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Introduction: why spin-amplitudes?

) Photoproduction is a generic reaction used to study baryon resonances:

g [E.D. Bloom et. al., SLAC-PUB-653 (1969)]
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Introduction: why spin-amplitudes?

) Photoproduction is a generic reaction used to study baryon resonances:
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) Baryon resonances (A(1232)%+,N(1440)%+,...) are Fermions
< Scatter particles with spin to excite systems with half-integer J
) 'T-matrix’ T5 parameterized by N spin-amplitudes {b;,i =1,..., N}
) The usual reactions under study are:

- Pion-Nucleon (7N-) scattering: 71N — «N (2 spin-amplitudes)
- Pion photoproduction: YN — N (4 spin-amplitudes)

- Pion electroproduction: eN — e’w/N (6 spin-amplitudes)

- 2-Pion photoproduction: yN — 7N (8 spin-amplitudes)
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Algebraic starting point |

) Generic problem with N amplitudes {b;,i = 1,..., N}: the N2 (polarization-)
observables are bilinear hermitean forms (def. via orthogonal matrices ['%):

0 =Y by, fora=1,... N2

Y. Wunderlich Determination of complete experiments using graphs 2/16,



Algebraic starting point |

) Generic problem with N amplitudes {b;,i = 1,..., N}: the N2 (polarization-)
observables are bilinear hermitean forms (def. via orthogonal matrices ['%):

0 =Y by, fora=1,... N2

< Complete-experiment problem:

What are the minimal subsets of
the observables O%, which allow for
the unique extraction of the " b,
amplitudes b; up to one unknown

‘ P21
overall phase ¢(W,0)? 5

6 (W, 6)

«) Analysis operates on each bin in \ Re
(W, 0) individually.

x) Consider idealized (academic)
case without measurement
uncertainty!

Re
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Algebraic starting point Il

N

1 [0 2 {034
«) Expression O% = ¢® 3 /",

of the F-matrices):

b?‘fjj-“bj can be 'inverted’ (using the completeness

* N2 r * o«
b7 bj = %Za:l (rff) (CT) :
= Determine the real- and imaginary parts of a 'minimal’ set of b} b;
= Obtain (quite large) over-complete set {O*} determined via the RHS
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of the F-matrices):

b?‘fjj-“bj can be 'inverted’ (using the completeness

* N2 r * o«
b7 bj = %Za:l (rff) (CT) :
= Determine the real- and imaginary parts of a 'minimal’ set of b} b;
= Obtain (quite large) over-complete set {O*} determined via the RHS

) Consider alternative 'basis’: bilinear products

b;bj, fori,j=1,...,N. [Moravcsik, J. Math. Phys. 26, 211 (1985).]
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Algebraic starting point Il

N

1 [0 2 {034
«) Expression O% = ¢® 3 /",

of the F-matrices):

b?‘fjj-“bj can be 'inverted’ (using the completeness

* N2 r * o«
b7 bj = %Za:l (I'{f) (CT) :
= Determine the real- and imaginary parts of a 'minimal’ set of b} b;
= Obtain (quite large) over-complete set {O*} determined via the RHS

) Consider alternative 'basis’: bilinear products
b.;-“b,-7 fori,j=1,...,N. [Moravcesik, J. Math. Phys. 26, 211 (1985).]

) Standard initial assumption: the moduli |by]|,|b2], ..., |bn]| are already
known from a certain subset of 'diagonal’ observables.
= Have to determine a minimal set of relative phases ¢; := ¢; — ¢; (bj = |bj| e'¥)
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Algebraic starting point Il

) Expression 0% = ¢ Zf\fj:l b}*fﬁbj can be 'inverted’ (using the completeness

of the I-matrices):
" N (2T 0o
b7 bj = %Za:l (I'{f) (%) :
= Determine the real- and imaginary parts of a 'minimal’ set of b} b;
= Obtain (quite large) over-complete set {O%} determined via the RHS

) Consider alternative 'basis’: bilinear products
b;bj, fori,j=1,...,N. [Moravcsik, J. Math. Phys. 26, 211 (1985).]

) Standard initial assumption: the moduli |by]|,|by|,. .., |bn| are already
known from a certain subset of 'diagonal’ observables.
= Have to determine a minimal set of relative phases ¢; := ¢; — ¢; (b; = |bj| €'%)

) Finding a generic solution for such problems, for arbitrary N, can be quite
tough in the O%-basis.
However: In the b} b;-basis, a general solution exists:

Moravcsik's Theorem!
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Moravcsik's Theorem (modified form)

From [YW, P. Kroenert, F. Afzal, A. Thiel, Phys. Rev. C 102, no.3, 034605 (2020)],
based on [Moravcsik, J. Math. Phys. 26, 211 (1985).]:
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Moravcsik's Theorem (modified form)

