O}_{zy^{\prime}}$ P_x^s $\mathbf{P}_{\mathbf{z}'}^{\odot}$ P_x Pz $P_{z^{\prime}}$ P_z^c $\mathcal{O}_{xy'}$ P_x^{\odot} (7)(53) \mathbf{I}^{c} P_x P_y^c $\mathcal{O}_{xx^{\prime}}$ $\mathcal{O}_{zx'}$ $\mathcal{O}_{\mathbf{x}\mathbf{z}'}$ \mathcal{O}_{zy^\prime} P_x^s P_z^c P_x $\mathbf{P}_{\mathbf{z}}$ $P_{z^{\prime}}$ $\mathcal{O}_{xy'}$ $\mathcal{O}_{yz'}$ (8) (54) I^{c} P_x P_x^{\odot} $P_{y'}^c$ $\mathcal{O}_{\mathbf{x}\mathbf{x}'}$ $\mathcal{O}_{xz'}$ $\mathcal{O}_{zx'}$ $P_{z^{\prime}}$ \mathcal{O}_{xy^\prime} \mathcal{O}_{zy^\prime} P_x^{\odot} P_z^{\odot} $P_{z'}^{\odot}$ P_x^s P_z^c (9) (55) P_x^{\odot} P_v^c P_x $P_{v'}^c$ $\mathcal{O}_{\mathbf{x}\mathbf{x}'}$ $\mathcal{O}_{\mathbf{x}\mathbf{z}'}$ $\mathcal{O}_{zx'}$ P_x^{\odot} P_z^c P_z^{\odot} $P_{z'}$ P_x^s $\mathcal{O}_{xy^{\prime}}$ $\mathcal{O}_{yz'}$ $\mathcal{O}_{zy'}$ (10) $\mathcal{O}_{\mathbf{x}\mathbf{x}'}$ \mathcal{O}_{xy^\prime} (56) \mathbf{I}^{c} P_x P_y^c $\mathcal{O}_{\mathbf{x}\mathbf{z}'}$ $\mathcal{O}_{zx'}$ $P_{z'}^{\odot}$ P_x^s P_x^{\odot} P_z^c $\mathbf{P}_{\mathbf{z}}^{\odot}$ $\mathcal{O}_{xy'}$ $\mathcal{O}_{yz'}$ $\mathcal{O}_{zy'}$ (11) \mathbf{I}^{c} $\mathcal{O}_{xy'}$ $\mathcal{O}_{xz^{\prime}}$ (57) P_x $P_{v'}^c$ $\mathcal{O}_{\mathbf{x}\mathbf{x}'}$ $\mathcal{O}_{zx'}$ $P_{z'}^{\odot}$ P_z P_x^c P_x^s P_{7}^{c} \mathbf{P}_{7}^{s} P_z^{\odot} $\mathcal{O}_{yz'}$ (12) \mathcal{O}_{xy^\prime} (58) P_x P_{y}^{c} $P_{v'}^c$ $\mathcal{O}_{\mathbf{x}\mathbf{x}'}$ $\mathcal{O}_{xz'}$ $\mathcal{O}_{\mathbf{z}\mathbf{x}'}$ $\mathbf{P}_{\mathbf{z}'}^{\odot}$ P_x^s P_z^c P_z^s $\mathcal{O}_{zy'}$ (13) $\mathbf{P}_{\mathbf{z}}$ P_x^c $\mathcal{O}_{yz'}$ \mathbf{I}^{c} P_x^{\odot} $\mathcal{O}_{xy^{\prime}}$ $\mathcal{O}_{zx^{\prime}}$ (59) P_v^c $\mathcal{O}_{\mathbf{x}\mathbf{x}'}$ $\mathcal{O}_{\mathbf{x}\mathbf{z}'}$ $P_{z'}^{\odot}$ P_z^c $\mathbf{P}_{\mathbf{z}}^{\mathbf{s}}$ \mathbf{P}_{z}^{\odot} P_x^c $\mathbf{P}_{\mathbf{x}}^{\mathbf{s}}$ $\mathcal{O}_{yz^{\prime}}$ $\mathcal{O}_{zy'}$ (14) P_x^{\odot} \mathcal{O}_{xy^\prime} (60) P_y^c $P_{v'}^c$ $\mathcal{O}_{\mathbf{x}\mathbf{x}'}$ $\mathcal{O}_{xz'}$ $\mathcal{O}_{zx'}$ P_z^{\odot} $P_{x'}^{\odot}$ P_x^s P_x^{\odot} P_x Pz P_z^c (15) $P_{x'}$ \mathbf{I}^{c} $P_{x^{\prime}}^{c}$ $P_{v'}^c$ P_x P_x^{\odot} (61) $P^s_{x^\prime}$ $P_{z'}^c$ $P_{x^{\prime}}^{\odot}$ \mathcal{O}_{xy^\prime} $\mathcal{O}_{\mathrm{zy}'}$ P_x^s P_z^c P_x P_z $P_{x'}$ (16) P_x^{\odot} $P_{y'}^c$ (62) Px P_v^c $P_{x'}^c$ $P_{x'}^s$ $P_{z'}^c$ P_x^s P_z^c $\mathcal{O}_{xy^{\prime}}$ $\mathcal{O}_{yx'}$ $\mathcal{O}_{zy'}$ $\mathbf{P}_{\mathbf{z}}$ $P_{x^{\prime}}$ Px (17)(63) I $\mathbf{P}_{\mathbf{x}}$ P_v^c $P_{x'}^c$ $P_{x'}^s$ $P_{z'}^c$ $P_{z'}^s$ \mathcal{O}_{zy^\prime} $\mathbf{P}_{\mathbf{x}'}^{\odot}$ P_x^s P_x^{\odot} P_z^c P_z^{\odot} \mathcal{O}_{xy^\prime} $P_{x'}$ (18) P_x^{\odot} P_v^c $P_{x'}^c$ $P^{s}_{x^{\prime}}$ $P_{z^{\prime}}^{c}$ (64) I $P_{z^{\prime}}^{s}$ $\mathbf{P}_{\mathbf{x}}^{\odot}$ $P_{x'}$ P_x^s P_z^c P_z^{\odot} $\mathcal{O}_{xy^{\prime}}$ $\mathcal{O}_{\mathbf{y}\mathbf{x}'}$ $\mathcal{O}_{zy'}$ (19) I P_x^{\odot} $P_{x'}^c$ $P^s_{x^\prime}$ $P_{y'}^{c}$ $P_{z'}^c$ $P_{z'}^s$ (65) $\mathbf{P}_{\mathbf{z}}^{\mathbf{c}}$ $\mathbf{P}_{\mathbf{z}}^{\odot}$ $P_{x'}^{\odot}$ P_x^s $\mathbf{P}_{\mathbf{x}}^{\odot}$ $\mathcal{O}_{xy^{\prime}}$ $\mathcal{O}_{\mathrm{yx'}}$ $\mathcal{O}_{zy'}$ (20) $\mathbf{P}_{\mathbf{z}}^{\odot}$ (66) $\mathbf{P}_{\mathbf{x}}^{\odot}$ P_y^c $P_{x^{\prime}}^{c}$ $P^s_{x^\prime}$ $P_{y'}^{c}$ $P_{z^{\prime}}^{c}$ $P_{z'}^s$ P_x^c $P_{x'}^{\odot}$ $P_{z'}^{\odot}$ P_z^s $\mathbf{P}_{\mathbf{z}}$ $P_{x^{\prime}}$ $P_{z^{\prime}}$ (21) $\mathbf{P}_{\mathbf{z}'}^{\odot}$ \mathcal{O}_{yx^\prime} \mathbf{I}^{c} P_v^c P_v^s $P_{z'}^s$ P_z^{\odot} $P_{x'}^{\odot}$ (67) Is $P_{x'}^c$ $\mathcal{O}_{\mathbf{x}\mathbf{z}'}$ $\mathbf{P}_{\mathbf{z}}$ P_x^c P_z^s $\mathcal{O}_{yz'}$ (22)P_x^c P^s \mathcal{O}_{zy^\prime} Is $P_{x'}^c$ $P_{y'}^c$ $P_{z'}^s$ $\mathbf{P}_{\mathbf{z}}$ $P_{x^{\prime}}$ $P_{z^{\prime}}$ $\mathcal{O}_{yx'}$ $\mathcal{O}_{yz'}$ (68) \mathbf{I}^{c} $P_{y'}^s$ $\mathcal{O}_{xz'}$ (23) $\mathbf{P}_{\mathbf{z}'}^{\odot}$ P_z^s $P_{x'}^{\odot}$ $\mathcal{O}_{yx'}$ $\mathcal{O}_{zy'}$ $\mathbf{P}_{\mathbf{z}}$ P_x^c $\mathcal{O}_{yz'}$ P_v^s $P_{v'}^s$ (24)(69) P_v^c $P_{x'}^c$ $P_{v'}^c$ $P_{z'}^s$ $\mathcal{O}_{\mathbf{x}\mathbf{z}'}$ $P_{x'}^{\odot}$ $P_{z'}^{\odot}$ $\mathcal{O}_{zy'}$ P_{x^\prime} $P_{z^{\prime}}$ P_x^c P_z^s P_z^{\odot} (25) $\mathbf{P}_{\mathbf{z}}^{\mathbf{s}}$ P_z^{\odot} $P_{x'}^{\odot}$ $P_{z^{\prime}}^{\odot}$ $\mathcal{O}_{yx'}$ (26) P_x^c $\mathcal{O}_{yz'}$ $\mathcal{O}_{zy'}$ PHYSICAL REVIEW C 103, 014607 (2021) P_z^{\odot} \mathcal{O}_{yx^\prime} P_x^s P_z^c P_x^c P_{z}^{s} $P_{x'}^{\odot}$ (27) $\mathbf{P}_{\mathbf{z}}$ $P_{x'}^{\odot}$ P_z^c P_x^c P_x^s P^s_z $\mathcal{O}_{zy'}$ P_z $\mathcal{O}_{\mathbf{y}\mathbf{x}'}$ (28) P_z^{\odot} $P_{x'}^{\odot}$ P_x^c P_x^s P_z^c $\mathbf{P}_{\mathbf{z}}^{s}$ $\mathcal{O}_{\mathbf{y}\mathbf{x}'}$ $\mathcal{O}_{zy'}$ (29) P_x^c P_x^{\odot} P_z^s P_z^{\odot} $P_{z^{\prime}}^{\odot}$ $\mathbf{P}_{\mathbf{x}}$ $\mathbf{P}_{\mathbf{z}}$ $P_{z^{\prime}}$ + observable class 1 (30) $P_{z^\prime}^{\odot}$ \mathcal{O}_{xy^\prime} $\mathbf{P}_{\mathbf{z}}$ $P_{z^{\prime}}$ P_x^c P^s_z $\mathcal{O}_{zy'}$ P_x (31) \mathcal{O}_{xy^\prime} (32)P_x P_z Pz' P_x^c P^s $\mathcal{O}_{yz'}$ $\mathcal{O}_{zy'}$ P_x^{\odot} P_z^s P_z^{\odot} $\mathbf{P}_{\mathbf{z}'}^{\odot}$ \mathcal{O}_{xy^\prime} P_x^c $\mathcal{O}_{zy'}$ (33) $P_{z^{\prime}}$ P_x^{\odot} P_z^s P_z^{\odot} $\mathcal{O}_{xy^{\prime}}$ $P_{z^{\prime}}$ P_x^c $\mathcal{O}_{yz'}$ $\mathcal{O}_{zy'}$ (34) P_x^{\odot} $\mathcal{O}_{zy'}$ P_z^s P_z^{\odot} $\mathbf{P}_{\mathbf{z}'}^{\odot}$ $\mathcal{O}_{\mathrm{yz'}}$ (35) P_x^c $\mathcal{O}_{\mathbf{x}\mathbf{y}'}$ P_x^s P_x^{\odot} P_z^c $P_{x'}^{\odot}$ $P_{z'}^{\odot}$ $P_{x^{\prime}}$ $P_{z^{\prime}}$ P_x (36) P_x^{\odot} P_{7}^{c} $P_{x'}^{\odot}$ $P_{z'}^{\odot}$ P_x P_x^s $\mathcal{O}_{\mathbf{y}\mathbf{x}'}$ $\mathcal{O}_{yz'}$ (37) $\mathbf{P}_{\mathbf{x}'}^{\odot}$ $\mathbf{P}_{\mathbf{z}'}^{\odot}$ $\mathcal{O}_{yz'}$ P_x^s P_z^c $\mathcal{O}_{xy'}$ $\mathcal{O}_{\mathbf{y}\mathbf{x}'}$ (38) P_x \mathcal{O}_{xy^\prime} $P_{z'}$ P_x^s P_x^{\odot} P^c_z $P_{x^{\prime}}^{\odot}$ $P_{z'}^{\odot}$ (39) $P_{x'}$ \mathcal{O}_{yz^\prime} $P_{x'}^{\odot}$ $P_{z'}^{\odot}$ P_x^{\odot} P_z^c P_x^s $\mathcal{O}_{xy'}$ $\mathcal{O}_{\mathbf{y}\mathbf{x}'}$ (40) P_x^{\odot} $P_{x'}^{\odot}$ P_x^c P_z^s P_z^{\odot} $\mathbf{P}_{\mathbf{z}}$ $P_{x'}$ (41)Px P_x^c P^s $\mathbf{P}_{\mathbf{x}'}^{\odot}$ $\mathcal{O}_{xy'}$ $\mathcal{O}_{zy'}$ (42)Px Pz $P_{x'}$ \mathcal{O}_{yx^\prime} P_x Pz $P_{x'}$ P_x^c P^s_z $\mathcal{O}_{xy'}$ $\mathcal{O}_{zy'}$ (43) P_z^{\odot} $P_{x'}^{\odot}$ $\mathcal{O}_{zy^{\prime}}$ P_{x^\prime} $\mathbf{P}_{\mathbf{x}}^{\odot}$ P_z^s P_x^c $\mathcal{O}_{\mathbf{x}\mathbf{y}'}$ (44) P_x^{\odot} $\mathbf{P}_{\mathbf{z}}^{\odot}$ $\mathcal{O}_{yx'}$ $\mathbf{P}_{\mathbf{z}}^{s}$ $P_{x^{\prime}}$ P_x^c $\mathcal{O}_{xy'}$ $\mathcal{O}_{zy'}$ (45) $\mathbf{P}_{\mathbf{z}}^{\odot}$ $\mathbf{P}^{\odot}_{\mathbf{r}'}$ P_x^c P_x^{\odot} P_z^s $\mathcal{O}_{xy'}$ (46) $\mathcal{O}_{\mathbf{y}\mathbf{x}'}$ Ozy'

