Determination of complete experiments using graphs

Talk based on work done in collaboration with:

P. Kroenert, F. Afzal and A. Thiel

Yannick Wunderlich

HISKP, University of Bonn

July 28, 2021

Introduction: why spin-amplitudes?

*) Photoproduction is a generic reaction used to study baryon resonances:

Introduction: why spin-amplitudes?

*) Photoproduction is a generic reaction used to study baryon resonances:

- *) Baryon resonances $\left(\Delta(1232)\frac{3}{2}^+, N(1440)\frac{1}{2}^+, \ldots\right)$ are *Fermions* (or 'fermionic modes')
 - → Resonances have half-integer spin
 - *) <u>However:</u> a pure orbital angular-momentum among scattered particles can only generate integer spins:

$$\ell=0,1,2,\ldots;\,\left| ec{L}
ight|^2=\ell(\ell+1)\hbar^2.$$

⇒ Need to study reactions involving particles with spin in the initialand/or final state!

Introduction: why spin-amplitudes?

*) Photoproduction is a generic reaction used to study baryon resonances:

- *) Baryon resonances $\left(\Delta(1232)^{\frac{3}{2}^+}, N(1440)^{\frac{1}{2}^+},\ldots\right)$ are <u>Fermions</u>
- *) The full amplitude \mathcal{T}_{fi} ('T-matrix') for reactions among particles with spin can be decomposed into N spin-amplitudes $\{b_i, i=1,\ldots,N\}$
- *) The usual reactions under study are:
 - Pion-Nucleon $(\pi N$ -) scattering: $\pi N \longrightarrow \pi N$ (2 spin-amplitudes)
 - Pion photoproduction: $\gamma N \longrightarrow \pi N$ (4 spin-amplitudes)
 - Pion electroproduction: $eN \longrightarrow e'\pi N$ (6 spin-amplitudes)
 - 2-Pion photoproduction: $\gamma N \longrightarrow \pi \pi N$ (8 spin-amplitudes)

• • •

*) Generic problem with N amplitudes $\{b_i, i=1,\ldots,N\}$: the N^2 (polarization-) observables are bilinear hermitean forms (def. via orthogonal matrices $\tilde{\Gamma}^{\alpha}$):

$$\mathcal{O}^{\alpha} = \boldsymbol{c}^{\alpha} \sum_{i,j=1}^{N} b_i^* \tilde{\Gamma}_{ii}^{\alpha} b_j$$
, for $\alpha = 1, \dots, N^2$.

*) Generic problem with N amplitudes $\{b_i, i=1,\ldots,N\}$: the N^2 (polarization-) observables are bilinear hermitean forms (def. via orthogonal matrices $\tilde{\Gamma}^{\alpha}$):

$$\mathcal{O}^{\alpha} = \boldsymbol{c}^{\alpha} \sum_{i,j=1}^{N} b_{i}^{*} \tilde{\Gamma}_{ij}^{\alpha} b_{j}, \text{ for } \alpha = 1, \dots, N^{2}.$$

Determination of complete experiments using graphs

 \hookrightarrow Complete-experiment problem:

What are the minimal subsets of the observables \mathcal{O}^{α} , which allow for the unique extraction of the amplitudes b_i up to one unknown overall phase $\phi(W, \theta)$?

 Consider idealized (academic) case without measurement uncertainty!

) Expression $\mathcal{O}^{\alpha} = \mathbf{c}^{\alpha} \sum_{i,j=1}^{N} b_{i}^{} \tilde{\Gamma}_{ij}^{\alpha} b_{j}$ can be 'inverted' (using the *completeness* of the $\tilde{\Gamma}$ -matrices):

$$b_i^* b_j = \frac{1}{\tilde{N}} \sum_{\alpha=1}^{N^2} \left(\tilde{\Gamma}_{ij}^{\alpha} \right)^* \left(\frac{\mathcal{O}^{\alpha}}{\boldsymbol{c}^{\alpha}} \right) .$$

- \Rightarrow Determine the real- and imaginary parts of a 'minimal' set of $b_i^* b_j$
- \Rightarrow Obtain (quite large) over-complete set $\{\mathcal{O}^{\alpha}\}$ determined via the RHS

) Expression $\mathcal{O}^{\alpha} = \mathbf{c}^{\alpha} \sum_{i,j=1}^{N} b_{i}^{} \tilde{\Gamma}_{ij}^{\alpha} b_{j}$ can be 'inverted' (using the *completeness* of the $\tilde{\Gamma}$ -matrices):

$$b_i^* b_j = \frac{1}{\tilde{N}} \sum_{\alpha=1}^{N^2} \left(\tilde{\Gamma}_{ij}^{\alpha} \right)^* \left(\frac{\mathcal{O}^{\alpha}}{\boldsymbol{c}^{\alpha}} \right) .$$

- \Rightarrow Determine the real- and imaginary parts of a 'minimal' set of $b_i^* b_i$
- \Rightarrow Obtain (quite large) over-complete set $\{\mathcal{O}^{\alpha}\}$ determined via the RHS
- *) Consider alternative 'basis': bilinear products

$$b_i^* b_i$$
, for $i, j = 1, ..., N$. [Moravcsik, J. Math. Phys. **26**, 211 (1985).]

) Expression $\mathcal{O}^{\alpha} = \mathbf{c}^{\alpha} \sum_{i,j=1}^{N} b_{i}^{} \tilde{\Gamma}_{ij}^{\alpha} b_{j}$ can be 'inverted' (using the *completeness* of the $\tilde{\Gamma}$ -matrices):

$$b_i^* b_j = \frac{1}{\tilde{N}} \sum_{\alpha=1}^{N^2} \left(\tilde{\Gamma}_{ij}^{\alpha} \right)^* \left(\frac{\mathcal{O}^{\alpha}}{\boldsymbol{c}^{\alpha}} \right) .$$

- \Rightarrow Determine the real- and imaginary parts of a 'minimal' set of $b_i^* b_i$
- \Rightarrow Obtain (quite large) over-complete set $\{\mathcal{O}^{\alpha}\}$ determined via the RHS
- *) Consider alternative 'basis': bilinear products

$$b_i^* b_i$$
, for $i, j = 1, ..., N$. [Moravcsik, J. Math. Phys. **26**, 211 (1985).]

- *) Standard initial assumption: the moduli $|b_1|, |b_2|, \ldots, |b_N|$ are already known from a certain subset of 'diagonal' observables.
 - \Rightarrow Only a minimal set of relative phases $\phi_{ij} := \phi_i \phi_j$ needs to be determined.

) Expression $\mathcal{O}^{\alpha} = \mathbf{c}^{\alpha} \sum_{i,j=1}^{N} b_{i}^{} \tilde{\Gamma}_{ij}^{\alpha} b_{j}$ can be 'inverted' (using the *completeness* of the $\tilde{\Gamma}$ -matrices):

$$b_i^* b_j = \frac{1}{\tilde{N}} \sum_{\alpha=1}^{N^2} \left(\tilde{\Gamma}_{ij}^{\alpha} \right)^* \left(\frac{\mathcal{O}^{\alpha}}{\boldsymbol{c}^{\alpha}} \right) .$$

- \Rightarrow Determine the real- and imaginary parts of a 'minimal' set of $b_i^*b_j$
- \Rightarrow Obtain (quite large) over-complete set $\{\mathcal{O}^{\alpha}\}$ determined via the RHS
- *) Consider alternative 'basis': bilinear products

$$b_i^* b_i$$
, for $i, j = 1, ..., N$. [Moravcsik, J. Math. Phys. **26**, 211 (1985).]

- *) Standard initial assumption: the moduli $|b_1|, |b_2|, \dots, |b_N|$ are already known from a certain subset of 'diagonal' observables.
 - \Rightarrow Only a minimal set of relative phases $\phi_{ij}:=\phi_i-\phi_j$ needs to be determined.
- *) Finding a generic solution for such problems, for arbitrary N, can be quite tough in the \mathcal{O}^{α} -basis.
 - <u>However:</u> In the $b_i^* b_i$ -basis, a general solution exists:

Moravcsik's Theorem!

Discrete ambiguities

'Cosine-type' ambiguities:

The real part

$$\operatorname{Re}\left[b_{j}^{*} b_{i}\right] = |b_{i}| |b_{j}| \operatorname{Re}\left[e^{i\phi_{ij}}\right]$$
$$= |b_{i}| |b_{j}| \cos \phi_{ii},$$

fixes the relative phase ϕ_{ij} up to the discrete ambiguity:

$$\phi_{ij} \longrightarrow \phi_{ij}^{\pm} = \begin{cases} +\alpha_{ij}, \\ -\alpha_{ij}, \end{cases}$$

with a unique $\alpha_{ij} \in [0, \pi]$.