From [YW, P. Kroenert, F. Afzal, A. Thiel, Phys. Rev. C 102, no.3, 034605 (2020)],
based on [Moravcsik, J. Math. Phys. 26, 211 (1985).]:

'Geometrical (graphical) analog’: Represent every amplitude by, ..., by by a point

and every product b; bj, or rel.-phase ¢;;, by a line connecting points 'i" and 'j'.
Furthermore: < Represent every Re [b! b;] o cos ¢;; by a solid line,
— Represent every Im [b} bj] o sin ¢jj by a dashed line.
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and every product b; bj, or rel.-phase ¢;;, by a line connecting points 'i" and 'j'.
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Moravcsik's Theorem (modified): The thus constructed graph is fully complete,
i.e. it allows for neither any continuous nor any discrete ambiguities, if it satisfies:
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Moravcsik's Theorem (modified form)

From [YW, P. Kroenert, F. Afzal, A. Thiel, Phys. Rev. C 102, no.3, 034605 (2020)],
based on [Moravcsik, J. Math. Phys. 26, 211 (1985).]:
'Geometrical (graphical) analog’: Represent every amplitude by, ..., by by a point
and every product b; bj, or rel.-phase ¢;;, by a line connecting points 'i" and 'j'.
Furthermore: — Represent every Re [b} b;] o< cos ¢j; by a solid line,
— Represent every Im [b} bj] o sin ¢jj by a dashed line.

Moravcsik's Theorem (modified): The thus constructed graph is fully complete,
i.e. it allows for neither any continuous nor any discrete ambiguities, if it satisfies:

(i) the graph is fully connected and all points have to Example:
have order two (i.e. are attached to two lines):
- all continuous ambiguities are resolved,

- existence of consistency relation is ensured.
< crucial for resolving discrete ambiguities

& P13+ P32 + Pos + P41 =0

4/16,

Y. Wunderlich Determination of complete experiments using graphs



Moravcsik's Theorem (modified form)

From [YW, P. Kroenert, F. Afzal, A. Thiel, Phys. Rev. C 102, no.3, 034605 (2020)],
based on [Moravcsik, J. Math. Phys. 26, 211 (1985).]:
'Geometrical (graphical) analog’: Represent every amplitude by, ..., by by a point
and every product b; bj, or rel.-phase ¢;;, by a line connecting points 'i" and 'j'.
Furthermore: — Represent every Re [b} b;] o< cos ¢j; by a solid line,
— Represent every Im [b} bj] o sin ¢jj by a dashed line.

Moravcsik's Theorem (modified): The thus constructed graph is fully complete,
i.e. it allows for neither any continuous nor any discrete ambiguities, if it satisfies:

(i) the graph is fully connected and all points have to Example:
have order two (i.e. are attached to two lines):
- all continuous ambiguities are resolved,

- existence of consistency relation is ensured.
< crucial for resolving discrete ambiguities

& P13+ P32 + Pos + P41 =0

Eg: @ ——©
(ii) the graph has to have an odd number of dashed lines, '
as well as any number of solid lines: /
- all discrete ambiguities are resolved. 0 ) @
is complete v/
Determination of complete experiments using graphs 4/16,
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Example 1: pion photoproduction (formalism)

%) Consider the reaction: N — 7.

< Number of spin-amplitudes N = 2 x 2 % 2 [/ 2 =4
~ N N
y N N Parity
E.g. CGLN amplitudes: F1(W,0),..., Fa(W,0).
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Example 1: pion photoproduction (formalism)

%) Consider the reaction: N — 7.

< Number of spin-amplitudes N = 2 x 2 % 2 [/ 2 =4
~ M =~
y N Parity

N
E.g. CGLN amplitudes: F1(W,0),..., Fa(W,0

~

) Can perform basis-change to the transversity-basis:
bl(W7 9)1 b2(W7 9)' b3(Wa 0)1 b4( w, 9)
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Example 1: pion photoproduction (formalism)

%) Consider the reaction: N — 7.

< Number of spin-amplitudes N = 2 x 2 % 2 [/ 2 =4
~ N N
Y N N Parity
E.g. CGLN amplitudes: F1(W,0),..., Fa(W,0).

) Can perform basis-change to the transversity-basis:
bl(Wv 9)1 b2( w, 9)' b3(Wa 0)1 b4( w, 9)

<+ The N? = 16 polarization observables (or polarization asymmetries)

O = |:(da)(B1,T1,R1) . (Q)(Bz,Tg,Rg)}’

dQ dQ

take a particularly convenient form in the transversity basis.
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Example 1: photoproduction (observables)