$$\begin{split} \gamma p &\to \pi^0 \pi^0 p \\ \left\{ \mathbf{I}^{\odot}, \mathbf{P}_{y}, \mathbf{P}_{y'}, \mathcal{O}_{yy'}^{\odot}, \mathcal{O}_{yy'}, \mathbf{P}_{y'}^{\odot}, \mathbf{P}_{y}^{\odot}, \mathbf{I}_{0}, \mathbf{P}_{x}, \mathbf{P}_{z}, \mathbf{P}_{x'}, \mathbf{P}_{x}^{s}, \right. \\ \left. \mathbf{P}_{x}^{\odot}, \mathbf{P}_{z}^{c}, \mathbf{P}_{z}^{\odot}, \mathbf{P}_{x'}^{\odot} \right\}. \end{split}$$

three more measurements needed for remaining 8 observables

$$\mathscr{B}_{lin} \mathscr{T}_{long} : \qquad P_z, P_z^c$$

$$\mathscr{B}_{\odot} \mathscr{T}_{trans} : \qquad P_x^{\odot}, P_y^{\odot}$$

 $\mathscr{B}_{\odot} \mathscr{T}_{trans} \mathscr{R} : \qquad P_{x'}, P_{x'}^{\odot}, P_{y'}^{\odot}, \mathscr{O}_{yy'}^{\odot}$

10

Analytic Approach

- Use phase-fixing approach by Nakayama [Phys. Rev. C 100, 035208 (2019)]
- Construct "decoupled" shape-classes
 depend on two relative phases (not four)

$$\begin{split} \mathrm{IIa} &: \mathcal{O}_{\mathrm{s1}}^{\mathrm{II}} + \mathcal{O}_{\mathrm{s2}}^{\mathrm{II}}, \mathcal{O}_{\mathrm{s3}}^{\mathrm{II}} + \mathcal{O}_{\mathrm{s4}}^{\mathrm{II}}, \mathcal{O}_{\mathrm{c1}}^{\mathrm{II}} + \mathcal{O}_{\mathrm{c2}}^{\mathrm{II}}, \mathcal{O}_{\mathrm{c3}}^{\mathrm{II}} + \mathcal{O}_{\mathrm{c4}}^{\mathrm{II}},\\ \mathrm{IIb} &: \mathcal{O}_{\mathrm{s1}}^{\mathrm{II}} - \mathcal{O}_{\mathrm{s2}}^{\mathrm{II}}, \mathcal{O}_{\mathrm{s3}}^{\mathrm{II}} - \mathcal{O}_{\mathrm{s4}}^{\mathrm{II}}, \mathcal{O}_{\mathrm{c1}}^{\mathrm{II}} - \mathcal{O}_{\mathrm{c2}}^{\mathrm{II}}, \mathcal{O}_{\mathrm{c3}}^{\mathrm{II}} - \mathcal{O}_{\mathrm{c4}}^{\mathrm{II}}. \end{split}$$