Discrete ambiguities

'Cosine-type' ambiguities:

The real part

$$\operatorname{Re}\left[b_{j}^{*}b_{i}\right] = |b_{i}| |b_{j}| \operatorname{Re}\left[e^{i\phi_{ij}}\right]$$
$$= |b_{i}| |b_{i}| \cos \phi_{ii},$$

fixes the relative phase ϕ_{ij} up to the discrete ambiguity:

$$\phi_{ij} \longrightarrow \phi_{ij}^{\pm} = \begin{cases} +\alpha_{ij}, \\ -\alpha_{ij}, \end{cases}$$

with a unique $\alpha_{ij} \in [0, \pi]$.

'Sine-type' ambiguities:

The imaginary part

$$\operatorname{Im} \left[b_j^* b_i \right] = |b_i| |b_j| \operatorname{Im} \left[e^{i\phi_{ij}} \right]$$
$$= |b_i| |b_j| \sin \phi_{ij},$$

fixes the relative phase ϕ_{ij} up to the discrete ambiguity:

$$\phi_{ij} \longrightarrow \phi_{ij}^{\pm} = \begin{cases} +\alpha_{ij}, \\ \pi - \alpha_{ij}, \end{cases}$$

with a unique $\alpha_{ij} \in [-\pi/2, \pi/2]$.

Discrete ambiguities

'Cosine-type' ambiguities:

The real part

$$\operatorname{Re}\left[b_{j}^{*}b_{i}\right] = |b_{i}| |b_{j}| \operatorname{Re}\left[e^{i\phi_{ij}}\right]$$
$$= |b_{i}| |b_{i}| \cos \phi_{ii},$$

fixes the relative phase ϕ_{ij} up to the discrete ambiguity:

$$\phi_{ij} \longrightarrow \phi_{ij}^{\pm} = \begin{cases} +\alpha_{ij}, \\ -\alpha_{ij}, \end{cases}$$

with a unique $\alpha_{ij} \in [0, \pi]$.

'Sine-type' ambiguities:

The imaginary part

$$\operatorname{Im} \left[b_j^* b_i \right] = |b_i| |b_j| \operatorname{Im} \left[e^{i\phi_{ij}} \right]$$
$$= |b_i| |b_j| \sin \phi_{ij},$$

fixes the relative phase ϕ_{ij} up to the discrete ambiguity:

$$\phi_{ij} \longrightarrow \phi_{ij}^{\pm} = \begin{cases} +\alpha_{ij}, \\ \pi - \alpha_{ij}, \end{cases}$$

with a unique $\alpha_{ij} \in [-\pi/2, \pi/2]$.

- \hookrightarrow Discrete ambiguities for a subset of real-and imaginary parts of bilinear products $b_j^*b_i$, defined by N amplitudes $\{b_i, i=1,\ldots,N\}$, are 'direct (or Kronecker-) products' of these fundamental discrete ambiguities.
- \Rightarrow Such ambiguities turn up time and again in the discussion of complete experiments! Is there help? Yes! \rightarrow Consistency Relations

*) Consider amplitude-arrangement in the complex plane (e.g.: N = 4):

*) Natural constraint satisfied by this constellation: consistency relation $\phi_{12} + \phi_{23} + \phi_{34} + \phi_{41} = 0 \text{ (up to add. of multiples of } 2\pi\text{)}.$

*) Consider amplitude-arrangement in the complex plane (arbitrary N):

*) Fundamental consistency relation for a problem with N amplitudes:

$$\phi_{12} + \phi_{23} + \ldots + \phi_{N-1,N} + \phi_{N1} = 0$$
 (modulo add. of 2π).

*) Consider amplitude-arrangement in the complex plane (arbitrary N):

*) Fundamental consistency relation for a problem with N amplitudes:

$$\phi_{12} + \phi_{23} + \ldots + \phi_{N-1,N} + \phi_{N1} = 0$$
 (modulo add. of 2π).

*) Consistency relations may look trivial, but they are very important for the resolution of discrete ambiguities: in case all the possible cases

$$\phi_{12}^{\pm} + \phi_{23}^{\pm} + \ldots + \phi_{N-1,N}^{\pm} + \phi_{N1}^{\pm} = 0$$
,

are a fully non-degenerate set of equations, i.e. \sharp any equivalent pairs of equations, the corresponding set of observables is complete!

*) Consider amplitude-arrangement in the complex plane (arbitrary N):

*) Fundamental consistency relation for a problem with N amplitudes:

$$\phi_{12} + \phi_{23} + \ldots + \phi_{N-1,N} + \phi_{N1} = 0$$
 (modulo add. of 2π).

*) Consistency relations may look trivial, but they are very important for the resolution of discrete ambiguities: in case all the possible cases

$$\phi_{12}^{\pm} + \phi_{23}^{\pm} + \ldots + \phi_{N-1,N}^{\pm} + \phi_{N1}^{\pm} = 0$$
,

are a fully non-degenerate set of equations, i.e. # any equivalent pairs of equations, the corresponding set of observables is complete!

 \hookrightarrow Moravcsik's Theorem is a systematic study of all cases where such non-degeneracies are obtained, in the $b_i^* b_i$ -basis.

From [YW, P. Kroenert, F. Afzal, A. Thiel, Phys. Rev. C **102**, no.3, 034605 (2020)], based on [Moravcsik, J. Math. Phys. **26**, 211 (1985).]:

```
From [YW, P. Kroenert, F. Afzal, A. Thiel, Phys. Rev. C 102, no.3, 034605 (2020)], based on [Moravcsik, J. Math. Phys. 26, 211 (1985).]:
```

'Geometrical (graphical) analog': Represent every amplitude from b_1, \ldots, b_N by a point and every relative-phase ϕ_{ij} by a line connecting points 'i' and 'j'. Furthermore: \hookrightarrow Represent every Re $[b_i^*b_j] \propto \cos \phi_{ij}$ by a solid line, \hookrightarrow Represent every Im $[b_i^*b_j] \propto \sin \phi_{ij}$ by a dashed line.

From [YW, P. Kroenert, F. Afzal, A. Thiel, Phys. Rev. C 102, no.3, 034605 (2020)], based on [Moravcsik, J. Math. Phys. 26, 211 (1985).]:

'Geometrical (graphical) analog': Represent every amplitude from b_1, \ldots, b_N by a point and every relative-phase ϕ_{ii} by a line connecting points 'i' and 'j'. Furthermore: \hookrightarrow Represent every Re $[b_i^*b_i] \propto \cos \phi_{ij}$ by a solid line, \hookrightarrow Represent every Im $[b_i^*b_i] \propto \sin \phi_{ii}$ by a dashed line.

Moravcsik's Theorem (modified): The thus constructed graph is fully complete,

i.e. it allows for neither any continuous nor any discrete ambiguities, if it satisfies:

From [YW, P. Kroenert, F. Afzal, A. Thiel, Phys. Rev. C **102**, no.3, 034605 (2020)], based on [Moravcsik, J. Math. Phys. **26**, 211 (1985).]:

'Geometrical (graphical) analog': Represent every amplitude from b_1, \ldots, b_N by a point and every relative-phase ϕ_{ij} by a line connecting points 'i' and 'j'. Furthermore: \hookrightarrow Represent every Re $[b_i^*b_j] \propto \cos \phi_{ij}$ by a solid line, \hookrightarrow Represent every Im $[b_i^*b_i] \propto \sin \phi_{ij}$ by a dashed line.

Moravcsik's Theorem (modified): The thus constructed graph is *fully complete*, i.e. it allows for neither any continuous nor any discrete ambiguities, if it satisfies:

- (i) the graph is fully *connected* and all points (i.e. vertices) have order to have *order two* (i.e. are attached to two lines):
 - all continuous ambiguities are resolved,
 - existence of consistency relation is ensured.

