

$\begin{array}{c} Study of \\ \chi_{bJ}(nP) \rightarrow \omega \Upsilon(1S) \\ at Belle \end{array}$

July 28, 2021

Zachary S. Stottler (Virginia Tech)

On behalf of the Belle Collaboration

Hadron 2021

This work is supported by the U.S. Department of Energy

Study of $\chi_{hI}(nP) \rightarrow \omega \Upsilon(1S)$ at Belle – Hadron 2021 – Zachary S. Stottler

VIRGINIA TECH. Bottomonium Spectroscopy

Bound state of bottom quark/anti-quark $(b\overline{b})$

Theoretical description

1/r "coulombic" behaviour at short distances

- Many (successful) predictions of spectroscopic properties:
 - ✓ Masses/Widths, Quantum Numbers, Production/Decay Mechanisms/Rates

Study of $\chi_{bI}(nP) \rightarrow \omega \Upsilon(1S)$ at Belle – Hadron 2021 – Zachary S. Stottler

VIRGINIA TECH. Previous Measurement & Analysis Strategy

VIRGINIA TECH. Event Selection & Background Suppression

Final State Particle Selection Criteria

- At least 4 tracks with |dr| < 0.5 cm, |dz| < 2.0 cm
- At least 2 isolated clusters in ECL that do not match with a track.

Hard Tracks (Leptons)

- $p_{\ell}^{CM} > 4.0 \text{ GeV}$
- $M(\ell^+\ell^-) \in [9.0, 9.8] \text{ GeV}$
- Require exactly 1 di-lepton
- MuonID > 0.2 or eID > 0.2(only in $\Upsilon(4S)$ Dataset)

Soft Tracks (Pions)

- $p_{\pi}^{CM} < 0.45 \text{ GeV}$
- $cos(\psi_{\pi\pi}) < 0.95$
- Require exactly 1 di-pion

π^0 Candidates

- $p_{\nu\nu}^{CM} \in [0.08, 0.43] \text{ GeV}$
- $M_{\gamma\gamma} \in [0.11, 0.15] \text{ GeV}$
- Retain π^0 with smallest mass fit χ^2

Study of $\chi_{bI}(nP) \rightarrow \omega \Upsilon(1S)$ at Belle – Hadron 2021 – Zachary S. Stottler

VIRGINIA TECH. Event Selection & Background Suppression

Final State Particle Selection Criteria

- At least 4 tracks with |dr| < 0.5 cm, |dz| < 2.0 cm
- do not match with a track.

Hard Tracks (Leptons)

- $p_{\ell}^{CM} > 4.0 \text{ GeV}$
- $M(\ell^+\ell^-) \in [9.0, 9.8] \text{ GeV}$
- Require exactly 1 di-lepton
- MuonID > 0.2 or eID > 0.2

Soft Tracks (Pions)

- $p_{\pi}^{CM} < 0.45 \text{ GeV}$
- Require exactly 1 di-pion
- π^0 Candidates
- $p_{\nu\nu}^{CM} \in [0.08, 0.43] \text{ GeV}$
- $M_{\gamma\gamma} \in [0.11, 0.15] \text{ GeV}$
- Retain π^0 with smallest mass fit χ^2

At least 2 isolated clusters in ECL that To Veto Resonant $b\overline{b}$ Transitions, we define:

$$\Delta M_{\pi\pi} = M(\pi^{+}\pi^{-}\ell^{+}\ell^{-}) - M(\ell^{+}\ell^{-})$$

 $\rightarrow \Delta M_{\pi\pi}$ is sharply peaked for resonant di-pion transitions with a resolution of ~ 2 MeV.

$(\Upsilon(1S)) + M(\Upsilon(1S))$

VIRGINIA TECH. Event Selection & Background Suppression

Final State Particle Selection Criteria

- At least 4 tracks with |dr| < 0.5 cm, |dz| < 2.0 cm
- At least 2 isolated clusters in ECL that do not match with a track.