• Choose [Xa, Xb, Y, Z], e.g. [*IIa*, *IIb*, *VIIIa*, *VIb*]

$$\underbrace{\phi_{13} + \phi_{24}}_{\text{IIa}} + \underbrace{\phi_{57} + \phi_{68}}_{\text{IIb}} = \underbrace{\phi_{18} + \phi_{27}}_{\text{VIIIa}} - \underbrace{\phi_{35} - \phi_{46}}_{\text{VIb}}$$

$$\overset{\bullet}{\bullet}$$
see paper

P _x	Pz	$\mathbf{P}^{\odot}_{\mathbf{x}}$	$\mathbf{P}_{\mathbf{z}}^{\odot}$	P ^s _z	P_x^c	$\mathcal{O}^{\mathrm{s}}_{\mathbf{z}\mathbf{z}'}$	$\mathcal{O}_{\mathbf{x}\mathbf{z}'}^{\mathrm{c}}$
P _x	Pz	$\mathbf{P}_{\mathbf{x}}^{\odot}$	$\mathbf{P}_{\mathbf{z}}^{\odot}$	P_z^s	P _x ^c	$\mathcal{O}_{\mathbf{z}\mathbf{x}'}^{\mathbf{c}}$	$\mathcal{O}_{\mathbf{x}\mathbf{x}'}^{\mathbf{s}}$
P _x	Pz	$\mathbf{P}_{\mathbf{x}}^{\odot}$	$\mathbf{P}_{\mathbf{z}}^{\odot}$	P_z^s	P_x^c	$\mathcal{O}_{\mathbf{z}\mathbf{z}'}^{\mathrm{c}}$	$\mathcal{O}^{\mathrm{s}}_{\mathrm{xz'}}$
P _x	Pz	$\mathbf{P}^{\odot}_{\mathbf{x}}$	$\mathbf{P}_{\mathbf{z}}^{\odot}$	P_z^s	P_x^c	$\mathcal{O}^{\mathrm{s}}_{\mathrm{zx}'}$	$\mathcal{O}^{c}_{\mathbf{x}\mathbf{x}'}$
P _x	P_z	$\mathbf{P}^{\odot}_{\mathbf{x}}$	$\mathbf{P}_{\mathbf{z}}^{\odot}$	P_z^c	P_x^s	$\mathcal{O}^{\mathrm{s}}_{\mathrm{zz'}}$	$\mathcal{O}^{\mathrm{c}}_{\mathrm{xz'}}$
P _x	P_z	$\mathbf{P}^{\odot}_{\mathbf{x}}$	$\mathbf{P}_{\mathbf{z}}^{\odot}$	P_z^c	P_x^s	$\mathcal{O}^{\mathrm{c}}_{\mathrm{zx'}}$	$\mathcal{O}^{\mathrm{s}}_{\mathrm{xx'}}$
$\mathbf{P}_{\mathbf{x}}$	$\mathbf{P}_{\mathbf{z}}$	$\mathbf{P}^{\odot}_{\mathbf{x}}$	$\mathbf{P}_{\mathbf{z}}^{\odot}$	P_z^c	P_x^s	$\mathcal{O}^{\mathrm{c}}_{\mathrm{zz'}}$	$\mathcal{O}^{\mathrm{s}}_{\mathrm{xz'}}$
$\mathbf{P}_{\mathbf{x}}$	$\mathbf{P}_{\mathbf{z}}$	$\mathbf{P}_{\mathbf{x}}^{\odot}$	$\mathbf{P}_{\mathbf{z}}^{\odot}$	P_z^c	P_x^s	$\mathcal{O}^{\mathrm{s}}_{\mathrm{zx}'}$	$\mathcal{O}^{\mathrm{c}}_{\mathrm{xx'}}$
$\mathbf{P}_{\mathbf{x}}$	$\mathbf{P}_{\mathbf{z}}$	$\mathbf{P}_{\mathbf{x}}^{\odot}$	$\mathbf{P}_{\mathbf{z}}^{\odot}$	$\mathcal{O}^{\mathrm{s}}_{\mathrm{zy'}}$	$\mathcal{O}^{\mathrm{c}}_{\mathrm{xy'}}$	$\mathcal{O}^{\mathrm{s}}_{\mathrm{zz'}}$	$\mathcal{O}^{\mathrm{c}}_{\mathrm{xz'}}$
P _x	$\mathbf{P}_{\mathbf{z}}$	$\mathbf{P}^{\odot}_{\mathbf{x}}$	$\mathbf{P}_{\mathbf{z}}^{\odot}$	$\mathcal{O}^{\mathrm{s}}_{\mathrm{zy'}}$	$\mathcal{O}^{\mathrm{c}}_{\mathrm{xy'}}$	$\mathcal{O}^{\mathrm{c}}_{\mathrm{zx'}}$	$\mathcal{O}^{\mathrm{s}}_{\mathrm{xx'}}$
P _x	P_z	$\mathbf{P}^{\odot}_{\mathbf{x}}$	$\mathbf{P}_{\mathbf{z}}^{\odot}$	$\mathcal{O}^{\mathrm{s}}_{\mathrm{zy}'}$	$\mathcal{O}^{\mathrm{c}}_{\mathrm{xy'}}$	$\mathcal{O}^{ ext{c}}_{ ext{z}^{ ext{z}^{\prime}}}$	$\mathcal{O}^{\mathrm{s}}_{\mathrm{xz'}}$