From [YW, P. Kroenert, F. Afzal, A. Thiel, Phys. Rev. C **102**, no.3, 034605 (2020)], based on [Moravcsik, J. Math. Phys. **26**, 211 (1985).]:

<u>'Geometrical (graphical) analog':</u> Represent every amplitude from b_1, \ldots, b_N by a *point* and every relative-phase ϕ_{ij} by a *line connecting points 'i'* and 'j'. Furthermore: \hookrightarrow Represent every Re $[b_i^*b_j] \propto \cos \phi_{ij}$ by a *solid line*, \hookrightarrow Represent every Im $[b_i^*b_i] \propto \sin \phi_{ij}$ by a *dashed line*.

Moravcsik's Theorem (modified): The thus constructed graph is *fully complete*, i.e. it allows for neither any continuous nor any discrete ambiguities, if it satisfies:

- (i) the graph is fully connected and all points (i.e. vertices) have order to have order two (i.e. are attached to two lines):
 - all continuous ambiguities are resolved,

- as well as *any* number of solid lines:
 - all discrete ambiguities are resolved.

<u>Proof:</u> see App. A of [Phys. Rev. C **102**, no.3, 034605 (2020)].

Example: (

- *) Consider the reaction: $\vec{\gamma}\vec{N} \longrightarrow \pi\vec{N}$.
- \hookrightarrow Number of spin-amplitudes $N = \underbrace{2}_{\gamma} * \underbrace{2}_{N} * \underbrace{2}_{N} / \underbrace{2}_{\text{Parity}} = 4.$

E.g. CGLN amplitudes: $F_1(W, \theta), \dots, F_4(W, \theta)$.

- *) Consider the reaction: $\vec{\gamma}\vec{N} \longrightarrow \pi\vec{N}$.
- \hookrightarrow Number of spin-amplitudes $N = \underbrace{2}_{\gamma} * \underbrace{2}_{N} * \underbrace{2}_{N} / \underbrace{2}_{\text{Parity}} = 4.$ E.g. CGLN amplitudes: $F_1(W, \theta), \dots, F_4(W, \theta)$.
- *) Spin-decomposition of the *T*-matrix:

- *) Consider the reaction: $\vec{\gamma}\vec{N} \longrightarrow \pi\vec{N}$.
- \hookrightarrow Number of spin-amplitudes $N = \underbrace{2}_{\gamma} * \underbrace{2}_{N} * \underbrace{2}_{N} / \underbrace{2}_{\text{Parity}} = 4.$ E.g. CGLN amplitudes: $F_1(W, \theta), \dots, F_4(W, \theta)$.
- *) Spin-decomposition of the *T*-matrix:

*) Can perform basis-change to the transversity-basis:

$$b_1(W, \theta), b_2(W, \theta), b_3(W, \theta), b_4(W, \theta).$$

- *) Consider the reaction: $\vec{\gamma} \vec{N} \longrightarrow \pi \vec{N}$.
- \hookrightarrow Number of spin-amplitudes $N = \underbrace{2}_{\gamma} * \underbrace{2}_{N} * \underbrace{2}_{N} / \underbrace{2}_{\text{Parity}} = 4.$ E.g. CGLN amplitudes: $F_1(W, \theta), \dots, F_4(W, \theta)$.
- *) Spin-decomposition of the *T*-matrix:

*) Can perform basis-change to the <u>transversity-basis</u>:

$$b_1(W, \theta), b_2(W, \theta), b_3(W, \theta), b_4(W, \theta).$$

 \hookrightarrow The $N^2=16$ polarization observables (or polarization asymmetries)

$$\mathcal{O} = \left[\left(\frac{d\sigma}{d\Omega} \right)^{(B_1, T_1, R_1)} - \left(\frac{d\sigma}{d\Omega} \right)^{(B_2, T_2, R_2)} \right],$$

take a particularly convenient form in the transversity basis.

Example 1: photoproduction (observables)

Observable	Bilinear form	Shape-class
$\sigma_0 = \frac{1}{2} \left(b_1 ^2 + b_2 ^2 + b_3 ^2 + b_4 ^2 \right)$	$rac{1}{2} \left\langle b \right \tilde{\Gamma}^1 \left b \right\rangle$	
$-\Sigma = \frac{1}{2} \left(b_1 ^2 + b_2 ^2 - b_3 ^2 - b_4 ^2 \right)$	$rac{1}{2} \left< b \right ilde{\Gamma}^4 \left b \right>$	$\mathcal{S} = D$
$-\check{T} = \frac{1}{2} \left(- b_1 ^2 + b_2 ^2 + b_3 ^2 - b_4 ^2 \right)$	$rac{1}{2} \left< b \right \tilde{\Gamma}^{10} \left b \right>$	
$\check{P} = \frac{1}{2} \left(- b_1 ^2 + b_2 ^2 - b_3 ^2 + b_4 ^2 \right)$	$rac{1}{2} \left< b \right ilde{\Gamma}^{12} \left b \right>$	
$\mathcal{O}_{1+}^{a} = b_{1} b_{3} \sin \phi_{13} + b_{2} b_{4} \sin \phi_{24} = \operatorname{Im} \left[b_{3}^{*} b_{1} + b_{4}^{*} b_{2}\right] = -\check{G}$	$\frac{1}{2} \langle b \tilde{\Gamma}^3 b \rangle$	
$\mathcal{O}_{1-}^{\mathfrak{s}} = b_1 b_3 \sin \phi_{13} - b_2 b_4 \sin \phi_{24} = \mathrm{Im} \left[b_3^* b_1 - b_4^* b_2 \right] = \check{F}$	$rac{1}{2} \left< b \right ilde{\Gamma}^{11} \left b \right>$	$a=\mathcal{BT}=\mathrm{PR}$
$\mathcal{O}_{2+}^{a} = b_{1} b_{3} \cos \phi_{13} + b_{2} b_{4} \cos \phi_{24} = \operatorname{Re} \left[b_{3}^{*} b_{1} + b_{4}^{*} b_{2} \right] = - \check{E}$	$rac{1}{2} \left< b \right ilde{\Gamma}^9 \left b \right>$	
$\mathcal{O}_{2-}^{s} = b_1 b_3 \cos \phi_{13} - b_2 b_4 \cos \phi_{24} = \operatorname{Re} \left[b_3^* b_1 - b_4^* b_2\right] = \check{H}$	$\frac{1}{2} \langle b \tilde{\Gamma}^5 b \rangle$	
$\mathcal{O}_{1+}^{b} = b_{1} b_{4} \sin \phi_{14} + b_{2} b_{3} \sin \phi_{23} = \operatorname{Im} \left[b_{4}^{*} b_{1} + b_{3}^{*} b_{2} \right] = \check{O}_{z'}$	$rac{1}{2} \left\langle b \right ilde{\Gamma}^7 \left b ight angle$	
$\mathcal{O}_{1-}^{b} = \left b_{1} \right \left b_{4} \right \sin \phi_{14} - \left b_{2} \right \left b_{3} \right \sin \phi_{23} = \operatorname{Im} \left[b_{4}^{*} b_{1} - b_{3}^{*} b_{2} \right] = - \check{C}_{\chi'}$	$\tfrac{1}{2} \; \langle b \; \tilde{\Gamma}^{16} \; b \rangle$	$b=\mathcal{BR}=\mathrm{AD}$
$\mathcal{O}_{2+}^{b} = \left b_{1} \right \left b_{4} \right \cos \phi_{14} + \left b_{2} \right \left b_{3} \right \cos \phi_{23} = \operatorname{Re} \left[b_{4}^{*} b_{1} + b_{3}^{*} b_{2} \right] = - \check{C}_{z'}$	$rac{1}{2} \left< b \right ilde{\Gamma}^2 \left b \right>$	
$\mathcal{O}_{2-}^{b} = b_{1} b_{4} \cos \phi_{14} - b_{2} b_{3} \cos \phi_{23} = \operatorname{Re} \left[b_{4}^{*} b_{1} - b_{3}^{*} b_{2}\right] = -\check{O}_{\chi'}$	$\frac{1}{2} \langle b \tilde{\Gamma}^{14} b \rangle$	
$\mathcal{O}_{1+}^{c} = b_1 b_2 \sin \phi_{12} + b_3 b_4 \sin \phi_{34} = \mathrm{Im} \left[b_2^* b_1 + b_4^* b_3 \right] = - \check{L}_{\chi'}$	$rac{1}{2} \left\langle b \right ilde{\Gamma}^8 \left b ight angle$	
$\mathcal{O}_{1-}^{c} = b_{1} b_{2} \sin\phi_{12} - b_{3} b_{4} \sin\phi_{34} = \mathrm{Im}\left[b_{2}^{*}b_{1} - b_{4}^{*}b_{3}\right] = -\check{T}_{z'}$	$\tfrac{1}{2} \; \langle b \; \tilde{\Gamma}^{13} \; b \rangle$	$c=\mathcal{TR}=\mathrm{PL}$
$\mathcal{O}_{2+}^c = b_1 b_2 \cos \phi_{12} + b_3 b_4 \cos \phi_{34} = \operatorname{Re} \left[b_2^* b_1 + b_4^* b_3 \right] = -\check{L}_{z'}$	$\tfrac{1}{2} \; \langle b \; \tilde{\Gamma}^{15} \; b \rangle$	
$\mathcal{O}_{2-}^{c} = b_1 b_2 \cos \phi_{12} - b_3 b_4 \cos \phi_{34} = \operatorname{Re} \left[b_2^* b_1 - b_4^* b_3\right] = \check{T}_{\chi'}$	$\frac{1}{2} \langle b \tilde{\Gamma}^6 b \rangle$	