Observable Bilinear form Shape-class
o0 =5 (1611 + [b2 |2 + |32 + |ba[?) 3 (b1 |b)
=% =1 (1612 + |baf? — [b3]? — |ba]?) 1 (bIF41b) S§=D
=T =1 (=1l + 152 + [b3]? — |4?) 1 (6| F10 |b)
P =3 (= Ibul + 162l = b3 + b ]?) 1 (672 b)
O3, = |by| |b3] sin 13 + |by| | by|sin ¢2q = Im [b3 by + b} bp] = =G 1 (b3 |b)
O3 _ = |by| |bs|sin 13 — |by| |ba| sin ¢4 = Tm [b} by — by by] = F 1(b|F1|p)  a=BT =PR
O3, = |b1| |b3| cos ¢13 + |ba| |ba| cos dag = Re [b3 by + by by] = —E 1 (b9 |b)
O3 _ = |by| |b3| cos ¢13 — |by| | b cos ¢og = Re [by by — by bp] = H 1 (b 2 |b)
OF, = |b1| |ba| sin ¢14 + |bo| |bg| sin o3 = Im [b] by + b by] = O, 3 (b F7|b)
O%_ = |by| |by|sin p14 — |ba| |bs|sin do3 = Im [b by — b bp] = —C, 1(b|F1|p)  b=BR=AD
O3, = |by| |bs| cos p14 + |ba| |b3| cos o3 = Re [b by + bj by] = —C,s 1 (b2 |b)
O3 = |by| |bs|cos 14 — |ba| |bs| cos pp3 = Re [bjby — biby] = =0,y 1 (b T |b)
Of, = |by| |ba|sin ¢p12 + |b3| |ba| sin p34 = Im [b3 by + by b3] = —L, 1 (b| T8 |b)
Of _ = |by| |by|sin ¢1p — |b3| |ba| sin ¢34 = Tm [b3 by — by b3] = — T, L(b|fBIp) c=TR=PL
05, = |by| |bz| cos 15 + |b3| |ba| cos 34 = Re [by by + by b3] = —L, 1 (b 15 |b)
OS_ = |b1| |by| cos d12 — |bs| |ba| cos ¢34 = Re [b3 by — bybs] = T, 1 (b] T |b)
Y. Wunderlich Determination of complete experiments using graphs 6/16,



Example 1: photoproduction (further preliminaries)

) Standard assumption: moduli are known from group S observables:

(Uo-l-i—i— '/V'-l-Fv’)

~

(O'o—z—

~k
T«

1 v vy
|bi] == (0o =X+ T —P),|bo| = +

NI DN
NI R N~

lbs| == (oo + % — T — P),|bs| =

7/16.
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Example 1: photoproduction (further preliminaries)

) Standard assumption: moduli are known from group S observables:

1 . . . 1 . . 5
by = 5 (00— £+ T = P).|bo| = 5 (00— £~ T+ P),
‘b3|=%(00+2—T—ﬁ’),|b4|_%(go+z+ 7V'+FV>)

%) Define a basis of 'decoupled’ observables O, which isolate the real- and
imaginary parts of the bilinear products b b;:

on, = % (07, +07_), n=a,b,c,

On, = % (03, +03_), n=a,b,c.
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Example 1: photoproduction (further preliminaries)

) Standard assumption: moduli are known from group S observables:

1 . v ¥ 1 . . .
bil =35 (00 =2+ T =P),|bo| =5 (00 =2 =T +P),

1 v v o 1 v v «
‘b3|:5(00+Z—T—P),|b4|=§(0'o+z+ T+P)

%) Define a basis of 'decoupled’ observables O, which isolate the real- and
imaginary parts of the bilinear products b; b;:

on, = % (07, +07_), n=a,b,c,

- Example:

Im [b; bo] = |bo| |balsin o = O3_ = 3 (03, — 03_) =1 (-G — F).

Y. Wunderlich Determination of complete experiments using graphs 7/16,



Example 1: photoproduction (a la Moravcsik) |

x) For N = 4 amplitudes, one gets (N ) 37' = 3 possible graph-topologies :

1 2 3

< Each of these topologies can be used as a starting point to derive complete
sets of observables, by inserting odd numbers of dashed lines ...

Y. Wunderlich Determination of complete experiments using graphs 8/16,



Example 1: photoproduction (a la Moravcsik) Il

) Example (1.1) (fully complete):

1.1

— {sin ¢12, cos ¢o4, COS P34, COS P13 }

Y. Wunderlich Determination of complete experiments using graphs 9/16,



Example 1: photoproduction (a la Moravcsik) Il

) Example (1.1) (fully complete):

1.1

— {sin ¢12, cos ¢o4, COS P34, COS P13 }

<+ Map this result to observables (in O- and O-basis)

|by b2 sin é12 = Ofy = (1/2) [Of: + Of_] = (1/2) [-Lo —t/],

|bal | ba| cos g2u = O3 = (1/2)[03, — O3] = (1/2) [-E — A] ,

|bs| | ba| cos ¢34 = 05— = (1/2)[05, — O5_] = (1/2) [-Ls — T
+H].

|ba| | bs| cos gus = O = (1/2) [03, + OF-] = (1/2) [-E

I

Y. Wunderlich

Determination of complete experiments using graphs
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Example 1: photoproduction (a la Moravcsik) Il