$\mathbf{P}_{\mathbf{x}}$	P_z	$\mathbf{P}^{\odot}_{\mathbf{x}}$	$\mathbf{P}_{\mathbf{z}}^{\odot}$	$\mathcal{O}^{\mathrm{s}}_{\mathrm{zy'}}$	$\mathcal{O}^{\mathrm{c}}_{\mathrm{xy'}}$	$\mathcal{O}^{\mathrm{s}}_{\mathrm{zx'}}$	$\mathcal{O}^{\mathrm{c}}_{\mathrm{xx'}}$
P _x	P_z	$\mathbf{P}^{\odot}_{\mathbf{x}}$	$\mathbf{P}_{\mathbf{z}}^{\odot}$	$\mathcal{O}^{\rm c}_{{ m zy}'}$	$\mathcal{O}^{\rm s}_{{\rm x}{\rm y}'}$	$\mathcal{O}^{\mathrm{s}}_{\mathrm{zz'}}$	$\mathcal{O}^{\mathrm{c}}_{\mathrm{xz'}}$
$\mathbf{P}_{\mathbf{x}}$	P_z	$\mathbf{P}^{\odot}_{\mathbf{x}}$	$\mathbf{P}_{\mathbf{z}}^{\odot}$	$\mathcal{O}_{\mathrm{zy}'}^{\mathrm{c}}$	$\mathcal{O}^{\mathrm{s}}_{\mathrm{xy}'}$	$\mathcal{O}^{\mathrm{c}}_{\mathrm{zx}'}$	$\mathcal{O}^{\mathrm{s}}_{\mathrm{xx'}}$
$\mathbf{P}_{\mathbf{x}}$	Pz	$\mathbf{P}^{\odot}_{\mathbf{x}}$	$\mathbf{P}_{\mathbf{z}}^{\odot}$	$\mathcal{O}^{\mathrm{c}}_{\mathrm{zv}'}$	$\mathcal{O}^{\rm s}_{{\rm x}{ m v}'}$	$\mathcal{O}^{\mathrm{c}}_{\mathrm{zz'}}$	$\mathcal{O}^{\mathrm{s}}_{\mathrm{xz'}}$
$\mathbf{P}_{\mathbf{x}}$	$\mathbf{P}_{\mathbf{z}}$	$\mathbf{P}^{\odot}_{\mathbf{x}}$	$\mathbf{P}_{\mathbf{z}}^{\odot}$	$\mathcal{O}^{\mathrm{c}}_{\mathrm{zv}'}$	$\mathcal{O}^{\rm s}_{{\rm x}{ m v}'}$	$\mathcal{O}^{\mathrm{s}}_{\mathrm{zx}'}$	$\mathcal{O}^{\mathrm{c}}_{\mathrm{xx'}}$
P_z^s	P_x^c	$\mathcal{O}_{\mathrm{xy'}}$	$\mathcal{O}_{\mathrm{zy'}}$	$\mathcal{O}^{\odot}_{\mathbf{x}\mathbf{y}'}$	$\mathcal{O}_{\mathrm{zv}'}^{\odot}$	$\mathcal{O}^{\mathrm{s}}_{\mathrm{zz'}}$	$\mathcal{O}^{\mathrm{c}}_{\mathrm{xz'}}$
$\mathbf{P}_{\mathbf{z}}^{\mathbf{s}}$	P_x^c	$\mathcal{O}_{xy^{\prime}}$	$\mathcal{O}_{zy^{\prime}}$	$\mathcal{O}_{\mathrm{xy'}}^{\odot}$	$\mathcal{O}_{\mathrm{zy'}}^{\odot}$	$\mathcal{O}^{c}_{zx'}$	$\mathcal{O}^{\mathrm{s}}_{\mathrm{xx'}}$
P_z^s	P_x^c	$\mathcal{O}_{xy'}$	$\mathcal{O}_{zy'}$	$\mathcal{O}_{\mathrm{xy}'}^{\odot}$	$\mathcal{O}_{\mathrm{zy}'}^{\odot}$	$\mathcal{O}^{\mathrm{c}}_{\mathrm{zz'}}$	$\mathcal{O}^{\mathrm{s}}_{\mathrm{xz'}}$
$\mathbf{P}_{\mathbf{z}}^{\mathbf{s}}$	P_x^c	$\mathcal{O}_{xy'}$	$\mathcal{O}_{zy'}$	$\mathcal{O}^{\odot}_{\mathrm{xy'}}$	$\mathcal{O}_{\mathrm{zy}'}^{\odot}$	$\mathcal{O}^{\mathrm{s}}_{\mathrm{zx}'}$	$\mathcal{O}^{\mathrm{c}}_{\mathrm{xx'}}$
P_z^c	P_x^s	$\mathcal{O}_{\mathrm{xy'}}$	$\mathcal{O}_{\mathrm{zy'}}$	$\mathcal{O}^{\odot}_{\mathbf{x}\mathbf{y}'}$	$\mathcal{O}_{\mathrm{zv}'}^{\odot}$	$\mathcal{O}^{\mathrm{s}}_{\mathrm{zz'}}$	$\mathcal{O}^{\mathrm{c}}_{\mathrm{xz'}}$
$\mathbf{P}_{\mathbf{z}}^{\mathbf{c}}$	P_x^s	\mathcal{O}_{xy^\prime}	$\mathcal{O}_{zy^{\prime}}$	$\mathcal{O}_{\mathrm{xy}'}^{\odot}$	$\mathcal{O}_{\mathrm{zy'}}^{\odot}$	$\mathcal{O}^{\mathrm{c}}_{\mathrm{zx}'}$	$\mathcal{O}^{\mathrm{s}}_{\mathrm{xx'}}$