Example 1: photoproduction (further preliminaries)

*) Standard assumption: moduli are known from group ${\mathcal S}$ observables:

$$\begin{split} |b_1| &= \frac{1}{2} \left(\sigma_0 - \check{\Sigma} + \check{T} - \check{P} \right), |b_2| = \frac{1}{2} \left(\sigma_0 - \check{\Sigma} - \check{T} + \check{P} \right), \\ |b_3| &= \frac{1}{2} \left(\sigma_0 + \check{\Sigma} - \check{T} - \check{P} \right), |b_4| = \frac{1}{2} \left(\sigma_0 + \check{\Sigma} + \check{T} + \check{P} \right). \end{split}$$

Example 1: photoproduction (further preliminaries)

*) Standard assumption: moduli are known from group ${\cal S}$ observables:

$$\begin{split} |b_1| &= \frac{1}{2} \left(\sigma_0 - \check{\Sigma} + \check{T} - \check{P} \right), |b_2| = \frac{1}{2} \left(\sigma_0 - \check{\Sigma} - \check{T} + \check{P} \right), \\ |b_3| &= \frac{1}{2} \left(\sigma_0 + \check{\Sigma} - \check{T} - \check{P} \right), |b_4| = \frac{1}{2} \left(\sigma_0 + \check{\Sigma} + \check{T} + \check{P} \right). \end{split}$$

*) Define a basis of 'decoupled' observables $\tilde{\mathcal{O}}^n_{\nu\pm}$, which isolate the real- and imaginary parts of the bilinear products $b_i^*b_i$:

$$\begin{split} \tilde{\mathcal{O}}_{1\pm}^n &:= \frac{1}{2} \left(\mathcal{O}_{1+}^n \pm \mathcal{O}_{1-}^n \right), \; n=a,b,c, \\ \tilde{\mathcal{O}}_{2\pm}^n &:= \frac{1}{2} \left(\mathcal{O}_{2+}^n \pm \mathcal{O}_{2-}^n \right), \; n=a,b,c. \end{split}$$

Example 1: photoproduction (further preliminaries)

*) Standard assumption: moduli are known from group ${\mathcal S}$ observables:

$$\begin{split} |b_1| &= \frac{1}{2} \left(\sigma_0 - \check{\Sigma} + \check{T} - \check{P} \right), |b_2| = \frac{1}{2} \left(\sigma_0 - \check{\Sigma} - \check{T} + \check{P} \right), \\ |b_3| &= \frac{1}{2} \left(\sigma_0 + \check{\Sigma} - \check{T} - \check{P} \right), |b_4| = \frac{1}{2} \left(\sigma_0 + \check{\Sigma} + \check{T} + \check{P} \right). \end{split}$$

*) Define a basis of 'decoupled' observables $\tilde{\mathcal{O}}^n_{\nu\pm}$, which isolate the real- and imaginary parts of the bilinear products $b^*_ib_i$:

$$\begin{split} \tilde{\mathcal{O}}^n_{1\pm} &:= \frac{1}{2} \left(\mathcal{O}^n_{1+} \pm \mathcal{O}^n_{1-} \right), \; n=a,b,c, \\ \tilde{\mathcal{O}}^n_{2\pm} &:= \frac{1}{2} \left(\mathcal{O}^n_{2+} \pm \mathcal{O}^n_{2-} \right), \; n=a,b,c. \end{split}$$

- Example:

$$\operatorname{Im} [b_4^* b_2] = |b_2| |b_4| \sin \phi_{24} = \tilde{\mathcal{O}}_{1-}^a = \frac{1}{2} \left(\mathcal{O}_{1+}^a - \mathcal{O}_{1-}^a \right) = \frac{1}{2} \left(-\check{\mathsf{G}} - \check{\mathsf{F}} \right).$$

Example 1: photoproduction (à la Moravcsik) I

*) For N=4 amplitudes, one gets $\frac{(N-1)!}{2}=\frac{3!}{2}=3$ possible graph-topologies :

Example 1: photoproduction (à la Moravcsik) I

*) For N=4 amplitudes, one gets $\frac{(N-1)!}{2}=\frac{3!}{2}=3$ possible graph-topologies :

*) Example: (fully) complete graphs coming from topology 1:

Example 1: photoproduction (à la Moravcsik) II

*) Example (1.1) (fully complete):

Example 1: photoproduction (à la Moravcsik) II

*) Example (1.1) (fully complete):

 \hookrightarrow Map this result to observables (in $\tilde{\mathcal{O}}$ - and \mathcal{O} -basis):

$$\begin{split} |b_1|\,|b_2|\sin\phi_{12} &= \tilde{\mathcal{O}}_{1+}^c = (1/2)\,[\mathcal{O}_{1+}^c + \mathcal{O}_{1-}^c] = (1/2)\,\big[-\check{L}_{x'} - \check{T}_{z'}\big]\,,\\ |b_2|\,|b_4|\cos\phi_{24} &= \tilde{\mathcal{O}}_{2-}^a = (1/2)\,[\mathcal{O}_{2+}^a - \mathcal{O}_{2-}^a] = (1/2)\,\big[-\check{E} - \check{H}\big]\,,\\ |b_3|\,|b_4|\cos\phi_{34} &= \tilde{\mathcal{O}}_{2-}^c = (1/2)\,[\mathcal{O}_{2+}^c - \mathcal{O}_{2-}^c] = (1/2)\,\big[-\check{L}_{z'} - \check{T}_{x'}\big]\,,\\ |b_1|\,|b_4|\cos\phi_{13} &= \tilde{\mathcal{O}}_{2+}^a = (1/2)\,[\mathcal{O}_{2+}^a + \mathcal{O}_{2-}^c] = (1/2)\,\big[-\check{E} + \check{H}\big]\,. \end{split}$$

Example 1: photoproduction (à la Moravcsik) II

*) Example (1.1) (fully complete):

 \hookrightarrow Map this result to observables (in $\tilde{\mathcal{O}}$ - and \mathcal{O} -basis):

$$\begin{split} |b_1|\,|b_2|\sin\phi_{12} &= \tilde{\mathcal{O}}_{1+}^c = (1/2)\,[\mathcal{O}_{1+}^c + \mathcal{O}_{1-}^c] = (1/2)\,\big[-\check{L}_{x'} - \check{\mathcal{T}}_{z'}\big]\,,\\ |b_2|\,|b_4|\cos\phi_{24} &= \tilde{\mathcal{O}}_{2-}^s = (1/2)\,[\mathcal{O}_{2+}^s - \mathcal{O}_{2-}^s] = (1/2)\,\big[-\check{E} - \check{H}\big]\,,\\ |b_3|\,|b_4|\cos\phi_{34} &= \tilde{\mathcal{O}}_{2-}^c = (1/2)\,[\mathcal{O}_{2+}^c - \mathcal{O}_{2-}^c] = (1/2)\,\big[-\check{L}_{z'} - \check{\mathcal{T}}_{x'}\big]\,,\\ |b_1|\,|b_4|\cos\phi_{13} &= \tilde{\mathcal{O}}_{2+}^s = (1/2)\,[\mathcal{O}_{2+}^s + \mathcal{O}_{2-}^s] = (1/2)\,\big[-\check{E} + \check{H}\big]\,. \end{split}$$