) Example (1.1) (fully complete):

1.1

— {sin ¢12, COS Paa, COS P34, COS P13}

<+ Map this result to observables (in O- and O-basis):

[bu] b sin g1z = O, = (1/2) 05, + 05 ] = (1/2) [-Lv — T.1],
o] sl cos dos = B3 = (1/2)[0%, — 03] = (1/2) [£ — H],
ba] | cos ¢ = O5— = (1/2) [0 — 051 = (1/2) [~Los — ],
|n] B3] cos s = B, = (1/2) [0, + O3] = (1/2) [~ + H].
= Extract the 'Moravcsik-complete’ set (combined with {00 ¥, T, /5})

{O§+,O§_, f+a f—aO§+aO§—}E{EvHaLx’afz’a[z’ai—x’}-

9/16.
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Example 1: photoproduction (a la Moravcsik) Il

) Similar procedure, applied to all the remaining relevant graphs, leads to 12

non-redundant '"Moravcsik-complete’ sets for photoproduction

(always in combination with {ao, )V:, 7v_, /5})

Set-Nr. Observables Set-Nr. Observables
1 03 O O3 7 0} Of. Oss
2 0iy 034 O3y 8 O 03, Ofs
3 01y O O3 9 Oiy 03 O3
4 01y 03 Oiy 10 03, O 034
5 03, Ofy 054 11 0jy 03 Oy
6 Op. 03, 05 12 0f. Op. 05

Y. Wunderlich
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10/16,



Example 1: photoproduction (a la Moravcsik) Il

) Similar procedure, applied to all the remaining relevant graphs, leads to 12

non-redundant '"Moravcsik-complete’ sets for photoproduction

(always in combination with {0, ¥, T, 15})

Set-Nr. Observables Set-Nr. Observables
1 03 O O3 7 0} Of. Oss
2 0iy 034 O3y 8 O 03, Ofs
3 01y O O3 9 Oiy 03 O3
4 0L O3 1+ 10 03, O 034
5 03, Ofy 054 11 0jy 03 Oy
6 Op. 05 05 12 0f. Op. 05

Observation: Moravcsik-complete sets contain 2 observables more than
complete sets with an absolutely minimal amount of observables, i.e.

with 2V = 8 observables [Chiang & Tabakin (1997), Nakayama (2018)].

Y. Wunderlich

Determination of complete experiments using graphs
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Example 1: photoproduction (a la Moravcsik) Il

) Similar procedure, applied to all the remaining relevant graphs, leads to 12

non-redundant '"Moravcsik-complete’ sets for photoproduction

(always in combination with {0, ¥, T, 15})

Set-Nr. Observables Set-Nr. Observables
1 03 O O3 7 0} Of. Oss
2 0iy 034 O3y 8 O 03, Ofs
3 01y O O3 9 Oiy 03 O3
4 0L O3 1+ 10 03, O 034
5 03, Ofy 054 11 0jy 03 Oy
6 Op. 05 05 12 0f. Op. 05

Observation: Moravcsik-complete sets contain 2 observables more than
complete sets with an absolutely minimal amount of observables, i.e.

with 2V = 8 observables [Chiang & Tabakin (1997), Nakayama (2018)].

<> What happened?!

- Not fully clear yet. Possible method to reduce this mismatch — new graphs

Y. Wunderlich

Determination of complete experiments using graphs
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Interlude: new 'directional’ graphs

Observation: Moravcsik-complete sets tend to be slightly over-complete, i.e. to
contain more than 2N observables, for problems with N > 4 amplitudes
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Interlude: new 'directional’ graphs

Observation: Moravcsik-complete sets tend to be slightly over-complete, i.e. to
contain more than 2N observables, for problems with N > 4 amplitudes
— One can improve the situation using new kind of graphs, containing additional

directional information. [YW, arXiv:2106.00486 [nucl-th] (2021), under review]
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Interlude: new 'directional’ graphs

Observation: Moravcsik-complete sets tend to be slightly over-complete, i.e. to
contain more than 2N observables, for problems with N > 4 amplitudes
— One can improve the situation using new kind of graphs, containing additional
directional information.  [YW, arXiv:2106.00486 [nucl-th] (2021), under review]

) Example:

< complete photoproduction-set (2N = 8 obs.’ svlnv
combination with 4 'diagonal’ obs s {00, 2, T,P}):

{03,,03_,05,,05_} = {E L, TX/}
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Interlude: new 'directional’ graphs

Observation: Moravcsik-complete sets tend to be slightly over-complete, i.e. to
contain more than 2N observables, for problems with N > 4 amplitudes
— One can improve the situation using new kind of graphs, containing additional
directional information.  [YW, arXiv:2106.00486 [nucl-th] (2021), under review]
) Example:

< complete photoproduction-set (2N = 8 obs.’s in
combination with 4 'diagonal’ obs.’s {JO,Z T, P}