Hard Tracks (Leptons)

- $p_{\ell}^{CM} > 4.0 \text{ GeV}$
- $M(\ell^+\ell^-) \in [9.0, 9.8] \text{ GeV}$
- Require exactly 1 di-lepton
- MuonID > 0.2 or eID > 0.2 (only in Υ(4S) Dataset)

Soft Tracks (Pions)

- $p_{\pi}^{CM} < 0.45 \text{ GeV}$
- $cos(\psi_{\pi\pi}) < 0.95$
- Require exactly 1 di-pion

π^0 Candidates

- $p_{\gamma\gamma}^{CM} \in [0.08, 0.43] \text{ GeV}$
- $M_{\gamma\gamma} \in [0.11, 0.15] \text{ GeV}$
- Retain π^0 with smallest mass fit χ^2

Ύ(2S)→ππΎ(1S) Events/[4.0 MeV/c² Ύ(4S)→ππΎ(2S) Resonant $b\overline{b} \rightarrow \pi^+\pi^- b\overline{b}'$ Veto $\Delta M_{\pi\pi} \in [9.83, 10.12] \text{ GeV}$ **To Veto** 10^{2} $\Upsilon(2S) \rightarrow \pi^+\pi^- \Upsilon(1S)$ 9.85 We Optimize FOM = $\frac{S}{\sqrt{S+B}}$ 9.8 9.9 9.75 $\Upsilon(3S)$ and off-Resonance $\Upsilon(4S)$ Datasets $ΔM_{ππ}$ ∉ (10.017, 10.029) GeV On Resonance $\Upsilon(4S)$ Dataset $b\bar{b}$ $\Delta M_{\pi\pi} \notin (10.014, 10.030) \text{ GeV}$

<mark>∕</mark>χ_⊾(3P)→ωΥ(1S)

 $\Delta M_{\pi\pi} = M(\pi^{+}\pi^{-}\ell^{+}\ell^{-}) - M(\ell^{+}\ell^{-}) + M(\Upsilon(1S))$

VIRGINIA TECH. Fit to Data

Signals are extracted with a simultaneous fit to M_{ω} and:

 $\Delta M_{\gamma} = M(\pi^{0}\pi^{+}\pi^{-}\ell^{+}\ell^{-}) - M(\ell^{+}\ell^{-}) + M(\Upsilon(1S))$

- ΔM_{γ} is narrowly peaked at the $\chi_{bI}(nP)$ masses (resolution: 4.5 6.0 MeV)
- We analyze 3 fb^{-1} and 513 fb^{-1} of (available) data collected near the $\Upsilon(3S)$ and $\Upsilon(4S)$, respectively, as well as 56 fb⁻¹ of data collected about 60 MeV below the $\Upsilon(4S)$.
 - Corresponds to $(28.0 \pm 1.0) \times 10^6 \Upsilon(3S)$ initial states produced directly or via ISR.

nal Yield	Significance (σ)
$3.1^{+11.1}_{-10.8}$	3.2
09 ± 24	15.0
52 ± 16	3.9

Signals: Double-Sided Crystal Ball (DSCB) $\rightarrow J = 0$ in M_{ω} is DSCB×sigmoid Backgrounds: cubic and quadratic polynomials in ΔM_{χ} and M_{ω} , respectively.

ning Fraction	Consistency
$^{+0.35+0.12}_{-0.31-0.11}\%$	-1.9σ
$^{+0.32+0.08}_{-0.28-0.07})\%$	$+2.0\sigma$

Study of $\chi_{bI}(nP) \rightarrow \omega \Upsilon(1S)$ at Belle – Hadron 2021 – Zachary S. Stottler

July 28, 2021 12

Study of $\chi_{hI}(nP) \rightarrow \omega \Upsilon(1S)$ at Belle – Hadron 2021 – Zachary S. Stottler

[Phys.Rev.D 92 (2015) 5, 054034]

Predi	cted	
dth (keV)	BR (%)	Width (keV)
9	1.8×10^{-3}	0.32 ± 0.04^a
1	0.0686	
0	1.8×10^{-3}	
$ imes 10^{-6}$	$2.7 imes 10^{-8}$	
2	$3.7 imes 10^{-3}\%$,)
4	$3.8 \times 10^{-3}\%$,)
8	$2.2 imes 10^{-3}\%$,)

Corresponding to ~ 1 event.

VIRGINIA TECH. Summary

- Belle remains productive in $Q\overline{Q}$ spectroscopy!
- We Present Results: [arXiv:TBD]
 - $\chi_{bI}(2P)$ Branching Fraction Measurements:

• Search for $\chi_{bI}(3P)$ at Belle

✓ Set an upper limit on the cascade branching fraction:

 $\mathcal{B}(\Upsilon(4S) \to \gamma \chi_{b1}(3P) \to \gamma \omega \Upsilon(1S)) < 1.4 \times 10^{-5} (90\% \text{ CL})$

The future is bright for Quarkonium at Belle and high luminosity Belle II

Study of $\chi_{hI}(nP) \rightarrow \omega \Upsilon(1S)$ at Belle – Hadron 2021 – Zachary S. Stottler

First Confirmation of CLEO Discovery!