 \Rightarrow Extract the 'Moravcsik-complete' set (combined with $\{\sigma_0, \check{\Sigma}, \check{T}, \check{P}\}$):

$$\{\mathcal{O}_{2+}^{a},\mathcal{O}_{2-}^{a},\mathcal{O}_{1+}^{c},\mathcal{O}_{1-}^{c},\mathcal{O}_{2+}^{c},\mathcal{O}_{2-}^{c}\} \equiv \{\check{E},\check{H},\check{L}_{x'},\check{T}_{z'},\check{L}_{z'},\check{T}_{x'}\}.$$

Example 1: photoproduction (à la Moravcsik) III

*) Similar procedure, applied to all the remaining relevant graphs, leads to 12 non-redundant 'Moravcsik-complete' sets for photoproduction (always in combination with $\{\sigma_0, \check{\Sigma}, \check{T}, \check{P}\}$):

Set-Nr.	Observables			Set-Nr.	Observables		
1	$\mathcal{O}^{a}_{2\pm}$	$\mathcal{O}^c_{1\pm}$	$\mathcal{O}^c_{2\pm}$	7	$\mathcal{O}^b_{1\pm}$	$\mathcal{O}^c_{1\pm}$	$\mathcal{O}^c_{2\pm}$
2	$\mathcal{O}_{1\pm}^{a}$	$\mathcal{O}^{\sf a}_{2\pm}$	$\mathcal{O}^c_{2\pm}$	8	$\mathcal{O}_{1\pm}^{b}$	$\mathcal{O}_{2\pm}^b$	$\mathcal{O}^c_{1\pm}$
3	$\mathcal{O}_{1\pm}^{a}$	$\mathcal{O}^c_{1\pm}$	$\mathcal{O}^c_{2\pm}$	9	$\mathcal{O}_{1\pm}^{\sf a}$	$\mathcal{O}^{a}_{2\pm}$	$\mathcal{O}^b_{2\pm}$
4	$\mathcal{O}_{1\pm}^{a}$	$\mathcal{O}^{\sf a}_{2\pm}$	$\mathcal{O}^c_{1\pm}$	10	$\mathcal{O}^{a}_{2\pm}$	$\mathcal{O}_{1\pm}^b$	$\mathcal{O}^b_{2\pm}$
	$\mathcal{O}_{2\pm}^b$			11	$\mathcal{O}_{1\pm}^{\sf a}$	$\mathcal{O}^{a}_{2\pm}$	$\mathcal{O}_{1\pm}^b$
6	$\mathcal{O}_{1\pm}^b$	$\mathcal{O}^b_{2\pm}$	$\mathcal{O}^c_{2\pm}$	12	$\mathcal{O}_{1\pm}^{\sf a}$	$\mathcal{O}_{1\pm}^b$	$\mathcal{O}^b_{2\pm}$

Example 1: photoproduction (à la Moravcsik) III

*) Similar procedure, applied to all the remaining relevant graphs, leads to 12 non-redundant 'Moravcsik-complete' sets for photoproduction (always in combination with $\{\sigma_0, \check{\Sigma}, \check{T}, \check{P}\}$):

Set-Nr.	0	bservab	les	Set-Nr.	Observabl		les
1	$\mathcal{O}^{a}_{2\pm}$	$\mathcal{O}^c_{1\pm}$	$\mathcal{O}^c_{2\pm}$			$\mathcal{O}^c_{1\pm}$	
2	$\mathcal{O}_{1\pm}^{\scriptscriptstyle a}$	$\mathcal{O}^{\scriptscriptstyle a}_{2\pm}$	$\mathcal{O}^c_{2\pm}$	8	$\mathcal{O}^b_{1\pm}$	$\mathcal{O}^b_{2\pm}$	$\mathcal{O}^c_{1\pm}$
3	$\mathcal{O}_{1\pm}^{\scriptscriptstyle a}$	$\mathcal{O}^c_{1\pm}$	$\mathcal{O}^c_{2\pm}$	9	$\mathcal{O}_{1\pm}^{a}$	$\mathcal{O}^{a}_{2\pm}$	$\mathcal{O}_{2\pm}^b$
4	$\mathcal{O}_{1\pm}^{a}$	$\mathcal{O}^{\sf a}_{2\pm}$	$\mathcal{O}^{c}_{1\pm}$	10	$\mathcal{O}^{a}_{2\pm}$	$\mathcal{O}_{1\pm}^{b}$	$\mathcal{O}_{2\pm}^b$
5	$\mathcal{O}^b_{2\pm}$	$\mathcal{O}^c_{1\pm}$	$\mathcal{O}^c_{2\pm}$	11	$\mathcal{O}_{1\pm}^{\sf a}$	$\mathcal{O}^{a}_{2\pm}$	$\mathcal{O}_{1\pm}^{b}$
6	$\mathcal{O}_{1\pm}^b$	$\mathcal{O}^b_{2\pm}$	$\mathcal{O}^c_{2\pm}$	12	$\mathcal{O}^{\sf a}_{1\pm}$	$\mathcal{O}_{1\pm}^{b}$	$\mathcal{O}^b_{2\pm}$

<u>Observation:</u> Moravcsik-complete sets contain 2 observables more than complete sets with an absolutely minimal amount of observables, i.e. with 2N = 8 observables [Chiang & Tabakin (1997), Nakayama (2018)].

Example 1: photoproduction (à la Moravcsik) III

*) Similar procedure, applied to all the remaining relevant graphs, leads to 12 non-redundant 'Moravcsik-complete' sets for photoproduction (always in combination with $\{\sigma_0, \check{\Sigma}, \check{T}, \check{P}\}$):

Set-Nr.	Ο	bservab	les	Set-Nr.	Ol	les	
1	$\mathcal{O}^{a}_{2\pm}$	$\mathcal{O}^c_{1\pm}$	$\mathcal{O}^c_{2\pm}$			$\mathcal{O}^c_{1\pm}$	
2	$\mathcal{O}_{1\pm}^{\scriptscriptstyle a}$	$\mathcal{O}^{a}_{2\pm}$	$\mathcal{O}^c_{2\pm}$	8	$\mathcal{O}_{1\pm}^b$	$\mathcal{O}_{2\pm}^b$	$\mathcal{O}^c_{1\pm}$
3	$\mathcal{O}_{1\pm}^{a}$	$\mathcal{O}^c_{1\pm}$	$\mathcal{O}^c_{2\pm}$	9	$\mathcal{O}_{1\pm}^{\sf a}$	$\mathcal{O}^{a}_{2\pm}$	$\mathcal{O}_{2\pm}^b$
4	$\mathcal{O}_{1\pm}^{a}$	$\mathcal{O}^{a}_{2\pm}$	$\mathcal{O}^c_{1\pm}$	10	$\mathcal{O}^{a}_{2\pm}$	$\mathcal{O}_{1\pm}^b$	$\mathcal{O}_{2\pm}^b$
5	$\mathcal{O}_{2\pm}^b$	$\mathcal{O}^c_{1\pm}$	$\mathcal{O}^c_{2\pm}$	11	$\mathcal{O}_{1\pm}^{a}$	$\mathcal{O}^{a}_{2\pm}$	$\mathcal{O}_{1\pm}^{b}$
6	$\mathcal{O}_{1\pm}^b$	$\mathcal{O}^b_{2\pm}$	$\mathcal{O}^c_{2\pm}$	12	$\mathcal{O}^{\sf a}_{1\pm}$	$\mathcal{O}_{1\pm}^b$	$\mathcal{O}^b_{2\pm}$

<u>Observation:</u> Moravcsik-complete sets contain 2 observables more than complete sets with an absolutely minimal amount of observables, i.e. with 2N = 8 observables [Chiang & Tabakin (1997), Nakayama (2018)].