{03,,05_,05,,05_} = {E, H L, TX/}.

y

0 0 17

- Single-lined arrows: same as in Moravcsik's Theorem o

- Double-lined arrows: 'crossed’ selection 07, @ Os54 /\
, . e . Gar

- 'Outer’ direction < 'directional convention’ for

— o0 [ 70
consistency rel.: ¢12 + ¢oa + ¢az + @31 = 0.
- Direction of 'inner’ arrows: sign of '(-angle’ (cf.
Figure on the right) in discrete-ambiguity formulas

—00

— Confirm photoprod.; new sets for e™-production

Y. Wunderlich Determination of complete experiments using graphs 11/16,



Interlude: new 'directional’ graphs

Observation: Moravcsik-complete sets tend to be slightly over-complete, i.e. to
contain more than 2N observables, for problems with N > 4 amplitudes
— One can improve the situation using new kind of graphs, containing additional
directional information.  [YW, arXiv:2106.00486 [nucl-th] (2021), under review]
) Example:

< complete photoproduction-set (2N = 8 obs.’s in
combination with 4 'diagonal’ obs.’s {JO,Z T, P}

{03,,05_,05,,05_} = {E, H L, TX/}.

y

0 0 17

- Single-lined arrows: same as in Moravcsik's Theorem o

- Double-lined arrows: 'crossed’ selection 07, @ Os54 /\
, . e . Gar

- 'Outer’ direction < 'directional convention’ for

— o0 [ 70
consistency rel.: ¢12 + ¢oa + ¢az + @31 = 0.
- Direction of 'inner’ arrows: sign of '(-angle’ (cf.
Figure on the right) in discrete-ambiguity formulas

—00

Now: e~ -production with usual Moravcsik-Theorem . ..

Y. Wunderlich Determination of complete experiments using graphs 11/16,



Example 2: electroproduction (formalism)

) Reaction: eN — €’mN = no. of amplitudes = 3 % 2 % 2 / 2 =6.
~— M~ =~
v N N Parity
One has: 6 amplitudes by, ..., bs vs. 36 observables.
Y. Wunderlich Determination of complete experiments using graphs 12/16,




Example 2: electroproduction (formalism)

) Reaction: eN — €’7N = no. of amplitudes = 3 % 2 % 2 / 2 =6.
—~ ~— =~
v N N Parity
One has: 6 amplitudes by, ..., bs vs. 36 observables.
Observable Bilinear form Shape-class
RP = 1 (1617 + 1b2? + |32 + |ba?) 1 (6| F|b)
— R =1 (112 + b2 — b3 = |a)?) 3 (6| [b) D1
—RY =3 (= 1b1? + |52 + |32 — |by?) 1 (b|F10|b)
Ry =1 (= Imil + 102 — Is + [a]2) 1 (|12 1)
O3, = |by| |bs| sin 13 + by | ba| sin ¢4 = Im [b] by + b} bp] = —“RY 1 (6|73 |b)
OF_ = |by| |b3|sin ¢13 — |ba| |ba|sin doq = Im [b by — b} bp] = RS, 1(b|F )  a=PR1
03, = |by| |bs| cos ¢13 + |ba| |ba| cos doa = Re [b3 by + by by] = RIZ, 1 (b] T |b)
O3 = |by| |b3|cos d13 — |ba| |ba| cos doq = Re [by by — by by] = “RYX 1 (b|T® |b)
OB, = |by] |by| sin d1a + |bo| b3 sin g3 = Im [b] by + b3 by] = — SREL 3 (b T |b)
OF_ = |by| |balsin d1a — |ba| b3 sin o3 = Im [b] by — b5 by] = —RY, 1(p| %)  b=AD1
b, = |by| |ba| cos 14 + |bo| |b3| cos ¢z = Re [bf by + b bp] = R;;‘_), 1(b| 72 |b)
OB = [by] |by| cos g1q — |bo] |bs] cos ¢o3 = Re [byby — biby] = — Ry 1 (b |b)
Y. Wunderlich Determination of complete experiments using graphs 12/16,



Example 2: electroproduction (formalism)

Of, = b1 |ba| sin g1 + |b| | by sin $3a = Im [b5 by + b bs] = =R} 2 1 (b] T8 |b)

OF_ = [by] |basin b1z — |bs| |ba] sin §34 = Tm [b3 by — by bs] = RE 3 (bIF|p)  c=PL1
05, = |by| |ba| cos 12 + |bs| |by| cos daq = Re [b5 by + b by] = RZ 2 1 (b| 1% |b)

O5_ = |by] |ba| cos $12 — |b3] |bal cos d34 = Re [b5 by — b bs] = R 1 (b0 |b)

R{% = |bs|* + [bs|? 5 (bI T [b) D2
Ry = |bs|? — |bs|? L (6| T8 |b)