Consistent with CLEO at 2σ level [Phys.Rev.Lett. 92 (2004) 222002]

Thank you

TABLE IV: Summary of systematic efficiencies impacting the branching fraction measurements, reported in percent.

Source	$\mathcal{B}(\chi_{b0}(2P) \to \omega \Upsilon)$	$\mathcal{B}(\chi_{b1}(2P) \to \omega \Upsilon)$	$\mathcal{B}\left(\chi_{b2}(2P) \to \omega \Upsilon\right)$	$\mathcal{B}(\mathcal{I})$
Tracking	•••	•••	•••	
PID				
π^0 reconstruction	± 1.7	± 1.7	± 1.7	
Selection Efficiency	± 0.1	± 0.1	± 0.1	
Signal Extraction	$+8.7 \\ -8.8$	$^{+1.1}_{-2.6}$	$\substack{+3.6\\-7.9}$	
Number of $\Upsilon(4S)$				
Number of $\Upsilon(3S)$	$\substack{+1.2\\-1.1}$	$\substack{+1.2\\-1.1}$	$\substack{+1.2\\-1.1}$	
External Branching Fractions	± 10.4	± 9.4	± 12.4	
Total	$\begin{array}{c} +14.1 \\ -14.2 \end{array}$	$\substack{+9.7\\-10.0}$	$\begin{array}{c} +13.1 \\ -14.8 \end{array}$	

$$\frac{\Gamma(4S) \to \gamma \chi_{b1}(3P) \to \gamma \omega \Upsilon)}{\pm 1.4} \\
\pm 1.1 \\
\pm 3.3 \\
\pm 0.02 \\
^{+10.1} \\
^{-12.6} \\
\pm 1.4 \\
... \\
\pm 2.2 \\
^{+11.1} \\
^{-13.4}$$

FIG. 81: The signal yield distribution for each decay of interest, obtained from 20,000 fits to data while the model parameters are varied according to the global covariance matrix.

Study of $\chi_{bI}(nP) \rightarrow \omega \Upsilon(1S)$ at Belle – Hadron 2021 – Zachary S. Stottler

Channel	Fixed	Bkg Shape	Fitter	Fi
Ullaintei	Parameters	+ Fit Window	Bias	(k
J = 0	$+4.1\% \\ -3.9\%$	$+6.9\% \\ -7.3\%$	3.2%	
J = 1	$+0.6\% \\ -0.5\%$	$^{+0.8\%}_{-2.5\%}$	0.4%	
J=2	$+1.4\% \\ -1.3\%$	$+1.4\% \\ -7.2\%$	2.9%	
	$ \begin{array}{c} $	50 50 $\sigma_{L} = \sigma_{R} = \sigma_{R} = \sigma_{R}$ $\sigma_{R} = \sigma_{R}$	308.2 +/- 0.4 7.8 +/- 0.4 2.4 +/- 0.3	$ \begin{array}{c} \mu = \\ \sigma_L \\ \sigma_R $

FIG. 82: Distributions of efficiency-corrected signal yields, obtained from fits to data with varied fit windows and background shapes.

Study of $\chi_{bJ}(nP) \rightarrow \omega \Upsilon(1S)$ at Belle – Hadron 2021 – Zachary S. Stottler

$$= 64.1 + - 0.4$$

$$= 4.6 + - 0.3$$

$$= 0.9 + - 0.2$$

$$= 0.9 + - 0.2$$

Channel	Fixed	Bkg Shape	Fitter	Fi
	Parameters	+ Fit Window	Bias	Ş
J = 0	+4.1% -3.9\%	+6.9% -7.3\%	3.2%	
J = 1	+0.6% -0.5%	+0.8% -2.5%	0.4%	
J=2	$+1.4\% \\ -1.3\%$	$+1.4\% \\ -7.2\%$	2.9%	

FIG. 83: Linearity test results of the $\chi_{b1}(2P) \rightarrow \omega \Upsilon(1S)$ fitter.

Study of $\chi_{bJ}(nP) \rightarrow \omega \Upsilon(1S)$ at Belle – Hadron 2021 – Zachary S. Stottler

July 28, 2021 21