$\leftrightarrow What\ happened ?!$

- Not fully clear yet. Possible method to reduce this mismatch ightarrow later

Example 1: photoproduction (à la Moravcsik) III

*) Similar procedure, applied to all the remaining relevant graphs, leads to 12 non-redundant 'Moravcsik-complete' sets for photoproduction (always in combination with $\{\sigma_0, \check{\Sigma}, \check{T}, \check{P}\}$):

Set-Nr.	0	bservab	les	Set-Nr.	Observable		es
1	$\mathcal{O}^{a}_{2\pm}$	$\mathcal{O}^c_{1\pm}$	$\mathcal{O}^c_{2\pm}$	7	$\mathcal{O}^b_{1\pm}$	$\mathcal{O}^c_{1\pm}$	$\mathcal{O}^c_{2\pm}$
2	$\mathcal{O}_{1\pm}^{a}$	$\mathcal{O}^{\sf a}_{2\pm}$	$\mathcal{O}^c_{2\pm}$	8	$\mathcal{O}_{1\pm}^b$	$\mathcal{O}_{2\pm}^b$	$\mathcal{O}^c_{1\pm}$
3	$\mathcal{O}_{1\pm}^{a}$	$\mathcal{O}^c_{1\pm}$	$\mathcal{O}^c_{2\pm}$		$\mathcal{O}_{1\pm}^{\sf a}$		
4	$\mathcal{O}_{1\pm}^{a}$	$\mathcal{O}^{\sf a}_{2\pm}$	$\mathcal{O}^c_{1\pm}$	10	$\mathcal{O}^{a}_{2\pm}$	$\mathcal{O}_{1\pm}^b$	$\mathcal{O}_{2\pm}^b$
5	$\mathcal{O}^b_{2\pm}$	$\mathcal{O}^c_{1\pm}$	$\mathcal{O}^c_{2\pm}$	11	$\mathcal{O}_{1\pm}^{\sf a}$	$\mathcal{O}^{\sf a}_{2\pm}$	$\mathcal{O}_{1\pm}^{b}$
6	$\mathcal{O}_{1\pm}^b$	$\mathcal{O}^b_{2\pm}$	$\mathcal{O}^c_{2\pm}$	12	$\mathcal{O}^{\sf a}_{1\pm}$	$\mathcal{O}_{1\pm}^b$	$\mathcal{O}_{2\pm}^b$

<u>Observation:</u> Moravcsik-complete sets contain 2 observables more than complete sets with an absolutely minimal amount of observables, i.e. with 2N = 8 observables [Chiang & Tabakin (1997), Nakayama (2018)].

Now: consider next more complicated example of electroproduction . . .

) Reaction: $eN \longrightarrow e'\pi N \Rightarrow$ no. of amplitudes $=\underbrace{3}_{\gamma^} * \underbrace{2}_{N} * \underbrace{2}_{N} / \underbrace{2}_{Parity} = 6$.

One has: $\underline{6}$ amplitudes b_1, \ldots, b_6 vs. $\underline{36}$ observables.

) Reaction: $eN \longrightarrow e'\pi N \Rightarrow$ no. of amplitudes $=\underbrace{3}_{\gamma^} * \underbrace{2}_{N} * \underbrace{2}_{N} / \underbrace{2}_{Parity} = 6$.

One has: $\underline{6}$ amplitudes b_1, \ldots, b_6 vs. $\underline{36}$ observables.

Observable	Bilinear form	Shape-class
$R_T^{00} = \frac{1}{2} \left(b_1 ^2 + b_2 ^2 + b_3 ^2 + b_4 ^2 \right)$	$\tfrac{1}{2} \left< b \right \tilde{\Gamma}^1 \left b \right>$	
$-{}^{c}R_{TT}^{00} = \frac{1}{2} \left(b_1 ^2 + b_2 ^2 - b_3 ^2 - b_4 ^2 \right)$	$rac{1}{2} \left< b \right ilde{\Gamma}^4 \left b \right>$	D1
$-R_T^{0y} = \frac{1}{2} \left(- b_1 ^2 + b_2 ^2 + b_3 ^2 - b_4 ^2 \right)$	$rac{1}{2} \; \langle b \tilde{\Gamma}^{10} \; b angle$	
$-R_T^{y'0} = \frac{1}{2} \left(- b_1 ^2 + b_2 ^2 - b_3 ^2 + b_4 ^2 \right)$	$\tfrac{1}{2} \left< b \right \tilde{\Gamma}^{12} \left b \right>$	
$\mathcal{O}_{1+}^{\mathfrak{z}} = b_1 b_3 \sin \phi_{13} + b_2 b_4 \sin \phi_{24} = \operatorname{Im} \left[b_3^* b_1 + b_4^* b_2 \right] = -{}^{s} R_{TT}^{02}$	$\frac{1}{2} \langle b \tilde{\Gamma}^3 b \rangle$	
$\mathcal{O}_{1-}^{\mathfrak{a}} = b_{1} b_{3} \sin \phi_{13} - b_{2} b_{4} \sin \phi_{24} = \operatorname{Im} \left[b_{3}^{*} b_{1} - b_{4}^{*} b_{2} \right] = R_{TT'}^{0x}$	$rac{1}{2} \; \langle b \tilde{\Gamma}^{11} \; b angle$	a = PR1
$\mathcal{O}_{2+}^{\mathfrak{s}} = b_1 b_3 \cos \phi_{13} + b_2 b_4 \cos \phi_{24} = \mathrm{Re} \left[b_3^* b_1 + b_4^* b_2 \right] = R_{TT'}^{0z}$	$rac{1}{2} \left< b \right ilde{\Gamma}^9 \left b \right>$	
$\mathcal{O}_{2-}^{s} = b_{1} b_{3} \cos \phi_{13} - b_{2} b_{4} \cos \phi_{24} = \operatorname{Re} \left[b_{3}^{*} b_{1} - b_{4}^{*} b_{2} \right] = {}^{s} R_{TT}^{0x}$	$rac{1}{2} \left< b \right ilde{\Gamma}^5 \left b \right>$	
$\mathcal{O}_{1+}^{b} = b_1 b_4 \sin \phi_{14} + b_2 b_3 \sin \phi_{23} = \mathrm{Im} \left[b_4^* b_1 + b_3^* b_2 \right] = - {}^s R_{TT}^{z'0}$	$rac{1}{2} \langle b \tilde{\Gamma}^7 b angle$	
$\mathcal{O}_{1-}^{b} = b_1 b_4 \sin\phi_{14} - b_2 b_3 \sin\phi_{23} = \mathrm{Im}\left[b_4^*b_1 - b_3^*b_2 ight] = -R_{TT'}^{\chi'0}$	$\tfrac{1}{2} \; \langle b \tilde{\Gamma}^{16} \; b \rangle$	b = AD1
$\mathcal{O}_{2+}^{b} = b_1 b_4 \cos \phi_{14} + b_2 b_3 \cos \phi_{23} = \operatorname{Re} \left[b_4^* b_1 + b_3^* b_2 \right] = R_{TT'}^{z'0}$	$\tfrac{1}{2} \langle b \tilde{\Gamma}^2 b \rangle$	
$\mathcal{O}_{2-}^{b} = b_1 b_4 \cos \phi_{14} - b_2 b_3 \cos \phi_{23} = \operatorname{Re} \left[b_4^* b_1 - b_3^* b_2 \right] = -{}^{s} R_{TT}^{x'0}$	$rac{1}{2} \left< b \right ilde{\Gamma}^{14} \left b \right>$	