Of = 2|bs| |bg| sin 56 = 2Im [bZ bs] = Rf/x % (b F2|by  d = AD2
O = 2| bs | | bs| cos sg = 2Re [bE bs] = —RY X 25 (61T |b)

Of| = |b3| |bg| sin d36 + bl |bs| sin das = Im [bF bs + b by] = —°RYY, 1 (b| 3 |b)

Of_ = |bs| |bg| sin ¢35 — |ba] |bs| sin das = Im [bg by — b¥ by] = “RYY, 3 (b7 |b)  e=AD3
OS5, = |b3| |bg| cos B36 + |ba| |bs| cos das = Re [bg bs + by by] = RIS 1 (b 2 |b)

Of_ = |bs| |bg| cos b3 — |bs| |bs| cos das = Re [bF by — b by] = — R L1 (b % |b)

Of, = |b| |bg| sin d16 + | b2 |bs| sin dos5 = Im [bg by + b by] = —*RYZ 3 (o[ P |b)

Of_ = |by| |bg|sin ¢16 — |ba| |bs|sin dos = Im [bg by — b bp] = “R%, 1 (b|F* by  f=AD4
Of, = |by| |bg| cos 16 + |ba| 5| cos pos = Re [bg by + b3 bp] = °RZ, 1 (6] 732 |b)

Of = |by| |bg| cos ¢16 — |ba| |bs| cos do5 = Re [bF by — bl by] = *RYS 1 (b T |b)

Y. Wunderlich
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Example 2: electroproduction (formalism)

OF, = |by| |bs| sin é15 + | b2 |bs| sin d26 = Im [bZ by + b by] = — *REZ® 1 (b T |b)
OF_ = |by| |bs|sin ¢15 — |bal |bs| sin éos = Im [bg by — biba] = — RS9 1 (b |b) g =PR2
O, = |by| |bs| cos é1s + |ba| |bg| cos éa5 = Re [ by + b3 ba] = RES 1 (b T3 |b)
O5_ = |by| |bs| cos ¢15 — |b2| |bg| cos o6 = Re [by by — by bp] = ,SRZ;_D 1 (6] 25 |b)
Of, = |bs| |bs| sin ¢35 + |ba| | bs | sin das = Im [b] b3 + by by = SRZ;—X/ 1 (b 73 |b)
OF_ = |bs| |bs| sin éss — |bal |Bg| sin das = Im [b3 by — by bs] = —°REZ L (b|F*|b) h=PR3
b = |b3| |bs| cos ¢35 + |ba| |bg| cos dag = Re [bf by + b bs] = — R 1 (b 3 |b)
Oh_ = |bs| |bs| cos ¢35 — |ba| | b| cos dag = Re [bE by — biby] = _SRi;g; 1 (b| % |b)
Y. Wunderlich
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Example 2: electroproduction (formalism)

OF = by |bs|sin b5 + |ba] [Bo| sin dos = Im [b3 by + b bp] = —*RE® L (b3 |b)
OF_ = |by| |bs|sin g15 — |ba]| |Bg| sin o6 = Tm [b3 by — b by] = — RS9 L(b|F®|b) g=PR2
OF, = by |bs| cos s + |ba | |bg| cos b6 = Re [b by + bg b] = RS 1 (bl T3 |b)
OF_ = |by||bs| cos g15 — |ba| |bg| cos b = Re [bf by — b b] = —*Ri® 1 (b |b)
Of, = |bs| |bs| sin ¢35 + |ba| | bs | sin das = Im [b] b3 + by by = SRZ;X/ 1 (b 73 |b)
OB = |bs| |bs| sin ¢35 — |bal |bg| sin dag = Im [bZ by — b by] = —CR{’TX 1(b|T8|b)  h=PR3
OB, = |b3] |bs| cos ¢35 + ba| |bs| cos das = Re [b3 by + b by] = — “Riy* 1 (| 73 |b)
Of_ = |bs| |bs| cos d35 — |bul |bg| cos dag = Re [b by — b by] = —*RZ 1 (b |b)

— For N = 6: quite many observables/inteference terms. Possible algebraic
dependencies among the observables are manifold and quite complicated!

= It is quite tough to solve this problem 'by hand'.

However: Moravcsik's Theorem comes to the rescue, since its application is
very systematic and quite easily automated!
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Example 3: electroproduction (graph topologies)

) For N =6, we have (N — 1)!/2 = 51/2 = 60 possible graph-topologies:
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Example 3: electroproduction (graph topologies)

*) For N =6, we have (N —1)!/2 = 5'/2 = 60 possible graph-topologies:

QTXMQ

N

LN OO0
W IRV N
Tk
SN0,
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Example 3: electroproduction (fully complete graphs)

) Example (1.1) (fully complete):

1.1

— {sin ¢12, COS (24, COS P46, COS P56, COS P35, COS P13}

< In the same way as before, extract the 'Moravcsik-complete’ set (combined
. 0 ‘0 0
with {ROTO, <R RY RYO RO RLY}):
{03,,03_,0%,,0f_,0§,07,,05_}