$\mathbf{P}_{\mathbf{z}}^{\mathbf{c}}$	P_x^s	$\mathcal{O}_{\mathrm{xy'}}$	$\mathcal{O}_{zy'}$	$\mathcal{O}_{\mathrm{xy}'}^{\odot}$	$\mathcal{O}_{\mathrm{zy}'}^{\odot}$	$\mathcal{O}^{\mathrm{c}}_{\mathrm{zz'}}$	$\mathcal{O}^{\mathrm{s}}_{\mathrm{xz'}}$
$\mathbf{P}_{\mathbf{z}}^{\mathbf{c}}$	P_x^s	$\mathcal{O}_{\mathrm{xy'}}$	$\mathcal{O}_{zy'}$	$\mathcal{O}_{\mathrm{xy}'}^{\odot}$	$\mathcal{O}_{\mathrm{zy}'}^{\odot}$	$\mathcal{O}^{\mathrm{s}}_{\mathrm{zx'}}$	$\mathcal{O}^{\mathrm{c}}_{\mathrm{xx'}}$
\mathcal{O}_{xy^\prime}	$\mathcal{O}_{zy'}$	$\mathcal{O}^{\odot}_{\mathrm{xy}'}$	$\mathcal{O}_{\mathrm{zy}'}^{\odot}$	$\mathcal{O}^{\rm s}_{{ m zy}'}$	$\mathcal{O}_{\mathrm{xy}'}^{\mathrm{c}}$	$\mathcal{O}^{\mathrm{s}}_{\mathrm{zz'}}$	$\mathcal{O}^{\mathrm{c}}_{\mathrm{xz'}}$
\mathcal{O}_{xy^\prime}	$\mathcal{O}_{zy'}$	$\mathcal{O}_{\mathrm{xy}'}^{\odot}$	$\mathcal{O}_{\mathrm{zy}'}^{\odot}$	$\mathcal{O}^{\mathrm{s}}_{\mathrm{zy'}}$	$\mathcal{O}^{\mathrm{c}}_{\mathrm{xy'}}$	$\mathcal{O}^{\mathrm{c}}_{\mathrm{zx'}}$	$\mathcal{O}^{\mathrm{s}}_{\mathrm{xx'}}$
\mathcal{O}_{xy^\prime}	$\mathcal{O}_{zy'}$	$\mathcal{O}_{\mathrm{xy}'}^{\odot}$	$\mathcal{O}_{\mathrm{zy}'}^{\odot}$	$\mathcal{O}^{\mathrm{s}}_{\mathrm{zy}'}$	$\mathcal{O}^{\mathrm{c}}_{\mathrm{xy'}}$	$\mathcal{O}^{\mathrm{c}}_{\mathrm{zz'}}$	$\mathcal{O}^{\mathrm{s}}_{\mathrm{xz'}}$
\mathcal{O}_{xy^\prime}	$\mathcal{O}_{zy'}$	$\mathcal{O}^{\odot}_{\mathrm{xy}'}$	$\mathcal{O}_{\mathrm{zy}'}^{\odot}$	$\mathcal{O}^{\rm s}_{{ m zy}'}$	$\mathcal{O}_{\mathrm{xy}'}^{\mathrm{c}}$	$\mathcal{O}^{\mathrm{s}}_{\mathrm{zx'}}$	$\mathcal{O}^{\mathrm{c}}_{\mathrm{xx'}}$
\mathcal{O}_{xy^\prime}	$\mathcal{O}_{zy'}$	$\mathcal{O}_{\mathbf{x}\mathbf{y}'}^{\odot}$	$\mathcal{O}_{\mathrm{zy}'}^{\odot}$	$\mathcal{O}_{\mathrm{zy}'}^{\mathrm{c}}$	$\mathcal{O}^{\rm s}_{{\rm x}{\rm y}'}$	$\mathcal{O}^{\mathrm{s}}_{\mathrm{zz'}}$	$\mathcal{O}^{\mathrm{c}}_{\mathrm{xz'}}$
\mathcal{O}_{xy^\prime}	$\mathcal{O}_{zy^{\prime}}$	$\mathcal{O}_{\mathrm{xy}'}^{\odot}$	$\mathcal{O}_{\mathrm{zy}'}^{\odot}$	$\mathcal{O}^{\mathrm{c}}_{\mathrm{zv}'}$	$\mathcal{O}^{\mathrm{s}}_{\mathrm{x}\mathrm{y}'}$	$\mathcal{O}^{\mathrm{c}}_{\mathrm{zx}'}$	$\mathcal{O}^{\mathrm{s}}_{\mathrm{xx'}}$
$\mathcal{O}_{\mathrm{xy'}}$	$\mathcal{O}_{zy'}$	$\mathcal{O}^{\odot}_{\mathrm{xv}'}$	$\mathcal{O}_{\mathrm{zv}'}^{\odot}$	$\mathcal{O}_{zv'}^c$	$\mathcal{O}^{\mathrm{s}}_{\mathrm{xv}'}$	$\mathcal{O}_{\mathbf{z}\mathbf{z}'}^{\mathrm{c}}$	$\mathcal{O}^{\mathrm{s}}_{\mathrm{xz'}}$
$\mathcal{O}_{xy'}$	$\mathcal{O}_{zy^{\prime}}$	$\mathcal{O}_{\mathrm{xy'}}^{\odot}$	$\mathcal{O}_{zy'}^{\odot}$	$\mathcal{O}_{\mathrm{zy'}}^{\mathrm{c}}$	$\mathcal{O}^{\rm s}_{{\rm x}{\rm y}'}$	$\mathcal{O}^{\mathrm{s}}_{\mathrm{zx}'}$	$\mathcal{O}^{c}_{xx'}$
		-					