$\mathcal{O}_{1+}^{c} = b_{1} b_{2} \sin \phi_{12} + b_{3} b_{4} \sin \phi_{34} = \operatorname{Im} \left[b_{2}^{*} b_{1} + b_{4}^{*} b_{3} \right] = -R_{T}^{x'z}$	$\frac{1}{2} \langle b \tilde{\Gamma}^8 b \rangle$	
$\mathcal{O}_{1-}^{c} = b_{1} b_{2} \sin \phi_{12} - b_{3} b_{4} \sin \phi_{34} = \mathrm{Im} \left[b_{2}^{*} b_{1} - b_{4}^{*} b_{3} ight] = R_{T}^{z' x}$	$rac{1}{2} \; \langle b \; \widetilde{\Gamma}^{13} \; b angle$	$c=\mathrm{PL}1$
$\mathcal{O}_{2+}^c = b_1 b_2 \cos \phi_{12} + b_3 b_4 \cos \phi_{34} = \operatorname{Re} \left[b_2^* b_1 + b_4^* b_3 \right] = R_T^{z'z}$	$rac{1}{2} \left< b ight ilde{\Gamma}^{15} \left b ight>$	
$\mathcal{O}_{2-}^{c} = b_1 b_2 \cos \phi_{12} - b_3 b_4 \cos \phi_{34} = \operatorname{Re} \left[b_2^* b_1 - b_4^* b_3 \right] = R_T^{x'x}$	$\frac{1}{2} \langle b \tilde{\Gamma}^6 b \rangle$	
$R_L^{00} = b_5 ^2 + b_6 ^2$	$rac{1}{\sqrt{2}} \left\langle b \right ilde{\Gamma}^{17} \left b ight angle$	D2
$R_L^{0y} = b_5 ^2 - b_6 ^2$	$\frac{1}{\sqrt{2}} \langle b \tilde{\Gamma}^{18} b \rangle$	
$\mathcal{O}_{1}^{d}=2 b_{5} b_{6} \sin\phi_{56}=2\mathrm{Im}\left[b_{6}^{*}b_{5} ight]=R_{L}^{z'x}$	$\frac{1}{\sqrt{2}} \langle b \tilde{\Gamma}^{20} b \rangle$	d = AD2
$\mathcal{O}_2^d = 2 b_5 b_6 \cos \phi_{56} = 2 \text{Re} \left[b_6^* b_5 \right] = -R_L^{x'x}$	$\frac{1}{\sqrt{2}} \langle b \tilde{\Gamma}^{19} b \rangle$	
$\mathcal{O}_{1+}^{e} = b_3 b_6 \sin \phi_{36} + b_4 b_5 \sin \phi_{45} = \operatorname{Im} \left[b_6^* b_3 + b_5^* b_4 \right] = - {}^{s} R_{LT'}^{00}$	$rac{1}{2} \left< b \right \tilde{\Gamma}^{31} \left b \right>$	
$\mathcal{O}_{1-}^{e} = \mathit{b}_{3} \mathit{b}_{6} \sin\phi_{36} - \mathit{b}_{4} \mathit{b}_{5} \sin\phi_{45} = \mathrm{Im}\left[\mathit{b}_{6}^{*}\mathit{b}_{3} - \mathit{b}_{5}^{*}\mathit{b}_{4}\right] = {}^{s}\mathit{R}_{\mathit{LT'}}^{0y}$	$rac{1}{2} \; \langle b \; \tilde{\Gamma}^{29} \; b angle$	e = AD3
$\mathcal{O}_{2+}^{e} = b_{3} b_{6} \cos \phi_{36} + b_{4} b_{5} \cos \phi_{45} = \operatorname{Re} \left[b_{6}^{*} b_{3} + b_{5}^{*} b_{4} \right] = {}^{c} R_{LT}^{00}$	$rac{1}{2} \left< b ight ilde{\Gamma}^{21} \left b ight>$	
$\mathcal{O}_{2-}^{e} = b_{3} b_{6} \cos \phi_{36} - b_{4} b_{5} \cos \phi_{45} = \operatorname{Re} \left[b_{6}^{*} b_{3} - b_{5}^{*} b_{4}\right] = -{}^{c} R_{LT}^{0y}$	$\frac{1}{2} \langle b \tilde{\Gamma}^{23} b \rangle$	
$\mathcal{O}_{1+}^{f} = b_{1} b_{6} \sin \phi_{16} + b_{2} b_{5} \sin \phi_{25} = \mathrm{Im} \left[b_{6}^{*} b_{1} + b_{5}^{*} b_{2} ight] = - {}^{s} R_{LT}^{0z}$	$rac{1}{2} \; \langle b \; \tilde{\Gamma}^{30} \; b angle$	
$\mathcal{O}_{1-}^{f} = b_{1} b_{6} \sin \phi_{16} - b_{2} b_{5} \sin \phi_{25} = \operatorname{Im} \left[b_{6}^{*} b_{1} - b_{5}^{*} b_{2}\right] = ^{c} R_{LT'}^{0 \times}$	$rac{1}{2} \; \langle b \; \tilde{\Gamma}^{24} \; b angle$	$f=\mathrm{AD4}$
$\mathcal{O}_{2+}^{f} = b_{1} b_{6} \cos \phi_{16} + b_{2} b_{5} \cos \phi_{25} = \operatorname{Re} \left[b_{6}^{*} b_{1} + b_{5}^{*} b_{2}\right] = {}^{c} R_{LT'}^{0z}$	$rac{1}{2} \left< b ight ilde{\Gamma}^{32} \left b ight>$	
$\mathcal{O}_{2-}^{f} = b_{1} b_{6} \cos \phi_{16} - b_{2} b_{5} \cos \phi_{25} = \operatorname{Re}\left[b_{6}^{*} b_{1} - b_{5}^{*} b_{2}\right] = {}^{s}R_{LT}^{0x}$	$rac{1}{2} \left< b ight ilde{\Gamma}^{22} \left b ight>$	

$$\begin{array}{lll} \mathcal{O}_{1+}^g = |b_1| \, |b_5| \sin \phi_{15} + |b_2| \, |b_6| \sin \phi_{26} = \mathrm{Im} \, \left[b_5^* \, b_1 + b_6^* \, b_2\right] = -{}^s R_{LT}^{z'0} & \frac{1}{2} \, \langle b | \, \tilde{\Gamma}^{33} \, |b \rangle \\ \\ \mathcal{O}_{2-}^g = |b_1| \, |b_5| \sin \phi_{15} - |b_2| \, |b_6| \sin \phi_{26} = \mathrm{Im} \, \left[b_5^* \, b_1 - b_6^* \, b_2\right] = -{}^c R_{LT'}^{z'0} & \frac{1}{2} \, \langle b | \, \tilde{\Gamma}^{26} \, |b \rangle & g = \mathrm{PR2} \\ \\ \mathcal{O}_{2+}^g = |b_1| \, |b_5| \cos \phi_{15} + |b_2| \, |b_6| \cos \phi_{26} = \mathrm{Re} \, \left[b_5^* \, b_1 + b_6^* \, b_2\right] = {}^c R_{LT'}^{z'0} & \frac{1}{2} \, \langle b | \, \tilde{\Gamma}^{25} \, |b \rangle \\ \\ \mathcal{O}_{2-}^g = |b_1| \, |b_5| \cos \phi_{15} - |b_2| \, |b_6| \cos \phi_{26} = \mathrm{Re} \, \left[b_5^* \, b_1 - b_6^* \, b_2\right] = {}^c R_{LT'}^{z'0} & \frac{1}{2} \, \langle b | \, \tilde{\Gamma}^{25} \, |b \rangle \\ \\ \mathcal{O}_{1+}^h = |b_3| \, |b_5| \sin \phi_{35} + |b_4| \, |b_6| \sin \phi_{46} = \mathrm{Im} \, \left[b_5^* \, b_3 + b_6^* \, b_4\right] = {}^c R_{LT'}^{z'x} & \frac{1}{2} \, \langle b | \, \tilde{\Gamma}^{28} \, |b \rangle & h = \mathrm{PR3} \\ \\ \mathcal{O}_{1-}^h = |b_3| \, |b_5| \sin \phi_{35} - |b_4| \, |b_6| \sin \phi_{46} = \mathrm{Im} \, \left[b_5^* \, b_3 - b_6^* \, b_4\right] = {}^c R_{LT'}^{z'x} & \frac{1}{2} \, \langle b | \, \tilde{\Gamma}^{28} \, |b \rangle & h = \mathrm{PR3} \\ \\ \mathcal{O}_{2+}^h = |b_3| \, |b_5| \cos \phi_{35} + |b_4| \, |b_6| \cos \phi_{46} = \mathrm{Re} \, \left[b_5^* \, b_3 + b_6^* \, b_4\right] = {}^c R_{LT'}^{z'x} & \frac{1}{2} \, \langle b | \, \tilde{\Gamma}^{26} \, |b \rangle \\ \\ \mathcal{O}_{2-}^h = |b_3| \, |b_5| \cos \phi_{35} - |b_4| \, |b_6| \cos \phi_{46} = \mathrm{Re} \, \left[b_5^* \, b_3 - b_6^* \, b_4\right] = {}^c R_{LT'}^{z'x} & \frac{1}{2} \, \langle b | \, \tilde{\Gamma}^{27} \, |b \rangle \\ \end{array}$$

- \hookrightarrow For N=6: quite many observables/inteference terms. Possible algebraic dependencies among the observables are manifold and quite complicated!
- ⇒ It is quite tough to solve this problem 'by hand'.

<u>However:</u> Moravcsik's Theorem comes to the rescue, since its application is very systematic and quite easily automated!