— 0z s p0x x'z 2z’ x x'x cpx'x spz'x
:{RTT” RTT’RT 7RT 7RL ) RLT’ RLT’}'

Y. Wunderlich Determination of complete experiments using graphs 14/16,



Example 3: electroproduction (fully complete graphs)

) Example (1.1) (fully complete):

1.1

— {sin ¢12, COS (24, COS (46, COS P56, COS P35, COS H13}

< In the same way as before, extract the 'Moravcsik-complete’ set (combined
. 0 ‘0 0
with {R(}O, <R RY RY° RO RLY}):
{O§+7 0577 f+7 ffv Og’ Ong’ 057}

— 0z s pOx x'z 2z’ x x'x cpx'x spz'x
:{RTT” RTT’RT 7RT 7RL ) RLT’ RLT/ '

) In total, we obtain for the first time (!):

- 64 non-redundant Moravcsik-complete sets composed of 13 observables
< Only one observable more than the minimal number of 2N = 12
observables!
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Example 3: electroproduction (fully complete graphs)

*) Example (1.1) (fully complete):

1.1

— {sin ¢12, coS ¢4, COS P, COS P56, COS 35, COS P13}

— In the same way as before, extract the 'Moravcsik-complete’ set (combined
with { R, <R, RY, RY, R, RY |):
{OS+7 0577 f+v ffv Og’ Ong’ 057}
= {RY%., Ry, Ry =, RE™, R, Ry, *Res |
) In total, we obtain for the first time (!):

- 64 non-redundant Moravcsik-complete sets composed of 13 observables
< Only one observable more than the minimal number of 2N = 12
observables!
< What about problems with large numbers of amplitudes (i.e. N > 6)?
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Cases with larger numbers of N > 6 amplitudes

Two-meson photoproduction

«) 8 amplitudes vs. 64 observables

«) Typical complete graph:

® @

1N

"5',"($3A) : | ~Si?1(‘€56)
7 | | N
‘ \ COS((36) 1 .
| ! I
| =
-sini(bm) ~sin(ges) a
| 1 =
| -
@ -~ @
| 7 o
\siﬁ( I e g
b ! | e 8
N ’ X
@ L S

x) [Phys. Rev. C 103, 1, 014607 (2021)]
— see also next talk by P. Kroenert
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Cases with larger numbers of N > 6 amplitudes

Two-meson photoproduction Vector-meson photoproduction

«) 8 amplitudes vs. 64 observables *) 12 amp.’s vs. 244 observables
«) Typical complete graph: *) Example for start-topology:

® @

Ve I
~8in(®ss)
7

I
I
|
| COS(¢36)

I

T

! :
~sinE¢14) ~sin(se)

I

|

I
@---*+ sy - - - -
N I

~sif(grz) !
N |
® ®

x) [Phys. Rev. C 103, 1, 014607 (2021)] *) No. of start-topologies:
— see also next talk by P. Kroenert w = 19958400

= Numerically very demanding problem!

~sin(dre)
7

©
[P. Kroenert et al. (2021)]

Y. Wunderlich Determination of complete experiments using graphs 15/16,



Conclusion and Outlook

For a reaction involving particles with spin: y
N (transversity) amplitudes b; vs. N? pol.-observables O% o (b| ' |b).
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Conclusion and Outlook

For a reaction involving particles with spin: y
N (transversity) amplitudes b; vs. N? pol.-observables O% o (b| ' |b).

We have:
%) (Re-) derived a modified version of Moravcsik's Theorem
< Useful solution-tool for any number of amplitudes N
) Treated the example of photoproduction in detail
< Moravcsik-complete sets with 10 obs.'s vs. minimal sets with 2N = 8 obs.’s
) Shown the application to the (tougher!) problem of electroproduction

— Lists of complete sets derived for the first timel

Y. Wunderlich Determination of complete experiments using graphs 16/16,



Conclusion and Outlook

For a reaction involving particles with spin: y
N (transversity) amplitudes b; vs. N? pol.-observables O% o (b| ' |b).

We have:

) (Re-) derived a modified version of Moravcsik's Theorem

— Useful solution-tool for any number of amplitudes N
) Treated the example of photoproduction in detail

< Moravcsik-complete sets with 10 obs.’s vs. minimal sets with 2N = 8 obs.’s
) Shown the application to the (tougher!) problem of electroproduction

— Lists of complete sets derived for the first timel
) Further possible directions of research:

- Two-meson photoproduction [P. Kroenert et al. (2021)] — next talk!

- First ever treatment of vector-meson photoproduction
(N = 12 amplitudes: tough!!)