PHYSICAL REVIEW C 103, 014607 (2021)

- Extensive list of two-pseudoscalar-meson photoproduction measurements
- Tackled extremely hard complete experiment analysis for N=8
- 69 minimal complete sets with 16 observables (only 1 triple polarisation observable!)
- Test of complete experiment analysis is within reach
- Most promising set for future measurements:

 $I^{\odot}, P_{y}, P_{y'}, \mathscr{O}_{yy'}^{\odot}, \mathscr{O}_{yy'}, P_{y'}^{\odot}, P_{y}^{\odot}, I_{0}, P_{x}, P_{z}, Px', P_{x}^{S}, P_{x}^{\odot}, P_{z}^{O}, P_{z}^{\odot}, P_{x'}^{\odot}$

Thank you for your attention!

Backup-Slides

Backup | Homotopy Continuation

$$F(x_1, ..., x_n) = \begin{bmatrix} f_1(x_1, ..., x_n) \\ \vdots \\ f_n(x_1, ..., x_n) \end{bmatrix}$$

$$G(x_1, ..., x_n) = \begin{bmatrix} g_1(x_1, ..., x_n) \\ \vdots \\ g_n(x_1, ..., x_n) \end{bmatrix}$$

15

System of interest

Already know the solutions At least as many solutions as $F(x_1, ..., x_n)$

Can always find homotopy H wich satisfies:

$$H(\overrightarrow{x},1) = G(\overrightarrow{x})$$
$$H(\overrightarrow{x},0) = F(\overrightarrow{x})$$

Track each solution path from $G(\vec{x})$ to $F(\vec{x})$, via the homotopy H

taken from https://www.juliahomotopycontinuation.org/guides/introduction/