Example 3: <u>electro</u>production (graph topologies)

Example 3: electroproduction (graph topologies)

Example 3: <u>electro</u>production (graph topologies)

Example 3: <u>electro</u>production (graph topologies)

Example 3: electroproduction (fully complete graphs)

*) Example (1.1) (fully complete):

 $\begin{array}{l} \hookrightarrow \text{ In the same way as before, extract the 'Moravcsik-complete' set (combined with } \left\{R_T^{00}, \ ^cR_{TT}^{00}, R_T^{0y}, R_T^{y'0}, R_L^{00}, R_L^{0y}\right\}); \\ \left\{\mathcal{O}_{2+}^s, \mathcal{O}_{2-}^s, \mathcal{O}_{1+}^c, \mathcal{O}_{1-}^c, \mathcal{O}_{2}^d, \mathcal{O}_{2+}^h, \mathcal{O}_{2-}^h\right\} \\ &\equiv \left\{R_{TT}^{0z}, \ ^sR_{TT}^{0z}, R_T^{z'z}, R_T^{z'x}, R_L^{z'x}, \ ^cR_{LT}^{z'x}, \ ^sR_{LT}^{z'x}\right\}. \end{array}$

Example 3: electroproduction (fully complete graphs)

*) Example (1.1) (fully complete):

 $\begin{array}{l} \hookrightarrow \ \ \mbox{In the same way as before, extract the 'Moravcsik-complete' set (combined with $\left\{R_T^{00},\ ^cR_{TT}^{00},R_T^{0y},R_T^{y'0},R_L^{00},R_L^{0y}\right\}$): $$$$$$$$$\left\{\mathcal{O}_{2+}^{a},\mathcal{O}_{2-}^{a},\mathcal{O}_{1+}^{c},\mathcal{O}_{1-}^{c},\mathcal{O}_{2}^{d},\mathcal{O}_{2+}^{h},\mathcal{O}_{2-}^{h}\right\}$$$$$$$$$$$$$$\equiv $\left\{R_{TT'}^{0z},\ ^sR_{TT}^{0x},R_{T}^{x'z},R_{T}^{x'x},R_{L}^{x'x},\ ^cR_{LT}^{x'x},\ ^sR_{LT}^{z'x}\right\}.$ \end{array}$

- *) In total, we obtain for the first time (!):
 - 64 non-redundant Moravcsik-complete sets composed of 13 observables
 - \hookrightarrow Only one observable more than the minimal number of 2N=12 observables!
 - 96 non-redundant Moravcsik-complete sets composed of 14 observables

15/18

Cases with larger numbers of $N \ge 6$ amplitudes

Two-meson photoproduction

- *) 8 amplitudes vs. 64 observables
- *) Typical complete graph:

- *) No. of start-topologies: $\frac{(N-1)!}{2} = 2520$
- *) Moravcsik-complete sets have at least: $\underline{24 \text{ observables}} > 2N = 16 \text{ observables}$
- *) [Phys. Rev. C 103, 1, 014607 (2021)]
 - ightarrow see also next talk by P. Kroenert

Cases with larger numbers of $N \ge 6$ amplitudes

Two-meson photoproduction

- *) 8 amplitudes vs. 64 observables
- *) Typical complete graph:

- *) No. of start-topologies: $\frac{(N-1)!}{2} = 2520$
- *) Moravcsik-complete sets have at least: $\underline{24 \text{ observables}} > 2N = 16 \text{ observables}$
- *) [Phys. Rev. C **103**, 1, 014607 (2021)] \rightarrow see also next talk by P. Kroenert

Vector-meson photoproduction

- *) 12 amp.'s vs. 244 observables
- *) Example for start-topology:

*) No. of start-topologies:

$$\frac{(N-1)!}{2} = 19958400$$

- ⇒ Numerically very demanding problem!
- \Rightarrow Needs to be implemented on a cluster

<u>Observation:</u> Moravcsik-complete sets tend to be slightly over-complete, i.e. to contain *more than* 2N observables, for problems with $N \ge 4$ amplitudes

<u>Observation:</u> Moravcsik-complete sets tend to be slightly over-complete, i.e. to contain *more than* 2N observables, for problems with $N \ge 4$ amplitudes

One can improve the situation using new kind of graphs, containing additional directional information. [YW, arXiv:2106.00486 [nucl-th] (2021), under review]

<u>Observation:</u> Moravcsik-complete sets tend to be slightly over-complete, i.e. to contain *more than* 2N observables, for problems with $N \ge 4$ amplitudes

- → One can improve the situation using new kind of graphs, containing additional directional information. [YW, arXiv:2106.00486 [nucl-th] (2021), under review]
 - *) Example:

 \Leftrightarrow complete electroproduction-set (yields 2N = 12 obs.'s in combination with 6 'diagonal' obs.'s):

$$\bigg\{{}^{s}R_{TT}^{0z},R_{TT'}^{0z},{}^{s}R_{LT'}^{00},{}^{s}R_{LT'}^{0y},{}^{c}R_{LT'}^{z'0},{}^{s}R_{LT}^{x'0}\bigg\}.$$

<u>Observation:</u> Moravcsik-complete sets tend to be slightly over-complete, i.e. to contain *more than* 2N observables, for problems with $N \geq 4$ amplitudes

- One can improve the situation using new kind of graphs, containing additional directional information. [YW, arXiv:2106.00486 [nucl-th] (2021), under review]
 - *) Example:

 \Leftrightarrow complete electroproduction-set (yields 2N = 12 obs.'s in combination with 6 'diagonal' obs.'s):

$$\left\{{}^{s}R_{TT}^{0z},R_{TT'}^{0z},{}^{s}R_{LT'}^{00},{}^{s}R_{LT'}^{0y},{}^{c}R_{LT'}^{z'0},{}^{s}R_{LT}^{x'0}\right\}.$$

- Single-lined arrows: same as in Moravcsik's Theorem
- Double-lined arrows: 'crossed' selection $\mathcal{O}_{1\pm}^{a}\oplus\mathcal{O}_{2\pm}^{a}$
- 'Outer' direction \Leftrightarrow 'directional convention' for consist. rel.: $\phi_{13}+\phi_{36}+\phi_{62}+\phi_{24}+\phi_{45}+\phi_{51}=0$.
- Direction of 'inner' arrows: sign of ' ζ -angle' (cf. Figure on the right) in discrete-ambiguity formulas
- ⇒ More details: [arXiv:2106.00486 [nucl-th]].

Conclusion and Outlook

For a $2 \to 2$ reaction involving particles with spin: N (transversity) amplitudes b_i vs. N^2 pol.-observables $\check{\mathcal{O}}^{\alpha} \propto \langle b | \, \tilde{\Gamma}^{\alpha} \, | \, b \rangle$.

Conclusion and Outlook

For a 2 ightarrow 2 reaction involving particles with spin: N (transversity) amplitudes b_i vs. N^2 pol.-observables $\check{\mathcal{O}}^{\alpha} \propto \langle b | \, \tilde{\Gamma}^{\alpha} \, | b \rangle$.

We have:

- *) (Re-) derived a modified version of Moravcsik's Theorem
- *) Treated the example of photoproduction in detail
- *) Shown the application to the (tougher!) problem of electroproduction

Conclusion and Outlook

For a 2 \rightarrow 2 reaction involving particles with spin: N (transversity) amplitudes b_i vs. N^2 pol.-observables $\check{\mathcal{O}}^{\alpha} \propto \langle b | \tilde{\Gamma}^{\alpha} | b \rangle$.

We have:

- *) (Re-) derived a modified version of Moravcsik's Theorem
- *) Treated the example of photoproduction in detail
- *) Shown the application to the (tougher!) problem of electroproduction
- *) Further possible directions of research:
 - Two-meson photoproduction [P. Kroenert et al. (2021)] → next talk!
 - First ever treatment of vector-meson photoproduction (N = 12 amplitudes: tough!!)
 - Consider mismatch between Moravcsik-complete sets and minimal complete sets of 2N observables
 - ⇒ new 'directional' graphs [YW, [arXiv:2106.00486 [nucl-th]] (2021)]

References

[Moravcsik (1985)]: M. J. Moravcsik, J. Math. Phys. **26**, 211 (1985).

[W. K. A. T. (2020)]: YW, P. Kroenert, F. Afzal and A. Thiel, Phys. Rev. C **102**, no.3, 034605 (2020) [arXiv:2004.14483 [nucl-th]].

[P. Kroenert et al. (2021)]: P. Kroenert, YW, F. Afzal and A. Thiel, Phys. Rev. C 103, no.1, 014607 (2021) [arXiv:2009.04356 [nucl-th]].

[Chiang & Tabakin (1996)]: W.T. Chiang and F. Tabakin, Phys. Rev., C **55**:2054-2066, 1997.

[Nakayama (2018)]: K. Nakayama, Phys. Rev. C **100**, no. 3, 035208 (2019).

[YW (2021)]: YW, [arXiv:2106.00486 [nucl-th]] (2021).

Thank You!