- Consider mismatch between Moravcsik-complete sets and minimal
complete sets of 2V observables
= new 'directional’ graphs [YW, [arXiv:2106.00486 [nucl-th]] (2021)]
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Conclusion and Outlook

We have:

%) (Re-) derived a modified version of Moravcsik's Theorem

< Useful solution-tool for any number of amplitudes N
) Treated the example of photoproduction in detail

— Moravcsik-complete sets with 10 obs.’s vs. minimal sets with 2N = 8 obs.’s
) Shown the application to the (tougher!) problem of electroproduction

— Lists of complete sets derived for the first timel
) Further possible directions of research:
- Two-meson photoproduction [P. Kroenert et al. (2021)] — next talk!

- First ever treatment of vector-meson photoproduction
(N = 12 amplitudes: tough!!)

- Consider mismatch between Moravcsik-complete sets and minimal
complete sets of 2N observables
= new 'directional’ graphs [YW, [arXiv:2106.00486 [nucl-th]] (2021)]

Thank You for your attention!
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Additional Slides



Discrete ambiguities

'Cosine-type’ ambiguities:

The real part
Re [b} bj] = |bi||bj| Re [%7]
= [bi| [bj] cos ¢y,
fixes the relative phase ¢;; up to the
discrete ambiguity:

¢U—>¢§={

+aij,

70[,.1.’

with a unique «aj; € [0, 7].
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'Cosine-type' amb. ImMi
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Discrete ambiguities

'Cosine-type’ ambiguities:

The real part
Re [b} bj] = |bi||bj| Re [%7]
= [bi| [bj] cos ¢y,
fixes the relative phase ¢;; up to the
discrete ambiguity:

¢U—>¢§={

+ajj,

70[,.1.’

with a unique «aj; € [0, 7].

(+)
'Cosine-type' amb. ImMi

;plE) Re
S

'.\‘.”:
W plo)

i

'Sine-type' ambiguities:

The imaginary part
Im [bf b,} = |b,| ‘bj‘ Im [eid)ij]
= [bi[ [bj| sin &3,
fixes the relative phase ¢;; up to the
discrete ambiguity:

¢U—>¢§={

+aj;,

7T70[,'j,

with a unique aj; € [-7/2,7/2)].




Discrete

ambiguities

'Cosine-type’ ambiguities:

The real part
Re [b} b;] = |bi||bj| Re [%7]
= |bj| |bj| cos pjj,

fixes the relative phase ¢;; up to the
discrete ambiguity:

¢,-j—>¢,-f-={

+ajj,

70[,.1.’

with a unique «aj; € [0, 7].

'Sine-type' ambiguities:

The imaginary part
Im [bf b,} = |b,| ‘bj‘ Im [ei(ﬁij]
= |bil |bj| sin ¢y,
fixes the relative phase ¢;; up to the
discrete ambiguity:

¢,-,-—><z>§={

+aj,

7T70£,'j,

with a unique aj; € [-7/2,7/2)].

— Discrete ambiguities for a subset of real-and imaginary parts of bilinear
products b} b;, defined by N amplitudes {b;,i =1,..., N}, are 'direct (or
Kronecker-) products’ of these fundamental discrete ambiguities.

= Such ambiguities turn up time and again in the discussion of complete
experiments! Is there help? Yes! — Consistency Relations




Consistency relations

) Consider amplitude-arrangement in the complex plane (e.g.: N = 4):

Im

) Natural constraint satisfied by this constellation: consistency relation

$12 + ¢23 + ¢34 + ¢a1 = 0 (up to add. of multiples of 27).



Consistency relations

) Consider amplitude-arrangement in the complex plane (arbitrary N):

¢bllz)<]_/ v Re
*) Fundamental consistency relation for a problem with N amplitudes:

$12+ Poz + ...+ dn—1,n + dn1 = 0 (modulo add. of 27).



Consistency relations

Consider amplitude-arrangement in the complex plane (arbitrary N):

Im

b3 b b

o
b2 23 /
SR e

Fundamental consistency relation for a problem with N amplitudes:

b

$12+ Poz + ...+ dn—1,n + dn1 = 0 (modulo add. of 27).

Consistency relations may look trivial, but they are very important for the
resolution of discrete ambiguities: in case all the possible cases

¢1i2+¢§5++¢$_171\1+¢$1:0v

are a fully non-degenerate set of equations, i.e. # any equivalent pairs of
equations, the corresponding set of observables is complete!



Consistency relations

Consider amplitude-arrangement in the complex plane (arbitrary N):

I o R
Fundamental consistency relation for a problem with N amplitudes:
P10+ Pz + ...+ ¢N—1,N +on1 =0 (modulo add. of 271').

Consistency relations may look trivial, but they are very important for the
resolution of discrete ambiguities: in case all the possible cases

¢1i2+¢§t3++¢$_1’l\l+¢$1:0v

are a fully non-degenerate set of equations, i.e. # any equivalent pairs of
equations, the corresponding set of observables is complete!

Moravcsik's Theorem is a systematic study of all cases where such
non-degeneracies are obtained, in the bj‘b,-—basis.




